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Abstract

Gene co-expression networks can be used to associate genes of unknown function with biological processes, to prioritize
candidate disease genes or to discern transcriptional regulatory programmes. With recent advances in transcriptomics and
next-generation sequencing, co-expression networks constructed from RNA sequencing data also enable the inference of
functions and disease associations for non-coding genes and splice variants. Although gene co-expression networks typic-
ally do not provide information about causality, emerging methods for differential co-expression analysis are enabling the
identification of regulatory genes underlying various phenotypes. Here, we introduce and guide researchers through a (dif-
ferential) co-expression analysis. We provide an overview of methods and tools used to create and analyse co-expression
networks constructed from gene expression data, and we explain how these can be used to identify genes with a regulatory
role in disease. Furthermore, we discuss the integration of other data types with co-expression networks and offer future
perspectives of co-expression analysis.
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Introduction

A key objective in biological research is to systematically identify
all molecules within a living cell and how they interact. However,
the functions of many genes are still not understood, a situation
that has only become more complex with the recent identifica-
tion of many novel non-coding genes [1]. With the development
of high-throughput technologies including microarrays and RNA

sequencing (RNA-seq), and their respective data-analysis meth-
ods, the functional status of a gene can now be identified from a
systematic perspective [2, 3]. One method to infer gene function
and gene–disease associations from genome-wide gene expres-
sion is co-expression network analysis (Figure 1), an approach
that constructs networks of genes with a tendency to co-activate
across a group of samples and subsequently interrogates and
analyses this network.
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Gene co-expression networks can be used for various pur-
poses, including candidate disease gene prioritization, func-
tional gene annotation (Figure 1) and the identification of
regulatory genes. However, co-expression networks are effect-
ively only able to identify correlations; they indicate which genes
are active simultaneously, which often indicates they are active
in the same biological processes, but do not normally confer in-
formation about causality or distinguish between regulatory and
regulated genes. An increasingly used method that goes beyond
traditional co-expression networks is differential co-expression
analysis [4–7]. This approach identifies genes with varying co-
expression partners under different conditions, such as disease
states [4, 8–10], tissue types [11] and developmental stages [12],
because these genes are more likely to be regulators that under-
lie phenotypic differences. The regulatory roles of such genes
can be further investigated by integrating data types such as pro-
tein–protein interactions, methylome data, interactions between
transcription factors (TFs) and their targets, and with sequence
motif analysis of co-expressed genes [13–15]. This aids in the
identification of regulatory elements such as TFs, expression
quantitative trait loci (eQTLs) and methylation patterns that af-
fect the expression and composition of co-expression modules.

Gene expression and regulation can be highly tissue-specific,
and most disease-related genes have tissue-specific expression
abnormalities [16, 17]. The increased availability of expression data
for multiple tissues has allowed for differential co-expression ana-
lysis, which can identify both tissue-specific signatures and shared
co-expression signatures [11]. These tissue-specific signatures can
be disrupted in tissue-specific diseases and would not be detected
in analyses aggregating multiple tissues. Even when no sample
classification is available, subpopulation-specific modules can be
resolved, an approach that has been particularly successful in clas-
sifying different cancer subtypes to provide prognostic markers
[18–20]. Differential co-expression analysis is also useful for analy-
sing data sets in which the subpopulations are unknown, e.g.
large-scale single-cell RNA-seq data [5, 12]. While differential co-

expression methods are sensitive to noise [21], they are becoming
more effective with the increase in RNA-seq data quantity and
quality. RNA-seq further permits co-expression analysis to focus
on splice variants and non-coding RNAs.

In this review, we provide an introduction and overview of
what constitutes a co-expression network, followed by a guide
of the different steps in co-expression analysis using RNA-seq
data. We then describe commonly used and newly emerging
methods and tools for co-expression analysis, with a focus on
differential co-expression analysis to identify regulatory genes
that underlie disease. We conclude with a discussion of the in-
tegration of co-expression networks with other types of data, to
e.g. infer regulatory processes, and with future prospects and
remaining challenges in the field.

