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A B S T R A C T

The aging process results in multiple traceable footprints, which can be quantified and used to estimate an
organism's age. Examples of such aging biomarkers include epigenetic changes, telomere attrition, and altera-
tions in gene expression and metabolite concentrations. More than a dozen aging clocks use molecular features
to predict an organism's age, each of them utilizing different data types and training procedures. Here, we offer a
detailed comparison of existing mouse and human aging clocks, discuss their technological limitations and the
underlying machine learning algorithms. We also discuss promising future directions of research in biohorology
— the science of measuring the passage of time in living systems. Overall, we expect deep learning, deep neural
networks and generative approaches to be the next power tools in this timely and actively developing field.

1. Introduction

The XXth century has seen the rise of multiple aging theories.
Today, we have the means to inspect and manipulate biological systems
with precision unavailable to our predecessors, yet the mystery of aging
remains unsolved. Neither of the existing theories has been decisively
proven and elaborated to the point of clear understanding of what the
ultimate cause of aging is. Putting together a conclusive theory of aging
has been difficult due to the inability to properly quantify and define
aging. Consequently, the efficacy of various geroprotective interven-
tions remains subject to controversy. Without general agreement as to
what constitutes aging and biological age (BA), and how to measure
their progression, conclusions on the benefits of particular therapies are
likely to be biased.

Meanwhile, the very existence of a reliable way to measure BA re-
mains under question. August Weismann proposed in 1881 the ex-
istence of an evolved mechanism of aging, which is selected for at the
group level and facilitates resource redistribution within species from
the elderly to the young. He also suggested that such a mechanism of
“programmed death” is probably realized via an intrinsic, species-spe-
cific limit of somatic cell division. Indeed, the limit originally

conceptualized by Weismann can be related to the Hayflick limit. While
it would be infinitely convenient for aging to be akin to developmental
processes, such as puberty, and possess specific checkpoints and well-
established regulatory pathways, subsequent studies proved Weismann
wrong (Gavrilov and Gavrilova, 2002). Firstly, programmed aging
contains an implicit contradiction with observations, since it requires
group selection for elderly elimination to be stronger than individual
selection for increased lifespan. Secondly, in order for the mechanism to
come into place, natural populations should contain a significant frac-
tion of old individuals, which is not observed either (Williams, 1957).
Finally, if aging is a program, it may be disrupted by gene mutations,
but this has not been observed in any individuals and in any species
(Gladyshev, 2016). All this does not exclude a possibility of pro-
grammed aging in some species/contexts, but contradicts the universal
nature of programmed aging.

One alternative to the Weismann’s idea of programmed death would
be aging as an evolutionary neutral or antagonistically pleiotropic trait
that still presents a single point of attack to biogerontologists. This
hypothesis is also referred to as “shortsighted watchmaker”. Processes
that are required for an organism to reach maturity persist until they
become a liability due to weaker selection in late life. Eventually these
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processes result in nothing but harm we interpret as aging symptoms
(De Magalhães, 2012). This hypothesis can be illustrated by the
“Golden Antelope” fairy tale, in which a greedy raja captures a magical
antelope that strikes golden coins with each step. At first the raja is glad
to see his prisoner galloping to enrich him more and more, right until he
starts getting buried under the weight of the coins. But alas, the ante-
lope cannot be stopped (Abramov and Atamanov, 1954). Various me-
chanistic theories of aging proposed many different antelopes, among
them: ROS, telomere attrition and inflammaging. These theories can
serve a surprisingly fruitful basis for the development of anti-aging
interventions. For example, ROS theory of aging has yielded mi-
tochondria targeted SkQ antioxidants that have been proven to protect
organisms in a variety of age-related scenarios (Skulachev et al., 2009).
However, none of the reductionist theories of aging has managed to
provide a cogent explanation on how a single factor gives rise to all the
distinctive aging phenotypes.

This presents the research community with a troubling alternative
that aging has no distinct genetic signature and is in essence a multitude
of simultaneous damage accumulation processes. If that is true, BA as a
concept is unlikely to be a property of objective reality but should be
treated as an artificial construct. Such a construct would heavily rely on
socioeconomic and cultural differences among people as well as on the
scientific consensus on what detrimental processes should be con-
sidered aging. Without such a consensus, gerontology may be con-
tinuously torn apart, as scientists claiming to study the very same
“aging” will in fact be elaborating on its fundamentally different aspects
— a situation known as “semantic barrier”.

If there is indeed no singular process behind all the manifestations
of aging, measuring BA is infinitely harder than in the case of single-
source aging. It would require either (a) finding a common denomi-
nator for the majority of aging-related processes or (b) arbitrarily
weighing all such processes according to their perceived importance to
form the final “age score”. The problem of multiple aging processes is
further confounded by individual variability. There are indications that
people age according to different trends that can be grouped into sev-
eral “ageotypes” defined by the hierarchical clustering of their bio-
markers. Moreover, the fluidity of individual ageotypes can cause un-
stable performance of an aging score within any singular individual
(Ahadi et al., 2020).

Nonetheless, a reliable and universally agreed upon way to quantify
BA is a necessity for modern biogerontology. Most importantly, it
would enable flexible experimental designs and in many cases would
remove the need to follow up human subjects for decades to evaluate
the benefits of a geroprotective intervention. Moreover, it could be used
as a criterion to test the relevance of specific diseases, pathways or
processes in the context of aging research. Hopefully, accurate BA
measurement could bring around new hypotheses on the nature of
aging and be the first step towards a paradigm shift in biogerontology.

Today there is no shortage of either biomarkers – ranging from DNA
methylation (DNAm) to neuroimaging – or methods to translate various
interpretations of BA— the so-called aging clocks (Gialluisi et al., 2019;
Xia et al., 2017). This review is focused only on the clocks constructed
using molecular or cellular-level data. First, we provide information on
what aspects of aging they cover, their technological challenges, user
availability and a short historical reference as well as compare their
performance. Next, we discuss more technical aspects of biohorology –
the science of measuring BA – and provide a short overview of state-of-
the-art deep learning techniques that could be used to increase our
understanding of aging processes and to design geroprotective inter-
ventions.

2. Biomarkers of aging and existing aging clocks

Multiple features and traits within an organism, on all levels of
biological organisation, undergo transformation during aging and can
be called biomarkers of aging. In this review, we will cover the subset of

biomarkers, which satisfy the following criterion: to qualify for an aging
clock, a biomarker has to be a reflection of a ubiquitous aging related
process, present both in humans and model organisms as well as in their
multiple tissues (Butler et al., 2004; Johnson, 2006; Jylhävä et al.,
2017). This criterion rules out, for instance, all visual biomarkers of
aging, which nonetheless can achieve formidable precision as demon-
strated by PhotoAgeClock(Bobrov et al., 2018), whose mean absolute
error (MAE) of 2.3 years remains unparalleled by any of the clocks
described here in more detail. More generally, this requirement implies
that universal aging clocks should be based on cellular or subcellular
level biomarkers since aging processes that take place on higher orders
of organization may be incomparable between tissues or species. For
example, left ventricular filling rate depends on age and could be used
to estimate the likelihood of a fatal stroke (Strait and Lakatta, 2012),
yet this organ-level feature cannot be used to estimate the BA of other
organs or a whole organism (yet may be useful when placed in the
context of other biomarkers). Moreover, organ- or tissue-specific aging
biomarkers that require invasive procedures (e.g. biopsy for histological
analysis) impose multiple limitations on experimental settings and ap-
plications.

