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A B S T R A C T   

The primary sequences of DNA, RNA and protein have been used as the dominant information source of existing 
machine learning tools, especially for contexts not fully explored by wet-experimental approaches. Since mo-
lecular markers are profoundly orchestrated in the living organisms, those markers that cannot be unambigu-
ously recovered from the primary sequence often help to predict other biological events. To the best of our 
knowledge, there is no current tool to build and deploy machine learning models that consider genomic evi-
dence. We therefore developed the WHISTLE server, the first machine learning platform based on genomic co-
ordinates. It features convenient covariate extraction and model web deployment with 46 distinct genomic 
features integrated along with the conventional sequence features. We showed that, when predicting m6A sites 
from SRAMP project, the model integrating genomic features substantially outperformed those based on only 
sequence features. The WHISTLE server should be a useful tool for studying biological attributes specifically 
associated with genomic coordinates, and is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/whi2.   

1. Introduction 

The primary sequences of DNA, RNA and protein convey the most 
fundamental information of the biomolecules, and have been used as the 
primary information source for machine learning tools in biosciences. 
To date, a large number of sequence-based methods have been devel-
oped to address various life science challenges such as the prediction of 
biological functions [1] and structures [2–4]. Meanwhile, many tools 
have been developed, such as bioSeq-Analysis [5], PyFeat [6] and 
PseKRAAC [7], to facilitate sequence-based feature extraction and ma-
chine learning modelling. Together these efforts have achieved great 
success, especially in obtaining insights into biological contexts that 
could not be adequately explored through wet-experimental 
approaches. 

RNA modifications increase the structural and functional diversity of 
RNA molecules [8] and regulate every stage of RNA life [9–12]. 
Important roles of RNA modifications have been revealed in various 

diseases [13], cancers [14] and during viral infection [15]. Precise 
identification of RNA modification sites is thus of crucial importance for 
understanding the regulatory mechanisms and functionality of various 
RNAs. To date, a large number of computational approaches have been 
developed for in silico prediction of RNA modification sites from the 
primary RNA sequences, including: the iRNA series [16–24], SRAMP 
[25], DeepPromise [26], WHISTLE [27], RNAm5CPred [28], Gene2vec 
[29], PEA [30], BERMP [31] and PPUS [32]. As reviewed recently 
[26,33–35], these works have greatly advanced our understanding of 
the localization of multiple RNA modifications under various biological 
contexts in different organisms. 

Due to limitations in available computational resources and in the 
learning capability of the machine learning models themselves, the 
primary sequence itself cannot provide all the information needed for 
machine learning prediction. In many cases only a fraction of the pri-
mary sequence rather than its entirety is used for prediction tasks. 
Substantial amounts of information are therefore lost during the model 

* Corresponding authors at: Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China (Z. Wei). 
E-mail addresses: xjlei@snnu.edu.cn (X. Lei), zhen.wei01@xjtlu.edu.cn (Z. Wei).   

1 Contributed equally to this work. 

Contents lists available at ScienceDirect 

Methods 

journal homepage: www.elsevier.com/locate/ymeth 

https://doi.org/10.1016/j.ymeth.2021.07.003 
Received 8 June 2021; Received in revised form 28 June 2021; Accepted 5 July 2021   

http://www.xjtlu.edu.cn/biologicalsciences/whi2
mailto:xjlei@snnu.edu.cn
mailto:zhen.wei01@xjtlu.edu.cn
www.sciencedirect.com/science/journal/10462023
https://www.elsevier.com/locate/ymeth
https://doi.org/10.1016/j.ymeth.2021.07.003
https://doi.org/10.1016/j.ymeth.2021.07.003
https://doi.org/10.1016/j.ymeth.2021.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymeth.2021.07.003&domain=pdf


Methods 203 (2022) 378–382

379

selection process, in which the optimal input sequence length is deter-
mined. Although the sequences discarded from the analysis could in 
theory contain useful information as well, that information could not be 
explicitly extracted with the implemented machine learning models and 
thus cannot be effectively used. For example, in the problem of modi-
fication site prediction [36], many machine learning algorithms 
consider only 20–50 bp of DNA (or RNA) sequences, with the distant 
sequences discarded. 