Co-expression networks

A co-expression network identifies which genes have a tendency
to show a coordinated expression pattern across a group of sam-
ples. This co-expression network can be represented as a gene–
gene similarity matrix, which can be used in downstream ana-
lyses (Figure 1). Canonical co-expression network construction
and analyses can be described with the following three steps.

In the first step, individual relationships between genes are
defined based on correlation measures or mutual information
[22–24] between each pair of genes. These relationships describe
the similarity between expression patterns of the gene pair
across all the samples. Different measures of correlation have
been used to construct networks, including Pearson’s or
Spearman’s correlations [25, 26]. Alternatively, least absolute
error regression [27] or a Bayesian approach [28] can be used to
construct a co-expression network. The latter two have the
added benefit that they can be used to identify causal links and
have been explained elsewhere [29]. For a discussion of other
types of similarity measures, we refer to [30]. Many of these
similarity metrics can also be used to construct protein–protein

Figure 1. Example of a co-expression network analysis. First, pairwise correlation is determined for each possible gene pair in the expression data. These pairwise correl-

ations can then be represented as a network. Modules within these networks are defined using clustering analysis. The network and modules can be interrogated to iden-

tify regulators, functional enrichment and hub genes. Differential co-expression analysis can be used to identify modules that behave differently under different

conditions. Potential disease genes can be identified using a guilt-by-association (GBA) approach that highlights genes that are co-expressed with multiple disease genes.
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interaction networks, which were compared using cancer data
in [31].

In the second step, co-expression associations are used to
construct a network where each node represents a gene and
each edge represents the presence and the strength of the co-
expression relationship (Figure 1) [32].

In the third step, modules (groups of co-expressed genes) are
identified using one of several available clustering techniques.
Clustering in co-expression analyses is used to group genes
with similar expression patterns across multiple samples to
produce groups of co-expressed genes rather than only pairs.
The clustering method needs to be chosen with consideration
because it can greatly influence the outcome and meaning of
the analysis. Many clustering methods are available, including
k-means clustering and hierarchal clustering, and are discussed
in detail in [33]. Modules can subsequently be interpreted by
functional enrichment analysis, a method to identify and rank
overrepresented functional categories in a list of genes [34–36].

In co-expression analysis, it is important to consider the
heterogeneity of the samples. Tissue-specific or condition-
specific co-expression modules may not be detectable in a co-
expression network constructed from multiple tissues or
conditions because the correlation signal of the tissue/
condition-specific modules is diluted by a lack of correlation in
other tissues/conditions. However, limiting co-expression ana-
lysis to a specific tissue or condition also reduces sample size,
thereby also decreasing the statistical power to detect shared
co-expression modules. Therefore, methods that do not distin-
guish between tissues or conditions should be used for identifi-
cation of common co-expression modules, while differential
co-expression comparing different conditions or tissues will be
better for identifying modules unique to a specific condition or
tissue.

Types of co-expression networks

Signed and unsigned co-expression networks
In a correlation-based co-expression network, correlation meas-
ures have values between �1 (perfect negative correlation) and
1 (perfect positive correlation). In an unsigned network, the ab-
solute correlation values are used, which means that two nega-
tively correlated genes will be considered as co-expressed. This
causes negatively correlated genes to group together. Because
those genes are likely to be also positively co-expressed with a
completely different set of genes, these genes also group into
the same module and disrupt the structure of the network. A
signed network solves this problem by scaling the correlation
values between 0 and 1 so that values <0.5 indicate negative
correlation and values >0.5 indicate positive correlation. A
signed method creates networks where biologically meaningful
modules (such as those representing a specific biological pro-
cess) are better separated [37]. Thus, a scaled value close to 0 in-
dicates negative correlation, a feature which may be
particularly interesting when microRNAs (miRNAs) are incorpo-
rated into the network, as these are known to exert their func-
tion mainly through down-regulation of other genes [38]. This
also holds true for some long intergenic non-coding RNAs
(lincRNAs) [39].