While complex organisms accumulate innumerable footprints of
aging, very few of them have the potential to become a biomarker that
could be used to measure the passage of time across different tissues
and species. In this review, we will focus on such aging biomarkers:
telomere length, genomic instability, epigenetic marks, biochemical
compounds and gene expression levels.

2.1. Defining the target

Defining aging clock as a method to predict an individual's age is
unlikely to cause much discord in the scientific community. Meanwhile,
the definition of age per se and what is it that should be predicted may
lead to a heated argument.

The two concepts: chronological and biological ages (CA and BA) —
intertwine and are sometimes used interchangeably in the literature,
implicitly and explicitly. The definition of CA is trivial: the amount of
time passed since one's birth (or inception in case of gestational age).
Meanwhile BA is a fluid, borderline placeholder concept used to refer to
the time-dependent component of an organism’s overall health condi-
tion and is frequently juxtaposed with CA. One might quite reasonably
doubt the necessity of such a concept that creates semantic barriers.

The long unsettled question of "When aging starts?" is of great utility
for demonstrating the confusion surrounding BA. This question has
many different answers, and each of them implies a different definition
of what aging and BA are. Some prefer to use the BA defined by mor-
tality risk and claim that it is most practical to consider aging onset to
coincide with the Gompertz (age-mortality) curve minimum, which
approximately corresponds to the start of reproductive maturity period
(Dolejs and Marešová, 2017). Others point out that this definition of
aging and biological age as a substitute to mortality produces a circular
argument: aging starts at the minimum of the mortality curve, and the
onset of aging then causes mortality to increase. Some scientists believe
that mortality minimum and the age of reproductive capacity onset
coinciding implies the existence of a deeper evolutionary connection
between the two. But their fluctuations across centuries and nations
show that this is unlikely the case (Milne, 2006). The supporters of
"aging as damage accumulation" concept suggest that BA starts earlier
than that, as even embryos are not immune to oxidation, somatic mu-
tations, telomere attrition and other forms of damage (Milne, 2006).
Indeed, if aging is defined by age-related deleterious changes, such as
molecular damage, it begins very early in life. A more physiological
view on aging based on the intensity of bodily functions puts BA
starting point at 25−35 years, when many age-related conditions first
manifest: decrease in reproductive function, sarcopenia, onset of
cardio-vascular diseases, reduced neurogenesis, etc (Forbes and Reina,
1970; Kempermann, 2015; Nelson et al., 2013; Strait and Lakatta,
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2012).
All these points of view imply different definitions of BA and its

ticking rate at different life periods, yet BA is often referred to as a
universally agreed upon metrics of aging. It is highly important to not
fall for this, and always pay attention to how exactly the authors derive
BA. In the field of biohorology BA has to be quantifiable, which adds a
new layer of mathematical ambiguity. Most aging clocks base their BA
definitions either on CA or mortality risk, with variations discussed in
the sections below. Mortality risk in its turn is derived from demo-
graphic tables and can be assumed to be a function of CA in most an-
imals, including human. Thus, aging clocks are ultimately treating CA
as a substitute BA with the caveat that deviations from the actual CA
signify better or worse physical fitness when compared to age matched
controls.

Such a design has several flaws. First of all, it ties the produced age
predictions to the historical and geographical context it was created in
(Levine and Crimmins, 2018). Some clocks use extra metavariables
during training and prediction to cover for the differences in the aging
patterns among different nations, races and countries (Mamoshina
et al., 2018a).

Another concern is the clock's biological relevance. A clock that
predicts CA reliably will fail to grasp the health status variance, espe-
cially in the elderly, when the division between "normal agers", "un-
deragers" and "overagers" becomes apparent. Some aging clocks ac-
knowledge this drawback and incorporate multiple measures of
physical fitness apart from CA to derive BA, e.g. PhenoAge discussed in
Section 2.1 (Levine et al., 2018). In other cases, aging clock developers
determine their biological relevance post-factum. The most widely used
DNA methylation clocks (Section 2.4) owe their popularity to produ-
cing BA estimates that are highly correlated with physical and cognitive
fitness in the elderly, as well as an extensive list of age-related diseases,
cancers, overall frailty and biomarkers of aging (Degerman et al., 2017;
Marioni et al., 2015).

These examples prove that CA-based BA definitions are capable of
grasping the whole scale of interpersonal BA variance. One should bear
in mind that this circumstance does not certify this approach's un-
conditional efficiency. Measuring different aspects of aging notwith-
standing, the clocks still inherit all their training set's biases, requiring
careful sample selection. They rely greatly on the definitions, such as
"healthy" and “disease”, as well as on data annotation. In many publicly
available data sets originating from case-control studies, it is quite
common for the entries to contain no information on comorbidities. As
a result, control samples in, for example, a study on Alzheimer's disease
may in fact be a wild mix of diabetics, cancer survivors, subjects with
cardio-vascular conditions and other considerably unhealthy in-
dividuals. One may assume that the relative number of subjects with
serious diseases is typically low and their effect on an aging clock
performance is minimal. But then it is important to make sure that all
CA groups in the training set are evenly covered both in terms of sample
and study numbers, to avoid importing a specific study's bias in control
selection criteria.

2.2. Chronological age as an (in)dependent variable

Prior to examining specific implementations, we should address a
frequently overlooked aspect of biohorology. While it is most reason-
able to treat CA as a target variable, which should never leak into the
predictor variables, this is not always the case. Most modern aging
clocks indeed treat CA merely as a selection criterion, but there is also a
class of clocks where it is treated as an aging marker.

To put it in mathematical terms, the former approach is equivalent
to solving = +BA W x for W (a vector of unknown coefficients),
where x is a matrix of dependent features (e.g. clinical blood parameter
levels) and ε is noise. Assuming that CA of healthy individuals is close to
their BA and therefore represents a sort of a norm, the BA prediction
problem can be solved by minimizing the difference between estimated

BA and CA. Meanwhile, the alternative approach is described by the
following equation: = + +BA W x CA( ) . In this case, CA cannot be
used as a benchmark for a solution’s quality to avoid producing a de-
generate model BA = CA. Thus, BA should be defined in a different
fashion. For example, in (Borkan and Norris, 1980) BA is defined in a
way that makes it a metrics of similarity to a person’s CA peers.