Importantly, distinct biological events are profoundly orchestrated 
in the living organisms, making them powerful predictors of each other. 
Although it is often expected that biological events should ultimately be 
encoded in the primary sequences, in practice, many of them could not 
be explicitly recovered from sequence-based analysis alone, and incor-
porating additional biological evidence can often boost the accuracy of 
prediction tools. However, as biological evidence (such as transcriptome 
annotation) is usually indexed with genomic coordinates, associating 
biological evidence (such as whether a given sequence lies within a 
5′UTR or a CDS) to arbitrary biological sequences is often non-trivial and 
time consuming due to the involvement of genome aligners, and can be 
complicated by ambiguous multi-mapping scenarios. 

We previously developed WHISTLE, a high-accuracy prediction 
framework for N6-methyladenosine (m6A) RNA methylation site pre-
diction [27]. Although WHISTLE considers only 41 bp of RNA sequence, 
by incorporating 35 additional genomic features its performance is 
among the best of m6A predictors, and is comparable to the most recent 
deep learning methods that require thousands of nucleotide of se-
quences as the input and were equipped with advanced encoding 
schemes [26]. Furthermore, we have shown that the WHISTLE frame-
work can be successfully migrated to other prediction problems, 
including other RNA modifications (7-MethylGuanine, Pseudour-
idylation and N1-methyladenosine) [37–39], in non-human organism 
(mouse) [40], and for predicting marks located on lncRNAs and introns 
[41,42]. In all these studies, we demonstrated that the prediction per-
formance achieved from genomic features alone is already comparable 
to sequence-based models; and that models combining both sequence 
and genomic features consistently yielded high-accuracy prediction re-
sults that are substantially better than those based on sequence 

information only. It is evident that additional biological evidence can be 
a valuable complement to sequence information in various prediction 
tasks; however, to the best of our knowledge, none of the existing 
sequence-based feature extraction tools try to recover higher-level bio-
logical evidences (such as transcriptome annotation, miRNA binding) 
from the input of primary sequences. Bioinformatics tools that enable 
extraction of biological evidence should greatly facilitate machine 
learning projects in biosciences. 

By extending our previous work, we present here WHISTLE Server, a 
high-accuracy genomic coordinate-based machine learning platform for 
unleashing predictive power beyond the primary nucleic acid sequences. 
The inputs of WHISTLE server are genomic coordinates rather than the 
primary sequences so as to facilitate downstream genomic evidence 
extraction. It features convenient online (or offline) extraction of 46 
distinct genomic features along with the conventional sequence features 
for both human and mouse. Importantly, the platform supports 
straightforward prediction model construction and online deployment 
for private or public usage. As case studies, we showed additionally that, 
when predicting m6A sites from SRAMP, the model integrating addi-
tional genomic features substantially outperformed those based on only 
sequence features. When only using genomic features, its performance is 
far better than using sequence features. Furthermore, it is possible to 
build and deploy a prediction model as a web app with just a few clicks 
with our server. Please refer to Fig. 1 for the overall design of the 
WHISTLE Server. 

2. Material and methods 

Rather than analyzing the biological entities in the sequence space 
only, we also consider the genome space along with various biological 
annotations and datasets mapped to it for additional information. 
Compared with the widely adopted sequence-based systems, our 
framework has clear advantages when dealing with entities whose se-
quences can be mapped to one or multiple genomic coordinates by 
providing additional genomic features extracted from the biological 
space; however, this approach will fail for entities that cannot be map-
ped to the genome, e.g., a piece of virus DNA, or when the biological 
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Fig. 1. The overall design of WHISTLE Server. WHISTLE Server supports convenient genomic feature extraction and prediction model development from the input of 
genomic coordinates of interests. A total of 46 genomic features can be extracted for human and mouse, concerning transcriptome annotation, genome conservation, 
post-transcriptional regulation, motif, gene class as well as the conventional sequence features. User can develop prediction models and conveniently deploy them 
online as web app for private or public usage. 
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space has not been annotated, e.g., for a less studied non-model organ-
ism. Luckily, as more and more experimental datasets and biological 
knowledge are accumulated, genomic features in general are likely to be 
more and more complete and effective. The WHISTLE Server supports 
two core functions: (1) batch genomic feature extraction for a set of 
genomic coordinates and (2) convenient high-accuracy prediction 
model construction and web deployment (as web app) for private or 
public usage. 