Weighted and un-weighted co-expression networks
In a weighted network, all genes are connected to each other,
and these connections have continuous weight values between
0 and 1 that indicate the strength of co-regulation between the
genes. In an un-weighted network, the interaction between

gene pairs is binary, i.e. either 0 or 1, and genes are either con-
nected or unconnected. An un-weighted network can be created
from a weighted network by, for example, considering all genes
with a correlation above a certain threshold to be connected
and all others unconnected. We focus on weighted networks in
this review because (to date) they have produced more robust
results than un-weighted networks [40].

Microarrays versus RNA-seq data

Co-expression networks can be constructed from gene expres-
sion data obtained from microarray or RNA-seq technology.
One of the major benefits of RNA-seq is that it quantifies the ex-
pression of the over 70 000 non-coding RNAs not usually meas-
ured with microarrays [1], including recently annotated
lincRNAs, many of which are thought to have regulatory roles
[41] and to play a role in disease [42, 43]. Therefore, to gain a bet-
ter understanding of the regulatory mechanisms driving biolo-
gical processes, non-coding RNAs need to be considered in
analyses.

RNA-seq also has other benefits [35]. It increases accuracy
for low-abundance transcripts [44], has a higher resolution for
identifying tissue-specific expression and distinguishes expres-
sion profiles of closely related paralogues better than
microarray-derived profiles [45]. RNA-seq can also distinguish
between the expression of different splice variants [46, 47],
which can have distinct interaction partners [48] and biological
functions [49]. Co-expression analysis on RNA-seq data can as-
sign putative roles to these splice variants and lincRNAs [2], and
identify diseases in which they might play a part [2]. A limita-
tion of co-expression analysis on the splice variant level is the
introduction of biases because it is difficult to determine which
splice variant is expressed if multiple splice variants share the
same expressed exon.

As an example of RNA-seq’s utility with isoform- and exon-
specific expression level measurements, exon-level expression
was used to construct a co-splicing network [50, 51]. In a gene
co-expression network, expression of different transcripts origi-
nating from the same gene is usually aggregated, which can
lead to biased co-expression signals [50]. In a co-splicing net-
work, this issue is resolved by considering the exon-expression-
level distributions within a gene when calculating gene co-
expression correlation. In biological terms this means that the
expression of two genes is only considered to be correlated if
their different splice variants show co-ordinated expression. If
this is not the case, they are not considered to be co-expressed
even if the overall expression levels of the genes are correlated.
This approach has identified novel functional modules, which
would not be detected using traditional co-expression networks
[51]. Additionally, genes that contain multiple exons and tran-
scripts acquired more relevant positions in the network using
this method [50], a reassuring result given that splice variants
can have different functions and are thus likely co-expressed
with functionally distinct partners, which co-splicing networks
account for.

A different approach is to determine the expression of differ-
ent isoforms originating from the same gene based on the dis-
tributions of reads mapping to its various exons. This method is
used by SpliceNet, which effectively divides the reads mapping
to an exon shared with two isoforms proportionally to the total
expression of each of the two whole isoforms [52]. This means
that if two isoforms, isoform A and isoform B, share only one
exon X (to which a number of reads map), but there are no reads
mapping to the other exons of isoform A, whereas some reads
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map to the exons of isoform B, all reads mapping to exon X are
then assigned to isoform B, resulting in isoform A being con-
sidered as not expressed at all. Although this elegant solution
was validated using simulations, no experimental validation
was conducted.