The first instance of age being treated strictly as a dependent vari-
able is probably (Nakamura et al., 1988). This study criticizes the
previously used methods and provides sound arguments against them.
It points out that they lead to a situation, when “a perfect equation,
which predicts the dependent variable correctly, always predicts the
identical CA”. In other words, it carries the risk of producing mathe-
matically and biologically trivial models.

The authors then follow to demonstrate their alternative. Having
information on 30 physiological parameters (such as total cholesterol,
pulse and blood hemoglobin) for 462 people, they used PCA and cor-
relation analysis to select a set of 11 parameters most characteristic of
aging. In the end, they present a regression model with a standard error
of 7.49 years. The model was then used to show that diabetic and hy-
pertensive people age faster than healthy population.

Today most aging clocks are Nakamura-like in that they avoid using
age to predict age, although some of them are significantly more
complex. However, there are exceptions.

One such exception is PhenoAge (Levine et al., 2018). It belongs to a
family of methylation (DNAm) clocks, described in more detail below
(Section 2.4). PhenoAge replaces CA benchmark with “phenotypical
age”, which is derived from a 10-dimensional distribution for mortality
risk in the training set. The ten dimensions include nine blood markers
and CA itself. Although strongly predictive of mortality risk, smoking
status and BMI, when it comes to age estimation PhenoAge represents
one of the caveats mentioned by Nakamura, namely: “the distortion of
… BA at the regression edges”, – it indeed overestimates the age of
younger adults (Liu et al., 2018).

Another clock, DNAm GrimAge, uses a two-stage training procedure
to estimate time to death. Firstly, DNAm biomarkers were used to es-
timate concentrations of 88 plasma proteins and smoking pack-years
(Lu et al., 2019). The resulting DNAm-based surrogates for 12 of them,
as well as pack-years, significantly correlated with actual concentra-
tions (Pearson R > 0.35). Secondly, the surrogates, gender and CA are
all used to regress time to death — the “observed GrimAge”. As in
PhenoAge, the target variable is defined using CA, as well as plasma
protein levels, gender and reported pack-years. Such a complicated
procedure was shown to offer improvements, compared to the single
stage method, when DNAm markers are directly used to estimate time
to death.

Strictly speaking, neither GrimAge nor PhenoAge are aging clocks:
their definitions of age acceleration are not intended to approximate
CA. Since the score they predict is derived from the concept of mortality
and disease risks, “death and disease timer” or “health timer” would be
more fitting names, and this is whether their utility lies. As their mor-
tality risk definition has CA embedded in it, it makes them ideologically
similar to the models debated by Nakamura. Such an approach used for
purposes not intended by their design may lead to target leaking and
mathematical degeneracy. Including CA among independent features
limits certain applications, e.g. for age identification purposes in for-
ensics. Rejuvenation focused settings may pose yet another hypothe-
tical limitation for models that use CA both as a predictor and as a
target. Provided that a rejuvenative intervention’s efficiency is CA-in-
variant, such a model would assign greater BA to older people who
underwent therapy, compared to the younger people who were sub-
jected to it as well. However, it is still unclear how the other kind of
aging clocks acts in such circumstances and what should be the
benchmark to compare the two strategies applied to rejuvenated or-
ganisms. Both strategies are viable, but one should always keep the
future applications and the associated pitfalls in mind while choosing
one.
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2.3. Telomere length

Telomeres are DNA regions located at the ends of linear chromo-
somes. Due to the specifics of eukaryotic DNA replication mechanism,
telomeres shorten with each replication event but are indispensable to
this process, which effectively makes telomere length a factor limiting
the maximum number of cell divisions (Hayflick limit) and the re-
generative potential of an organism.

Telomerase is an enzyme that elongates telomeres and its expression
is essential for stem cell proliferation and differentiation (Ferron et al.,
2009; Hiyama and Hiyama, 2007). While some animals (e.g., pika,
mouse and to a greater extent lobster and rainbow trout) exhibit telo-
merase activity in somatic cells throughout their lives, human telo-
merase is generally inactive in somatic cells (Gorbunova and Seluanov,
2009; Klapper et al., 1998b, 1998a). Telomerase suppression is believed
to have evolved as a means to reduce the risk of malignant transfor-
mation by paying the cost of replicative senescence (Gorbunova and
Seluanov, 2009). In humans replicative senescence is ubiquitous and
leads to senescent cell accumulation, which ultimately is reflected in
multiple aging phenotypes (Faragher and Kipling, 1999). Telomere
involvement in this process makes it a promising biomarker in the aging
clock context.

Telomere attrition relevance as an aging biomarker is further jus-
tified by numerous studies displaying correlation between longer telo-
meres and increased lifespan both in model organisms and in humans
(Bekaert et al., 2020; Mitteldorf, 2013). Decreased telomere length in
humans has been associated with such age-associated conditions as
Alzheimer’s disease (Cai et al., 2013; Liu et al., 2016), female re-
productive aging (Kalmbach et al., 2013), blood composition shifting
(Lin et al., 2015) and the risk of cardiovascular disease(Haycock et al.,
2014). Senior individuals (60–97 years) with shorter telomeres detected
in their blood samples have significantly higher all-cause mortality
rate1 (Cawthon et al., 2003). But in (Martin-Ruiz et al., 2005) no such
correlation within an elderly cohort (85–101 years) passed statistical
tests. Assessing associations between telomere length and age-related
conditions also failed in most cases. Differences between sample sizes
(143 vs 598 people, respectively), telomere measuring methods (qPCR
and TRF — terminal restriction fragment, respectively) or age dis-
tribution could explain the discord between these two studies. This
small example illustrates, how studies focused on telomere length
predictive value regarding BA quite frequently show inconsistent re-
sults.

Multiple researchers have estimated the speed of telomere attrition
to be 40–50 bp/year in blood cells. However, both the initial telomere
length and the identified attrition rate vary greatly between different
data sets (Sanders and Newman, 2013). Moreover, DNA lesions caused
by oxidative stress are repaired less efficiently in telomeric regions,
which causes frailty and subsequent telomere shortening (Coluzzi et al.,
2014; Reichert and Stier, 2017; von Zglinicki, 2000). While replication
frequency in hematopoietic stem cells (whose progeny in blood is most
commonly used to measure telomere length) remains constant at ap-
proximately 0.6 times per year after puberty (Sidorov et al., 2009),
oxidative stress levels may fluctuate due to habitat, life style, in-
flammatory diseases – factors that do not necessarily represent re-
plicative clock ticking.

So far, telomere aging clock remains a hypothetical concept.
Oxidative and inflammatory noise masking replicative attrition signal
in blood samples is a major obstacle to creating an accurate age pre-
dictor, yet it is not the only one (Aviv, 2008). Existing telomere length
measurement methods may also obscure useful information by in-
troducing errors that are hard to account for. Two methods are most

frequently used for measuring telomere length: TRF and qPCR. The
latter requires much less DNA and is more suitable for high throughput
settings, but it introduces errors that can completely overwhelm the
actual changes in telomere length (Sanders and Newman, 2013).
Choosing qPCR also narrows experimental design space, as it allows
only relative measurement. Considering these limitations, other ap-
proaches have been proposed to estimate telomere length (STELA,
TESLA). These methods overcome limitations of qPCR and TRF at the
cost of being labor intensive and low throughput. These and other
telomere length measuring techniques are described in much more
detail in the following review (Lai et al., 2018).