We previously developed WHISTLE [27], a high-accuracy predictor 
of m6A RNA methylation sties. Although the WHISTLE framework is 
based on rather short input sequences (around 41 bp) and classic ma-
chine learning algorithm (random forest), by taking advantage of the 
additional genomic features extracted with respect to genomic co-
ordinates, it achieved a state-of-the-art performance comparable to the 
most advanced deep-learning algorithms [26], which usually require 
long input sequence (typically 1 kb of nucleotides) and carefully tuning 
of the hyper-parameters. The parameter tuning of deep learning models 
often make them less convenient to migrate to address new problems. In 
contrast, migration of the WHISTLE framework is extremely convenient 
and straightforward, as shown in our previous work for 7-methylgua-
nine [37], Pseudouridylation [38] and N1-methyladenosine [39]. To 
demonstrate the effectiveness of our approach, we showed with the 
following case study that the predictors constructed by the WHISTLE 
Server (leveraging genomic features) achieved high-accuracy prediction 
performance on m6A modification sites from SRAMP project. 

2.1. Datasets and model 

The development of an RNA modification site prediction model re-
quires transcriptome-wide profiling data at base-resolution for training 
and testing purposes. The same number of negative sites as positive sites 
were randomly selected, either from the same nucleotide on the same 
transcript (full transcript mode) or the same nucleotide on the same 
mature RNA (mature mRNA mode). The mature RNA mode was 
considered here to eliminate potential bias towards mature transcripts, 
which can be induced by the poly-A selection step performed when 
preparing the RNA library in most high-throughput profiling ap-
proaches. Note that the negative data generation and motif-based site 
selection can be performed automatically by the WHISTLE Server with 
options specified from the user. 

2.2. Genomic feature extraction 

The WHISTLE Server supports the online extraction of 46 genomic 
features in batch for genomic coordinates of human and mouse. These 
genomic features cover various biological evidence, including tran-
scriptome annotation, genome conservation, post-transcriptional regu-
lation, association to gene class, association to sequence motif and the 
conventional primary sequences. The genomic features can be broadly 
grouped into 3 categories: 1) Topological features related to transcript 
landmarkers. 2) Range based RNA annotations that are RBP and 
microRNA binding sites which are previously reported to relate to m6A 
turn-over. 3) The sequence derived features such as sequence contents, 
sequence conservation, and sequence motifs. The topological features 
are derived from Bioconductor package GenomicFeatures. The range 
based RNA annotations are generated by overlapping the modification 
sites with the binding regions. The sequence features are calculated 
using the Bioconductor package BSgenome. The additional genomic 
features can be derived from a more flexible combination of existing 
topological features, such as the overlapping between the exons con-
taining RBP regions. Additionally, more transcript annotations can be 
added from other databases, such as the transcript expression patterns & 
functional annotations. Many of those cannot be easily retrieved from 
the immediate primary sequences (see Supplementary Table S1 for de-
tails). Besides, we also provided the WHISTLE R package, which can be 
installed on a local computer for large-scale automated genomic feature 

extraction under the R environment. To the best our knowledge, there 
are no existing tools that support batch genomic coordinate-based 
feature extraction. As these genomic features can carry predictive 
power beyond the primary sequences, it is expected that they may be 
used to construct more advanced and more accurate prediction models 
offsite which would out-perform conventional sequence-based predic-
tion models. 

2.3. Prediction model construction and web deployment 

In addition to genomic feature extraction, the WHISTLE Server also 
supports convenient construction and web deployment of high-accuracy 
predictors from a set of genomic coordinates that are associated with the 
attribute of interests, e.g., genomic coordinates of RNA modifications 
(RNA methylation sites). To do so, a few options need to be specified by 
the user to customize the related procedures, i.e., negative data gener-
ation, genomic features extraction, classification algorithm selection 
and the options related to web app deployment. When it is known that 
the attribute of interests is restricted to a specific sequence pattern, e.g., 
the DRACH motif of N6-methyladenosine RNA methylation, coordinates 
that do not comply with the sequence motif can optionally be discarded 
from the analysis. WHISTLE supported five classification algorithms for 
model training, random forest (RF), support vector machine (SVM), K- 
nearest neighbor (KNN), logistic regression (LR) and eXtreme Gradient 
Boosting (XGBoost). RF is a popular machine learning algorithm used to 
predict m6A RNA methylation, which was applied in SRAMP to predict 
mammalian m6A sites. SVM is another algorithm applied in computa-
tional biology, based on which the methods of MethyRNA [43] and 
RAM-ESVM [44] were developed to predict RNA methylation sites. KNN 
is one of the most powerful methods in the data mining classification 
technology, and LR is a method with a simple algorithm and a high 
performance. XGBoost is frequently used in competitions and industry, 
and can be effectively applied to the tasks of classification, regression 
and ranking, it was used in M6AMRFS [45] to predict m6A sites in 
multiple species based on the sequence features. 