The most common way of constructing RNA-seq-based co-
expression networks is to merge all overlapping gene isoforms
in the RNA-seq data analysis and then construct the network at
the gene level. This approach, however, loses information about
different transcripts encoded by the same gene. Alternatively,
transcript-based co-expression networks can be constructed.
The drawback of these networks is their dramatic increase in
size owing to the many gene isoforms and non-coding RNAs. As
co-expression networks are square matrixes, the size of the net-
work increases quadratically (n2) with the number of genes
included. As there are �200 000 annotated transcripts in the
human genome (according to Ensembl GRCh38.p5 (human) an-
notation [53]) and only �20 000 protein-coding genes, the result-
ing network increases 100-fold in size, greatly increasing the
computational resources needed for the analysis. One solution
to this problem is to build co-expression network blocks from
subsets of the data and combine these blocks at a later point in
the analysis [54]. We recommend users to be cautious with
block-wise clustering, however, as it may influence the results
of subsequent module detection analyses, and it is unclear how
well these perform when large numbers of blocks are used.

RNA-seq data for co-expression networks

RNA-seq analysis entails multiple steps that include obtaining
expression estimates from the sequenced reads, data normal-
ization and quality control. Different tools and methods to ob-
tain reliable expression counts from RNA-seq data were
recently reviewed in [55], and these will not be reviewed here.

In our experience, different normalization methods intro-
duce different biases in co-expression analysis, usually towards
positive correlation. New methods are continuously being cre-
ated to tackle these normalization issues. The recently pub-
lished method extracting patterns and identifying co-expressed
genes (EPIG) from RNA-Seq data (EPIG-seq), for example, is de-
signed to calculate gene correlation across RNA-seq samples,
being unaffected by read-depth differences between samples
and the large abundance of 0 values present in RNA-seq-
derived expression matrices [56]. Biases originating from the
large abundance of 0 values are even more pronounced in
single-cell experiments because of low RNA quantities per cell.
Specific tools have been created for analysis of single-cell RNA-
seq data and are reviewed in [57]. Although some studies com-
paring different normalization methods for RNA-seq data are
available [58], more comprehensive comparison studies incor-
porating newer methods are needed.

Minimum read depth and sample size required for
co-expression analyses
To create co-expression networks from RNA-seq data, a 20-sam-
ple minimum has been suggested [21, 54], and increased sample
sizes produce networks with a higher functional connectivity
[21, 59]. Not surprisingly, higher quality data tend to result in
more accurate co-expression networks [21, 59]. It is therefore es-
sential to set cut-off thresholds for data quality control. A
higher total read depth for RNA-seq samples increases the ac-
curacy of the expression measurements, especially for genes
with low expression [21, 59]. For RNA-seq data, sequencing
depth cut-off thresholds are usually selected arbitrarily. Several

co-expression studies have used a cut-off of 10 million reads
per sample [2, 21, 60]. Co-expression networks constructed
using this cut-off have been suggested to have a similar quality
to microarray-based co-expression networks if constructed
from the same number of samples [21], but decreasing in quality
with fewer reads. The percentage of mapped reads is another
frequently considered cut-off in which samples with <70% or
80% of the reads mapping to the genome are removed. Giorgi
et al. demonstrated, using 65 Arabidopsis thaliana samples with
12 million reads but applying only a 30% mapping cut-off
threshold, that the resulting RNA-seq-based co-expression net-
work had a lower similarity to biological networks than micro-
array networks [61]. Cut-off thresholds may vary per species,
based on, among other factors, the quality of the genome anno-
tation. As more and higher quality data become available,
higher cut-off thresholds may be preferable.

To ensure that a network is robust, bootstrapping can be
used [62]. This is the repetitive construction of networks by
using random sets of samples (one sample can be part of mul-
tiple subsets) from the data, which are subsequently used to as-
sess the reproducibility of the network created from the entire
data set. Randomizing the data set (e.g. by randomly reassign-
ing expression values to their gene/transcript identifiers and re-
constructing the network) can also help identify correlations
that occur stochastically because of specific biases rather than
as a result of biologically relevant interactions [2].