There are more factors that contribute to the problem of accurate
telomere length analysis in blood. Lymphocyte subpopulations have
been shown to have telomeres of different length. For example, naïve T-
cells are reported to have telomeres 1.4kbp longer that memory T-cells
(Weng et al., 1995). Meanwhile, lymphocyte abundance profile is not
stable throughout a person’s life, i.e. it changes in response to age and
disease. This blood composition shift has to be accounted for in studies
designed to display age as a function of telomere length (Wang and
Navin, 2015). When mixed populations of blood cells are tested for
telomere attrition, it remains unclear whether the discovered changes
are due to telomere attrition per se or are due to differences in naïve T-
cell content in samples (Lin et al., 2015). Besides, tracking blood cell
telomere length in individuals shows that it does not decrease at a
constant rate and can in fact go up. Telomere length typically fluctuates
within ±2−4% per month. This led scientists to hypothesize that tel-
omere attrition is an oscillatory process (Svenson et al., 2011). Its dy-
namic nature cannot be ignored and indicates that its interpretation as a
biomarker of aging requires longitudinal design. Also, recently telo-
merase has been verified to be active in heart and endothelium
(Haendeler et al., 2004; Richardson et al., 2012). Interestingly, its ac-
tivity in these tissues, as well as in leukocytes, can be elevated by en-
durance training (Werner et al., 2009). These findings further challenge
the prior hypothesis of steady rate telomere shortening.

The studies on the involvement of telomeres in cell senescence in-
dicate that this process may not always be driven by telomere attrition.
Telomere damage, however, clearly plays a role in it. DNA damage is
repaired at slower rate in telomeres than other regions, which may
cause the cell-cycle arrest. The situation is further confounded by the
technical limitations of telomere-senescence connection research. The
use of telomerase-deficient mice and non-exclusive senescence markers
might obscure our understanding of the cell senescence phenomenon
(de Magalhães and Passos, 2018).

All these issues preclude the creation of a robust telomere-based
aging clock. The development of methods to measure telomere length is
most essential for this cause. Additionally, telomere attrition should be
separated from other factors affecting telomere length by either pro-
cessing specific cell subpopulations or explicitly subtracting their ef-
fects. This, however, obviates the reductionist ideal of a telomere
“candle clock”, as it turns an alluring one-dimensional biomarker into a
convoluted mixture of multiple biomarkers. Perhaps telomere length
could be another variable in a fully-functional multi-dimensional aging
clock, but its independent performance for such purposes is highly
doubtful.

2.4. Epigenetic marks

Genetic information in animals is expressed according to the in-
structions contained both within (promoters, enhancers, etc) and out-
side its DNA sequence. Such instructions are realized in the repertoire of
covalent DNA modifications, proteins organizing DNA into a 3D
structure (chromatin) and their respective modification. Among these,
DNA methylation is the most studied feature in the context of aging
biomarkers. DNA methylation most commonly takes place in CpG sites,
which despite being a simple dinucleotide motif is much rarer in
mammals than expected (1% observed frequency against 4.4 %

1Mortality rate ratio between senior people from the lower and the upper half
of telomere length distribution reaches 8.5 for infectious diseases and 3.2 for
heart conditions, while all-cause mortality ratio is 1.7.
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expected in humans) (Babenko et al., 2017; Han et al., 2008). While in
invertebrate model organisms (Drosophila melanogaster and Cae-
norhabditis elegans) CpG distribution is uniform across the genome,
mammalian CpG sites are located mostly in CG-island (CGI) regions,
where their frequency reaches 18 %. Interestingly, CGIs often coincide
with gene promoter regions where their methylation status affects
transcription levels (Babenko et al., 2017; Deaton and Bird, 2011).

Despite DNA methylation (DNAm) being an extensively studied
epigenetic mark, its great significance in the aging process long re-
mained unrecognized (Gibbs, 2014). In a 2011 study conducted on
saliva samples from 34 twin pairs 88 CpG sites were reported to be
significantly associated with age. Methylation status at 2 of these sites
was used to build a regression model that predicted CA of a donor with
just 5.2 root mean square error (RMSE) (Bocklandt et al., 2011).
Building on this work he had taken part in, Steve Horvath published a
seminal 2013 article, where he presented 353 CpG sites whose me-
thylation status allowed to predict CA with 2.9 years median error
across multiple tissues (minimum being <1 year in peripheral blood
mononuclear cells and maximum — 12 years in dermal fibroblasts).
These results were derived from analyzing 7844 samples and tested in
various settings including chimpanzee tissues, cancer tissues, em-
bryonic stem cells and cell-cultures. Interestingly, the DNAm clock does
not reflect replicative or cellular senescence (which is the case for tel-
omere length) as it provides accurate predictions for both post-mitotic
and immortalized tissues (Horvath, 2013).

Another independent DNAm clock was introduced in 2012 by
Hannum et al. (Hannum et al., 2013). While this clock was developed
on fewer samples (656) and contained fewer (71) CpG sites it achieved
RMSE of 3.9 years. Despite the model being trained on blood samples, it
can be extrapolated to other tissues with linear offset adjustments to
predict age with 5.71 years RMSE.

The creation of DNAm clocks has greatly benefited biogerontology.
Since 2013, they have been extensively tested and used to show con-
nections between organismal aging and dozens of diseases, human
phenotypes and lifestyle choices including obesity, gender, insulin,
blood glucose levels and most importantly — all-cause mortality. High
biological relevance has proven DNAm based models to go beyond mere
CA estimation and now their predictions are frequently used as BA
measures. A detailed comparison and discussion on DNAm clock tech-
nology is available elsewhere (Horvath and Raj, 2018).

Apart from DNAm clocks’ applications in vivo, they also have be-
come extremely useful for in vitro experimental designs, where the
problem of assessing the age of a cell culture could not be solved pre-
viously. For instance, DNAm clocks have proven to be indispensable in
induced pluripotent stem cell (iPSC) experiments, where they were used
to display rejuvenation phenomenon upon cell dedifferentiation (Frobel
et al., 2014).

Most recent development in DNAm-based tools of age prediction
include a variety of mouse aging clocks (Meer et al., 2018; Petkovich
et al., 2017; Stubbs et al., 2017; Wang et al., 2017). One of them utilizes
435 CpG sites and shows 53 days MAE when validated in multiple
tissues (Meer et al., 2018). This error is in line with the performance of
human DNAm clocks and amounts to 4–5 % of mouse average lifespan.