Finally, a predictor based on both genomic and sequence features 
will be generated and deployed online, which can predict the attribute 
associated with the input genomic coordinates. To the best our knowl-
edge, there are no other such tools available for constructing predictors 
directly from genomic coordinates. The prediction performance of the 
web app is provided along with the web app page, including the sensi-
tivity (Sn), specificity (Sp), accuracy (ACC), Matthews correlation co-
efficient (MCC) and the area under the receiver operating characteristic 
curve (AUC), all obtained from a 5-fold cross validation using the 
complete training data. In the process of constructing the model, 
WHISTLE used sequence features, genomic features and combined fea-
tures to train the model respectively, and then takes the model with the 
best results of 5-fold cross validation as the final training model. Addi-
tionally, the users can specify whether the deployed web app should be 
publicly available or for private usage only. For a private web app, a link 
will be sent to only the designated email address; while all the public 
web apps will be displayed on the WHISTLE Server website, available for 
all to use. 

2.4. Web interface implementation and programming environment 

Hyper Text Markup Language (HTML), Cascading Style Sheets (CSS) 
and Hypertext Preprocessor (PHP) were applied in the construction of 
web interfaces. Genomic features for human and mouse were extracted 
with our newly developed WHISTLE package using the input genomic 
coordinates. Model construction and performance analysis were per-
formed under R environment with customized scripts. 

3. Results 

To show the advantages brought by the additional genomic features, 
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we used the default setting of the WHISTLE server (46 genomic features, 
21 bp of sequences with chemical property and nucleotide frequency 
encoding, random forest classifier), and constructed a prediction model 
for the datasets from SRAMP. Because our previous work, such as 
intronic m6A sites prediction, lncRNA methylation sites prediction and 
m1A prediction, all used RF classifier for prediction, so the default 
classifier here is RF. We then compared the performance of the pre-
dictors based on different feature sets (sequence features alone, genomic 
features alone, or both sequence and genomic features) in a 5-fold cross 
validation. In order to measure the prediction effect of the model, we 
used the measurements of sensitivity (Sn), specificity (Sp), accuracy 
(ACC), and Matthews correlation coefficient (MCC) to show the results 
of the model. In addition, we calculated the areas under the curves (as 
called “AUC”) to evaluate the prediction performance. AUC was used as 
the main metrics for its non-parametric nature. The performance was 
obtained with 5-fold cross validation using the complete datasets, which 
were provided at WHISTLE Server website. 

As shown in Table 1, under the mature RNA mode, genomic features 
alone are more powerful than sequence features (AUC = 0.802), which 
is superior to the prediction performance of SRAMP (AUC = 0.797). 
Importantly, the prediction performance by genomic features was better 
than combining both sequence and genomic features (AUC = 0.7865), 
demonstrating that the genomic features provided additional informa-
tion given the sequence-based variables and played a more important 
role in the prediction. 

The genomic features are even more evident under the full transcript 
mode. As shown in Table 2, the model based on genomic features (AUC 
= 0.9908) are substantially more accurate than sequence features (AUC 
= 0.8034). 

4. Discussion 

We present here WHISTLE Server, the first genomic coordinate-based 
machine learning platform to enhance prediction accuracy by inte-
grating sequence-based features and higher-level annotations. Different 
from sequence-based platform such as bioSeq-Analysis [5], the WHIS-
TLE server integrates additional biological evidence (such as tran-
scriptome annotation, microRNA binding) with respect to genomic 
intervals, enabling higher prediction accuracy compared to purely 
sequence-based approaches. Importantly, it supports convenient pre-
diction model construction and web deployment for private or public 
usage with just a few clicks. Together, it should make a useful resource 
to study biological attributes associated with specific genomic 
coordinates. 

Future pathways to improve the WHISTLE Server could include: (1) 
Support for more species and more genome assemblies. Even though our 
computational framework is likely to be effective on most well anno-
tated organisms, it currently supports only human (assembly hg19) and 
mouse (mm10). (2) Support for more feature encoding schemes and 
more machine learning algorithms. WHISTLE Server currently supports 
5 classification algorithms: random forest (RF), support vector machine 
(SVM), K-nearest neighbor (KNN), logistic regression (LR) and eXtreme 
Gradient Boosting (XGBoost). (3) Coverage of more genomic features 
that may contribute to the prediction tasks. (4) Support for more intel-
ligent ways of combining the sequence and genomic information for 
various prediction tasks, such as with multimodal techniques as used in 
Bichrom [46] and DeepRiPe [47]. 
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