Clustering and network analysis
Identifying modules

Clustering is used to group genes that have a similar expression
pattern in multiple samples. The resulting modules often represent
biological processes [63, 64] and can be phenotype specific [65].

The most widely used clustering package for co-expression
analysis is Weighted Gene Correlation Network Analysis
(WGCNA) [40]. This easy-to-use tool constructs co-expression
modules using hierarchical clustering on a correlation network
created from expression data [54]. Hierarchical clustering itera-
tively divides each cluster into sub-clusters to create a tree with
branches representing co-expression modules. Modules are
then defined by cutting the branches at a certain height
(Figure 1).

WGCNA was the first co-expression tool to be applied to
RNA-seq data; it has effectively identified biologically relevant
associations between phenotypes and modules [19, 66, 67], per-
forming similarly to microarray-based analyses. An RNA-seq-
based co-expression study on normal and failing murine hearts
found that many lincRNAs are present in clusters correlating
with the failing murine heart phenotype, suggesting a possible
role of these non-coding RNAs in this disease [67]. Co-
expression analysis of RNA-seq data of lean and obese porcines
identified obesity-related modules [66], and a link was found be-
tween obesity, the immune system and bone remodelling, with
the study identifying CCR1, MSR1 and SPI1 as possible regulators
in these processes. WGCNA was also used to identify biologic-
ally relevant associations from single-cell RNA-seq data.
Regulatory mechanisms and genes underlying pre-
implantation processes conserved between humans and mice
were identified by using preservation detection defined by
WGCNA [12], a feature that was later added to this package [68].
Co-expression modules were identified for different develop-
mental stages of human and mice separately. The modules
identified for each stage were then compared between humans
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and mice to reveal a strong overlap between co-expression
modules in oocyte formation in mice and oocyte and single-cell
stage co-expression modules in humans. This suggests that
humans and mice share core transcriptional programmes in
early development, but diverge at a later stage [12].

Identifying hub genes

Co-expression modules identified by clustering are often large,
and so, it is important to identify which gene(s) in each module
best explains its behaviour. A widely used approach is to iden-
tify highly connected genes in a co-expression network (hub
genes). Hubs are frequently more relevant to the functionality
of networks than other nodes [69]. This is also the case in biolo-
gical networks [32], although mathematical derivations show
that this is only the case for intra-modular hub genes (as
opposed to inter-modular hub genes [64, 65]). Intra-modular
hubs are central to specific modules in the network, while inter-
modular hubs are central to the entire network (Figure 2). To
identify hub genes, centrality measures, mainly ‘betweenness
centrality’, are often used. Genes with high betweenness cen-
trality are important as shortest-path connectors through a net-
work [70]. Connectivity is often used to measure network
robustness and indicates how many genes need to be removed
from the network before the remaining genes are disconnected.
Identifying hub genes in co-expression networks has led to the
identification of several genes essential in cancer [71, 72], type 2
diabetes [73], chronic fatigue [74], other diseases [75, 76] and tis-
sue regeneration [77].

As there are usually multiple hubs or differentially con-
nected genes in a module, it is not always clear which is the
most important gene underlying a phenotype. Nor is there a
guarantee that any of the hub genes is causal to a phenotype
[78]. One study using myocardial data from 1617 samples found
that known foetal gene markers upregulated in gene networks
common to developing and diseased myocardium were not hub
genes [79]. Another co-expression study in Salmonella found that
hub genes are dispensable for growth, stress adaptation and
virulence, suggesting that hub genes are not necessarily essen-
tial [80].

Guilt by association

A widely used approach to attach biological meaning to mod-
ules is to determine functional enrichment among the genes
within a module using e.g. the tools described in Table 1.
Assuming that co-expressed genes are functionally related, en-
riched functions can be assigned to poorly annotated genes
within the same co-expression module, an approach commonly
referred to as ‘guilt by association’ (GBA) [121]. GBA approaches
are also widely used to identify new potential disease genes if a
substantial proportion of the genes within a module are associ-
ated with a particular disease [26, 121–126] (Figure 1).