Their established and potential applications aside, DNAm aging
clocks raise a number of fundamental questions regarding what aspects
of aging they reflect and why certain epigenetic marks correlate with
CA so significantly. The comparison of existing DNAm aging clocks,
surprisingly, shows little overlap between the identified marker CpG
sites. Among 1143 CpG sites used in 4 different mouse aging clocks
none are shared by all four. Besides, among 605 genes containing the
clocks’ sites only 12 appear in the intersection (Meer et al., 2018). This
issue was directly addressed in (Thompson et al., 2018), where a variety
of training procedures was tested to conclude that “the construction of
epigenetic clocks is highly degenerate”, i.e. there are multiple equally
good solutions for the same set of features.

Human DNAm clocks are not free of this issue either, as only 6 CpG

sites are shared between Hannum and Horvath clocks. Moreover,
testing these two clocks in independent data sets may result in sig-
nificantly different error distribution (Armstrong et al., 2017; Zhang
et al., 2017). Previously mentioned PhenoAge, which utilizes 513 CpG
sites, shares only 41 with Horvath’s clock and only 6 – with Hannum’s.
In spite of this heterogeneity, all three clocks showed predictive asso-
ciation with all-cause mortality in a Cox regression analysis with Phe-
noAge slightly outperforming other clocks (Levine et al., 2018). The
factors contributing to DNAm clock degeneracy may involve batch ef-
fect, training bias, training tissue selection, and intrinsic inter-site
correlation. These do not detract from the applicability of DNAm
clocks, but pose a number of interesting questions, such as: Is there one
most succinct and descriptive set of CpGs? Are the sites in different
clocks regulated by the same epigenetic mechanisms? Is there a prac-
tical limit to the number of DNAm clocks?

Yet another blood DNAm aging clock was reported in 2014 by
Weidner et al. (2014). The clock reached MAE of 3.34 years when
utilizing 102 age related CpG sites. However, using only 3 most de-
scriptive sites reduced the accuracy to only 4.5 years MAE. Among
these three only one was present among the 353 CpG sites of Horvath’s
clock and none among the 71 CpG sites of Hannum’s clock (Fig. 1). The
clock was verified in an iPSC setting, tested for invariance against blood
composition and showed increased aging rate in donors with dysker-
atosis and aplastic anemia as well as in people with high alcohol con-
sumption. This clock was later reworked into a 99-CpG clock to contain
only the sites present in both Illumina 450 K and 27 K platforms (Lin
et al., 2016).

A similar feat in feature reduction was achieved for murine DNAm
clocks, when in 2018 a model based on 3 CpG sites allowed to estimate
mouse age with 35 days of MAE (Han et al., 2018). The fact that only 3
CpG sites could be used to produce a model of comparable accuracy to
those that require much more information is utmost astonishing.

Small overlap between features of different DNAm clocks with
comparable accuracy requires careful examination. One of the initial
hypotheses behind DNAm clock remarkable performance posited that
age related changes in DNAm reflect weakening control over sponta-
neous modification. Methylation at specific sites has been shown to
drift towards moderate levels with age: highly methylated regions
steadily grow less methylated, while undermethylated ones, on the
other hand, steadily gain methylation marks (Hannum et al., 2013;
Petkovich et al., 2017). In this case, DNAm clocks indicate the triumph

Fig. 1. Venn diagram of the CpG sites used in Hannum, Horvath and two
Weidner clocks (all have <5 years of error, see Table 1). The intersection be-
tween their features is rather thin and indicates that DNAm clocks can achieve
similar accuracy while relying on different sets of methylation sites.
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of entropy in complex live systems and there could be innumerable
solutions to quantify it using one of the countless subsets of methylation
sites. In this case, all such clocks can be used interchangeably since they
are all based on this particular and universal aspect of aging.

However, an alternative hypothesis would be that methylation at
different CpG sites corresponds to fundamentally different aging pro-
cesses. If an organism’s DNAm profile is not directly linked to the
thermodynamic root of aging but instead is a downstream product of
competing processes, the applicability of DNAm aging clock metho-
dology is at risk. In this case different aging clocks may not be equally
good for different experiment settings and may propagate semantic
barriers instead of removing them.

Experiments conducted in mice show that while genetic, pharma-
cological and dietary interventions with proven effect on life ex-
pectancy change the methylation state of the age-associated CpG sites,
they do so in different ways. For instance, long-lived Ames dwarf mice
contain three times fewer aging associated CpG sites than wild type
mice. Meanwhile, caloric restriction is more efficient in preventing
methylation loss at hypomethylated sites and methylation gain at hy-
permethylated sites than rapamycin (Cole et al., 2017). These findings
imply that DNAm profiles do not simply gravitate towards the average
with age and that there is no single pathway through which all aging
processes are imbued into an organism’s epigenetic landscape. In ad-
dition, it was pointed out that the location of predictive CpG sites near
genes regulating development and proliferation is consistent with
program-like behavior (Petkovich et al., 2017).

Theoretical implications of aging clocks are indeed very valuable,
and their discussion dominates the field of biohorology. In the mean-
time, the technical approaches used to obtain and process DNAm data
receive relatively little attention. The choice of the platform for DNAm
screening is critical for a clock’s applicability. While CpG microarrays
are highly reproducible, bisulfite sequencing approaches suffer from
coverage issues and testing clocks using it (e.g. all the mentioned mouse
clocks) on independent data sets may be impossible due to missing
values for important CpGs (Wagner, 2017).

Machine learning algorithms used in biohorology also require
careful examination. All the DNAm clocks described in this review so
far are based on linear regression with coefficient regularization
(Table 1). Regularization techniques are used to tackle multicollinearity
and feature selection problems which may cause overfitting. Lasso
regularization does that by imposing L1 penalty on coefficients, which
can result in assigning zero weights to certain features. Ridge regular-
ization, on the other hand, makes use of L2 penalty and is more likely to
reduce model complexity by shrinking the weights instead of dropping
them (Fig. 2). Elastic net regularization combines both L1 and L2 pe-
nalties in a user-defined manner, which is often presented as “taking the
best of two worlds”. Caveats regarding the application of these methods
for training a DNAm clock remained unexplored for a long time. In a
2018 study clocks built with Lasso, Ridge and Elastic Net were com-
pared in the same data set. The training set contained information on
methylation status of 193,651 CpG sites in multi-tissue samples of 1189
mice. Lasso regularization showed the poorest performance of three.
Meanwhile, more accurate Elastic Net based clocks turned out to be
inferior to Ridge clocks, since they were less sensitive to the effects of
certain anti-aging interventions (e.g. failing to detect slower aging in
dwarf long living mice) (Thompson et al., 2018).

While DNAm is the most well-studied epigenetic mark in the context
of biohorology, it is not the only one. Protein structures encapsulating
DNA and regulating its accessibility (chromatin and histones) have also
been shown to change with age. Moreover, DNAm machinery and
histone modifications are interlinked and change throughout aging
concordantly. For example, DNA methyltransferases are attracted by
the H3K36me mark. With aging it is less tightly regulated, and thus,
more sporadic DNAm occurs, which ultimately translates to epigenetic
clock ticking (Martin-Herranz et al., 2019).