When using a GBA approach it is important to remember
that not every gene in a module necessarily correlates with a
function or disease association for which it is enriched. Because
co-expression modules often consist of a large number of genes,
any overrepresentation of a functional process or group of
disease-associated genes quickly becomes statistically signifi-
cant, as often indicated by deceivingly low p-values.
Misinterpretation of these low p-values may lead to the incor-
rect conclusion that all genes in a module play an important
part in a particular process or disease. In reality, the fraction of
genes in a module that relate to its main biological function is
often <20% [127], and module-trait correlations can be relatively
low (correlation< 0.5) even when statistically significant [128].

Regulatory network construction
Although there is ample evidence that co-expression analysis
can help identify genes that play an important role in disease
and biological functions, it remains difficult to infer causality
from co-expression networks. Tools such as ARACNE [23] and
GENIE3 [113] attempt to construct regulatory networks from co-
expression networks. ARACNE removes indirect connections
between genes (i.e. partners of a gene that have a stronger cor-
relation with each other than with the gene itself), leaving only
those connections that are expected to be regulatory. GENIE3 in-
corporates TF information to construct a regulatory network by
determining the TF expression pattern that best explains the
expression of each of their target genes. A limitation of GENIE3
is that TF information is required for it to perform better than
random chance [113]. The performance of these methods has
been compared with gold standards defined by regulatory inter-
actions experimentally validated in >150 studies. The compari-
son suggests that methods attempting to derive regulatory
networks from co-expression networks alone can only reliably
distinguish between true- and false-positive regulatory inter-
actions if perturbation experiment data are used for network
construction [129]. A comparison between these tools and
others, including WGCNA, showed that WGCNA and ARACNE
perform best at defining the network structure of Escherichia coli
[130], for which a well-defined regulatory network was used as a
gold standard [131].

Differential co-expression analysis

Differential co-expression analysis can identify biologically im-
portant differential co-expression modules that would not be
detected using regular co-expression or differential expression
analyses. Genes that are differentially co-expressed between
different sample groups are more likely to be regulators, and
are therefore likely to explain differences between phenotypes
[4, 8–10]. Differential co-expression analysis has been used to
identify genes underlying differences between healthy and dis-
ease samples [4, 8–10] or between different tissues [11], cell

Figure 2. Hypothetical network explaining inter- and intra-modular hubs and

network centrality. The inter-modular hub has a high network centrality, as it is

required for the largest number of shortest paths between all possible node

pairs. The red line indicates an example of a shortest path through the network

between a pair of nodes. Intra-modular hubs (marked with orange) are central

to individual modules and usually have high biological relevance.
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Table 1. Methods and tools for RNA-seq-based co-expression network analysis

Tool/method Description, strengths (þ) and limitations (�)

Quality control
FastQC [81]
http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/

� A tool that uses .fastq, .bam or .sam files to identify and highlight potential issues in the
data, such as low base quality scores, low sequence quality and GC content biases.

þ Can be used either with or without user interface.
� Uses only the first 200 000 sequences in the file.

RSeQC [82]
http://rseqc.sourceforge.net/

þ A tool with a wider range of quality control measures than FastQC.
þ Can also be used on mapped data to obtain information on metrics such as the preva-

lence of splicing events.
QoRTs [83]
http://hartleys.github.io/QoRTs/

þ This is a similar tool to RSeQC but incorporates more quality control metrics.

Read Mappers
Bowtie/Tophat/Tophat2 [84]
https://ccb.jhu.edu/software/tophat/
index.shtml

� The first widely used mapping tool.
þ Detects splice variants.
� Currently much slower than most other mappers and requires a relatively large amount

of memory.
STAR [85]
https://code.google.com/p/rna-star/

� A widely used tool to align reads to a genome.
þMaps �50 times faster than Tophat and Tophat2.
þ Commonly used tool to detect novel splice variants.
� Uses a large amount of memory (>20 GB for mapping to the human genome).