The idea of integrating DNAm with other chromatin features into a

single aging clock has high potential, but is hard to implement. Apart
from histone marks, chromatin properties that are age-dependent in-
clude: senescence-associated heterochromatin foci (SAHF) (Aird and
Zhang, 2013), irregularly spaced nucleosomes (Ishimi et al., 1987),
reduced histone biosynthesis and turnover (O’Sullivan et al., 2010),
changes in nucleosome occupancy at specific sites (Bochkis et al., 2014)
and others (Feser and Tyler, 2011). Many such age-related features are
extremely labor intensive to detect and require chromatin im-
munoprecipitation (ChIP), antibody staining, microscopy and some-
times sequencing on top of that. Experimental pipelines used to study
chromatin may have numerous noise-introducing stages (e.g. the anti-
body wild card) and may only allow for relative measurement.

Hopefully, the advent of new methodologies in chromatin research
will increase measurement reproducibility and provide biogerontolo-
gists access to aging related information contained within chromatin
structure. Such high-throughput methodologies as mass cytometry have
already been successfully used to describe histone modifications dif-
fering between the young and the elderly (Cheung et al., 2018).

Currently, multiple compounds affecting DNAm and chromatin
machinery are approved or are seeking approval for malignant
pathologies (Eckschlager et al., 2017; Johnson et al., 2012). The ex-
isting clinical data on these drugs makes them top candidates for being
repurposed for geroprotective therapies, which further increase the
importance of epigenetic research in the biogerontological context.

2.5. Transcriptomics

Numerous studies have mapped various aging phenotypes to
changes in transcriptome and more than 1000 of transcripts have been
shown to be differentially abundant in people of different age groups
(Harris et al., 2017; Peters et al., 2015). Some studies even identify
dozens of genes whose age-related expression patterns are preserved
across humans and rodents (de Magalhães et al., 2009). Cell senescence
also has a distinct transcriptomic signature involving dozens of genes
(Casella et al., 2019). Other studies draw bridges between senescence
and aging by discovering the common signatures between the two
(Chatsirisupachai et al., 2019). Compared to epigenetic profiles, age-
associated transcriptome changes present a much more solid foothold
for geroprotective drug target discovery. Transcriptome analysis allows
to highlight specific up- or down-regulated pathways and proteins as-
sociated with aging, while immense body of literature and experimental
data makes it practical to draw and test hypotheses regarding various
interventions in silico. State-of-the-art deep learning algorithms can be
employed for the purpose of finding disease targets. Neural-network
derived latent representations of expression data, protein interactions
and gene annotations can be aggregated in a modular fashion to assess
the likelihood of a gene being involved in the pathogenesis of a certain
disease (Fabris et al., 2019). While such tools allow for analyses of
previously unseen scale and accuracy, they deal with statistically pre-
pared data, while transcriptomic aging clocks have the power to inspect
the age ticking rate on individual level and thus complement the de-
scribed approach within the paradigm of personalized medicine.

In 2015, the first transcriptomic aging clock was published that was
trained on blood RNA profiles from 8847 people. In this study, 1497
genes were reported to significantly change with age, yet the predictor
used expression values obtained with exon microarrays from 11,908
genes. The clock achieved 7.8 years MAE and its biological relevance
was further proved by displaying that increased predicted age is asso-
ciated with higher blood pressure, blood glucose and cholesterol levels.
The clock was then released as an online tool: Transcriptomic Age
Prediction (TRAP) (Peters et al., 2015).

In 2018, a transcriptome aging clock was published that was trained
on skin fibroblast profiles from 133 people (1−94 years old) and ex-
hibited MAE of 7.7 years. Multiple machine learning techniques are
compared in the study including elastic net, random forest, kNN,
Gaussian naïve Bayes and linear discriminant analysis (LDA) classifier
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ensembles. Among these neither one reached the less than a decade
accuracy of the LDA ensemble. Each model in the ensemble predicted
whether a sample belonged to a 20 year long shifting age bin and the
final prediction was defined as the year that belongs to the most chosen
bins. Authors of this study suggest that their LDA approach could
produce predictions with less than 5 or even 3 years of error with only
32 more samples in a training set, judging from the LDA learning curve
extrapolation (Fleischer et al., 2018).

Another transcriptome aging clock published in 2018 showed that
such a steep increase in accuracy is unlikely. In this study, 545 gene
expression profiles (19−89 years old) from muscle tissue were used to
construct a variety of age predictors with the best performance be-
longing to a Deep Neural Network (DNN) with a MAE of 6.24 years
(Mamoshina et al., 2018b). Transcriptome age predictors have not yet
reached the <5 year accuracy of their DNAm counterparts, but with the
high-throughput RNAseq technology in place this feat is most likely a
matter of time. Among the three presented transcriptomic clocks, the
clock based on DNN is the most accurate, which may indicate that
transcriptomic age prediction requires more complex machine learning
techniques than those commonly used in DNAm clocks.

2.6. Biochemical compounds

All previously mentioned biomarkers were based on biological
macromolecules, be it DNA, RNA or proteins. But all these are not se-
parate entities, they are involved in various feedback loops that in-
corporate innumerable small molecules both as upstream signals and as
downstream responses. Many of these small molecules have long been
used as indicators of aging-associated diseases and have well estab-
lished, reproducible and robust laboratory screening pipelines, which
make them an attractive basis for aging clock development.

Despite the affordable price of clinical biochemistry screening and
vast amounts of corresponding data, their potential as aging biomarker
was not assessed for a long time. The first aging clock based on blood
biochemistry was introduced in 2016 (Putin et al., 2017). The clock was
trained and validated on a massive data set containing 62,419 people.
Although the clock used just 42 features (such as calcium, cholesterol,
glucose, urea and others, plus sex) it displayed remarkably small MAE
of 5.55 years. The method that was used in this study is quite different
from any other discussed above: the predictor consists of an ensemble of
21 DNNs whose predictions are then stacked by an elastic net model to
produce the final age prediction (Fig. 3). The clock is also available as a
free online service called Aging.AI. Its elemental models can also be
used to produce age predictions independently with the best performing
DNN having 6.07 years MAE.

In 2018, an updated version of Aging.AI was released (Mamoshina
et al., 2018a). The article accompanying this release featured extensive
cross-population analysis of Aging.AI performance. The aggregated
data set used for the new Aging.AI training and validation consisted of

almost 200,000 blood profiles from Canada, Eastern Europe and South
Korea. The DNN trained over all three populations displayed MAE of
5.94 years, which is slightly higher than 5.55 years of the previous
version. However, the new predictor is much less complex: it uses half
the features (sex, geographical location plus 19 blood markers) and is a
single DNN instead of a DNN ensemble. Interestingly, feature im-
portance analysis included in the study displays that sex and population
are among the most important variables and excluding them from the
model increases the error to 6.23 years. Nonetheless, Aging.AI was
shown to be useful for assessing mortality risks in an independent Na-
tional Health and Nutrition Examination Survey (NHANES) data set:
hazard ratios were consistently bigger in people with higher than actual
predictions, and similarly, smaller in people with lower than actual
predictions. Moreover, similar DNN-driven approach was later shown
to detect higher aging rates in smokers by the same group of authors
(Mamoshina et al., 2019).

High accessibility, standardized protocols and affordable price make
clinical biochemistry tests a promising source of aging biomarkers that
could be used independently or to complement other methods of age
prediction.

3. Adding biological interpretation

Following decades of failed attempts to develop biomarkers of
aging, the aging clock boom started in 2013 and has been growing ever
since. On the one hand, this reflects ongoing progress in the field. On
the other, this signals an unsatisfied need in the community. Horvath’s
DNAm clock is still regarded as a golden standard and a go-to solution
in biogerontology, despite it being a first-generation model. Arguably,
the whole biohorology sector is still experiencing its first generation.
While all aging clocks mentioned in Table 1 show significant predictive
power, there is little concordance between their predictions. An ela-
borate comparison of seven measures of BA (including three DNAm
clocks and telomere length) shows that they are only loosely correlated.
For example, Pearson coefficients for the DNAm predictions lie within
0.3−0.5 range. All the measures also display different effects on
healthspan-related characteristics such as grip strength, cognitive
function and facial aging (Belsky et al., 2017).

Such discrepancies show that any clock based on a single biomarker
of aging will likely miss some of its aspects. It may be more practical to
combine biomarkers of different nature into one model. But increasing
the procedural complexity of a predictor inevitably raises the cost of
measurement. From this point of view, clinical blood tests offer the
most cost-effective means to increase another model’s performance.
Besides, recent feats in age prediction show that such tests can be used
as standalone solutions (Mamoshina et al., 2018a). PhenoAge creators
have chosen an original approach to combine different biomarkers and
succeeded. By training a DNAm clock to predict a substitute age metrics
derived from blood parameters they have built a model that in some
cases outperforms all other DNAm clocks trained to predict CA (Levine
et al., 2018). But this approach does not always work as intended.
Despite perceived facial age being clearly associated with all-cause
mortality, training a DNAm clock to predict this measure of BA has
failed (Marioni et al., 2018). Simply incorporating more biomarkers
into one model does not necessarily guarantee its increased perfor-
mance. Neither does it guarantee that the clock will reflect more aspects
of aging.

Assessing the biological relevance of a clock and that of the corre-
sponding aging biomarkers requires extensive laboratory research, and
feature importance analysis is essential to establish a starting point. In
case of regression, model coefficients provide insight into which bio-
markers have a greater effect on the prediction. But when it comes to
comparing how each feature contributes to the predictor accuracy in
more complex models, such a straightforward approach is likely to be
unavailable. This issue gets even more pressing when there is a need to
compare how fundamentally different models treat the same variables.

Fig. 2. Lasso (L1) and Ridge (L2) regularization in a two-dimensional space. A
constraint is posed on two predetermined model coefficients (k1, k2): their
values should be within the green area defined by the regularization penalty
function. The final value of the coefficients is determined by finding an optimal
position on the plane, where the combined regularization and prediction error
(uniform here, dashed line) penalties are minimal.
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For example, such a need may rise while compiling a random forest and
a DNN into an ensemble, or while investigating why a particular class of
predictors outperforms any other one.

In such scenarios permutation feature importance score (PFI) might
help provide the required answers. PFI is based on the idea that a
model’s accuracy metrics changes more significantly while permuting
its important features rather than the unimportant ones. The score itself
is the average change in accuracy over multiple iterations and its P-
value (Altmann et al., 2010). While PFI is a useful tool, it should be
used carefully when features are not independent, as in this case
random permutations may produce unrealistic mock vectors. For ex-
ample, some PFI implementations when applied to blood tests data can
produce mock vectors with low blood glucose and high glycated he-
moglobin, while these two parameters are actually positively correlated
(Makris and Spanou, 2011). As a result, feature importance analysis can
be uninformative or misleading. To avoid this pitfall, prior correlation
analysis and feature selection should be performed as well as a careful
examination of the assumptions taken in any particular PFI im-
plementation. It also makes sense to explore other model-agnostic
methods of feature importance analysis such as partial dependence
plots, local interpretable explanations, accumulated local effects and
SHAP values (Apley, 2016; Lundberg and Lee, 2017; Ribeiro et al.,
2016; Zhao and Hastie, 2017). The latter two can be especially useful,
as apart from being resistant to data collinearity they also show how
exactly a model responds to changes in feature values.

For DNN-centric approaches deep feature selection (DFS) is the
preferred method of importance analysis (Li et al., 2016). DFS models
contain a linear one-to-one layer receiving the input, and the weights
assigned to it upon training can be interpreted as importance scores to
select an optimal subset of features. While DFS scores cannot be cal-
culated for shallow models, they still can be compared to model-ag-
nostic scores by shifting from absolute score values to their ranks.
Furthermore, such rank scores can be aggregated by a voting system
(e.g. Borda count) to provide a consensus list of most important fea-
tures. Interestingly, when applied to a variety of transcriptomic aging
clocks, Borda count produces a consensus importance list that is the
closest to DFS importance ranks (Mamoshina et al., 2018b).

Proper feature importance analysis should always accompany an
aging clock. It can lead to the detection of data contamination, un-
covering algorithm-specific biases, reduction of model complexity and/
or increase in its overall accuracy. Moreover, it provides useful insights
into the nature of aging and can be used to produce novel hypotheses.

4. Generative biology in biogerontology

Currently the field is dominated by regularized regression models
introduced in the first DNAm clocks. While this method has been re-
ported to produce the most precise predictions, it was argued that it
contains an implicit and possibly overlooked tradeoff between precision
and the ability to behave correctly in uncommon settings (Thompson
et al., 2018). Another shortcoming of regression models rises from their
sensitivity to missing values, which impedes their application in cross-
platform studies. For example, a model built on Illumina Hu-
manMethylation27 BeadChip array may contain features absent in the
Illumina HumanMethylation450 BeadChip array and thus be in-
compatible with it. Considering the fast pace of platform development
and adoption, clocks built with data from legacy platforms may become
obsolete in the near future.

Deep learning techniques provide an attractive alternative to reg-
ularized regression. They have been used to reduce the dominance of
DNAm in the field with models capable of accurately estimating age
from transcriptomic and blood test data(Mamoshina et al., 2018b,
2018a; Putin et al., 2017). Their highly customizable structure makes
DNNs more resilient to missing values: by introducing dropout layers
the model can be trained on vectors with randomly omitted values,
which results in reduced reliance on any particular variable (Fig. 4).