HISAT [86]
http://www.ccb.jhu.edu/software/hisat/
index.shtml

� A widely used tool to align reads to a genome at a faster rate than STAR with comparable
accuracy.

þ HISAT2 is expected to be the core of the next version of Tophat (Tophat3).
þ Detects novel splice variants.
þ The newer HISAT2 version aligns to genotype variants, likely achieving higher accuracy.
þ Uses less memory than STAR (<8 GB for mapping to the human genome using default

settings).
BWA [87] � A commonly used aligner for species in which splicing does not occur.

� Does not detect splice variants.
Kallisto [88]
https://pachterlab.github.io/kallisto/
about.html

� A tool that uses a pseudoalignment strategy to assign expression values to transcripts/
genes to achieve optimal speed.

� Comparable accuracy to other tools using real alignment strategies.
� Reports reads/expression per gene instead of read alignment coordinates (which are com-

monly used to acquire the expression per gene).
þ Uses little memory and can be run on a regular desktop computer.
� Does not identify novel splice variants

Salmon [89]
http://combine-lab.github.io/salmon/

� Another pseudoalignment tool. Performance comparable with Kallisto.
� Reports reads/expression per gene instead of read alignment coordinates (which are com-

monly used to acquire the expression per gene).
� Does not identify novel splice variants.

Read counting tools
HTseq [90]
http://www-huber.embl.de/HTSeq/doc/
overview.html

� A tool that assigns expression values to genes based on reads that have been aligned
with, e.g. STAR or HISAT.

þWell documented and supported.
FeatureCounts [91]
http://bioinf.wehi.edu.au/
featureCounts/

þ A tool that is similar to HTseq but much faster. Results are slightly different owing to
slightly different expression assignment strategies.

SpliceNet [52]
http://jjwanglab.org/SpliceNet/

� A tool that divides the reads mapping to an exon shared with two isoforms proportionally
to the total expression of each of the two whole isoforms.

þ Estimates expression more accurately when multiple genes/transcripts partly share the
same genome regions.

Normalization
FPKM/RPKM [92] � Widely used normalization methods that correct for the total number of reads in a sam-

ple while accounting for gene length.
� TMM has been suggested as a better alternative [58].

TPM [93] � A method similar to FPKM, but normalizes the total expression to 1 million, i.e. the
summed expression of TPM-normalized samples is always 1 million.

TMM [94] � Similar to FPKM/RPKM but puts expression measures on a common scale across different
samples.

RAIDA [95] � A method that uses ratios between counts of genes in each sample for normalizations.
þ Avoids problems caused by differential transcript abundance between samples (resulting

from differential expression of highly abundant gene transcripts).
DEseq2 [96] � A normalization method that adjusts the expression values of each gene in a sample by a

set factor. This factor is determined by taking the median gene expression in a sample

(continued)
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Table 1. Continued

Tool/method Description, strengths (þ) and limitations (�)

after dividing the expression of each gene by the geometric mean of the given gene
across all samples. This differs from the normalization implemented in the DEseq2 dif-
ferential expression analysis.

� Implemented into the DEseq2 R package.
Correction for batch effects

Limma-removeBatchEffect [97] � A method which uses linear models to correct for batch effects.
Svaseq [98]
https://github.com/jtleek/svaseq

� This method estimates biases based on genes that have no phenotypic expression effects,
which are then used for correction of the data.

� Specifically designed for RNA-seq data.
Combat [99]
http://www.bu.edu/jlab/wp-assets/
ComBat/Abstract.html

� A method that is robust to outliers and also effective at batch effect correction in small
sample sizes (<25).