One might argue that elastic net supremacy is not a choice, but a
necessity dictated by DNAm data specifics, such as an immense number
of dimensions. Training a network that uses all the features identified
by modern DNAm screening platforms (e.g. Illumina
HumanMethylationEPIC platform profiles >850’000 sites) would re-
quire datasets of non-existent magnitude. In such cases it makes sense
to preselect a subset of features based on their genomic location, target
association or via iteratively resampling the training set. An alternative
solution to feature elimination would be feature clustering, for example
according to correlation with a target variable or a priori biological
information. The payoff of choosing a more complex pipeline to pre-
process the samples and train a deep network, however, is that the
resulting model can serve multiple purposes apart from predicting
biological age.

One certain task DNNs could help with is domain adaptation — the
process of teaching a model to work with data from a different (but
related) distribution than the data it was originally trained on. For
example, transferring the data obtained from a state-of-the-art se-
quencing platform into the domain of a legacy platform in order to

Fig. 3. Tandem DNN and elastic net approach used in Aging. AI blood chemistry aging clock. Predictions from 21 independent DNNs are aggregated by an elastic net
regressor to produce the prediction better than any separate DNN can provide.
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make the most recent data compatible with an older, yet outstanding
age predictor. Domain adaptation algorithms are being actively studied
and used for the purposes of visual learning (Ganin et al., 2015;
Hoffman et al., 2017; Laradji and Babanezhad, 2018; Russo et al., 2017;
Tzeng et al., 2017). All of them are based on DNNs and many utilize a
specific subclass of DNN architectures – generative adversarial net-
works (GANs). Shortly, this architecture consists of two independent
neural networks: discriminator and generator. The discriminator is
taught to recognize a target domain, while the generator processes
source-domain entries to resemble ones from the target domain. Their
emulation continues until discriminator fails to tell real and artificial
target entries apart. GANs have proven to be an extremely versatile
approach and are used in various remarkable AI feats, such as text to
image synthesis (Reed et al., 2016).

Although image processing is the field pushing innovation in do-
main adaptation methods, there are already some noteworthy examples
of applying this technology to biological data. In 2015 DNNs were
shown to outperform shallow methods in the task of trans-species do-
main adaptation. The specific task was to predict human protein
phosphorylation states in response to a stimulus, using data obtained
for rats. Based on the AUROC metrics, DNN (0.936) turned out to be
superior to both elastic net (0.709) and support vector machine (0.724)
solutions. The authors also provide rationale behind DNN’s outstanding
performance, and point out that shallow classification algorithms are
created to discern the case-separating objects, while accurate domain
adaptation requires the model to grasp the mechanisms producing said
objects. Or as the authors put it, domain adaptation should focus on the
“common encoding mechanism” instead of the “distinct signaling mo-
lecules … employed by different species” (Chen et al., 2015). Another
(probably more relevant in the context of this review) example of DNN-
based domain adaptation would be using DNNs in single cell tran-
scriptomics. scRNA data is prone to missing values, intra-cell type
variability and on top of that — batch effects. Treating different batches
as domains and applying deep learning to them produced a method that
can assign cells from different experiments to cell types, with the only
assumption that any two batches share at least one cell type (Wang
et al., 2019). Similar methods could be adjusted to other data types,
which would let biogerontologists overcome the problem of insufficient
data needed for training elaborate models such as DNNs. However,
many other measures could be taken to make future experiments
compatible with each other and reduce the need for complex domain-
adaptation algorithms. Such measures include: standardizing protocols
and introducing benchmark or calibration samples, extensively and
uniformly documenting metavariables in depositories and quantifying
the biases introduced by sequencing platforms. All these options require
high levels of organization and cooperation within the community,
which makes them hard to implement, albeit much more technically

simple than employing DNNs.
GANs in biogerontology can be used not only to reformat data and

impute missing values but also to expand training sets, predict future
changes in a patient’s biomarker profile and construct geroprotective
interventions. DNN-based methods can be used to seek mimetics of
known anti-aging drugs by screening aging biomarker response to
various compounds. Such an approach has already been used to identify
natural alternatives to metformin and rapamycin (Aliper et al., 2017).
GANs have the potential to take anti-aging drug design one step further:
from in silico screening libraries for promising compounds to generating
libraries of yet undiscovered and possibly beneficial ones. This GANs’
application has received a lot of development in recent years. Such in
silico drug production lines contain a generator trained on a subset of
structures that are used to treat a disease and a discriminator that rates
the generated molecules (Kadurin et al., 2017; Putin et al., 2018). One
specific instance of this technology was used to produce a DDR1-kinase
inhibitor with cell culture verified activity in less than a month, de-
monstrating the impact DNN can have both in academia and industry
(Zhavoronkov et al., 2019).

5. Conclusion

Biological horology is a rapidly growing field of research. The
multitude of aging clocks created over the last decade indicates the
great need to measure BA in humans and model organisms. Among
other biomarkers of aging DNAm has received the most attention and
has been used to develop the most accurate aging clocks (MAE < 4
years) based on molecular profiles. Although there are numerous
DNAm clock solutions using almost non-overlapping sets of features,
specific aging scenarios exhibit distinct methylome fingerprints. This
circumstance needs deeper investigation to determine what unites all
the DNAm clocks and understand their limits of application.

Other kinds of clocks based on gene expression and biochemistry
profiles offer a new point of view on aging, but are yet to break the MAE
< 5 years milestone. These biomarkers are also responsive to inter-
ventions (Fig. 5). In the following years, proteomic, genomic or other
measures of aging may emerge, but they will require significant ad-
vances in the corresponding quantification methods to allow high-
throughput solutions.

But further progress in biological horology does not rely solely on
the development of novel experimental practices. The creation of new
analytical algorithms is just as important, if not even more so. The
advent of deep learning techniques in the field ushers a paradigm shift
in a field previously dominated by shallow models such as EN. DNNs
and GANs specifically have the potential to greatly expand the appli-
cations of aging clocks and make them the heart of in silico ger-
oprotective research pipelines. Gene expression age trajectories are

Fig. 4. Structural difference between shallow
and deep models. Rigid shallow models are not
fit to approximate complex, non-linear func-
tions and are vulnerable to missing values.
Meanwhile deep models theoretically can ap-
proximate any smooth function, which comes
in handy in a variety of classification and re-
gression problems (Ohn and Kim, 2019).
However, deep models usually require bigger
samples and more resources to train.
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especially valuable in that respect as they allow for a direct pharma-
cological target identification.
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Glossary

BA: Biological age
CA: Chronological age
DFS: Deep feature selection
DNAm: DNA methylation
DNN: Deep neural network
EN: Elastic net
GAN: Generative adversarial network
LDA: Linear discriminant analysis
MAE: Mean absolute error
medAE: median absolute error
PFI: Permutation feature importance
RRBS: Reduced representation bisulfite sequencing
qPCR: quantitative PCR
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