Co-expression module detection
WGCNA [54]
https://labs.genetics.ucla.edu/horvath/
CoexpressionNetwork/Rpackages/
WGCNA/

� A tool that constructs a co-expression network using Pearson correlation (default) or a
custom distance measure.

� Uses hierarchical clustering and has various ‘tree cutting’ options to identify modules.
þMost widely used tool, well supported and documented.

DiffCoEx [100] � A method that uses a similar approach to WGCNA to identify and group differentially co-
expressed genes instead of identifying co-expressed modules.

� Identifies modules of genes that have the same different partners between different samples.
DICER [4] � A method that identifies modules that correlate differently between sample groups, e.g.

modules that form one large interconnected module in one group compared with several
smaller modules in another group.

CoXpress [101]
http://coxpress.sourceforge.net/

� A tool that identifies co-expression modules in each sample group and tests whether the
genes within these modules are also co-expressed in other groups.

DINGO [102] � DINGO is a more recent tool that groups genes based on how differently they behave in a
particular subset of samples (representing e.g. a particular condition) from the baseline
co-expression determined from all samples

GSCNA [103] � A tool that tests whether a predefined defined gene set is differentially expressed between
two sample groups.

GSVD [104] � A method that identifies ‘genelets’, which can be interpreted as modules representing
partial co-expression signals from multiple genes. These signals are then compared be-
tween two groups to identify genelets unique to samples and genelets that are shared be-
tween the two groups.

HO-GSVD [105]
https://github.com/aanchan/hogsvd-py
thon/blob/master/README.md

� A tool similar to GSVD, but that can be used across multiple sample groups rather than
only two.

Biclustering [106] � A group of methods that identify modules that are unique to a subpopulation of samples
without the need for prior grouping of samples.

Functional enrichment
DAVID [107]
https://david.ncifcrf.gov/

� A widely used tool with an online web interface. Users supply a list of genes and select
the annotation categories from various sources to identify enrichment.

PANTHER [108]
http://pantherdb.org/

� A tool that uses a comprehensive protein library combined with human curated pathways
and evolutionary ontology.

� If a gene is not in the library, it is classified based on its protein sequence conservation
and by finding a related gene.

g:Profiler [109]
http://biit.cs.ut.ee/gprofiler/

� A tool that performs enrichment analyses for gene ontologies, KEGG pathways, protein–
protein interactions, TF and miRNA binding sites.

þ Also available as an R package.
ClusterProfiler [110]
https://github.com/GuangchuangYu/
clusterProfiler/blob/master/vignettes/
clusterProfiler.Rmd

� An R package for overrepresentation and gene set enrichment analyses for several cura-
ted gene sets.

þ Allows users to compare the results of analyses performed on several gene sets.

Enrichr [111]
http://amp.pharm.mssm.edu/Enrichr/

� An intuitive web tool for performing gene overrepresentation analyses using a compre-
hensive set of functional annotations.

ToppGene [36]
https://toppgene.cchmc.org/

� An intuitive tool that determines enrichment of different categories such as GO terms,
chromosomal locations and disease associations.

þ Also has other functions, such as candidate gene prioritization, based on network
structures.

Regulatory network inference
ARACNE [112] � A tool that removes indirect connections between genes (i.e. partners of a gene that have

a stronger correlation with each other than with the gene itself), leaving only those con-
nections that are expected to be regulatory.

þ Creates directional networks.

(continued)
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types [5] or species [132, 133]. Below, we provide an overview of
commonly used and newly emerging methods and tools, sepa-
rated into two categories: (1) approaches that identify differen-
tial co-expression between predefined sample groups (such as
conditions, time points or tissue types) and (2) approaches that
do not require prior knowledge about sample groups and use an
algorithm that identifies co-expression clusters in a priori un-
known subpopulations of the samples.

Differential co-expression analysis between
sample groups

Most differential co-expression analyses rely on differential
clustering; they identify clusters that contain different genes or
behave differently under changing conditions or phenotypes.
The most frequently used programs for differential clustering
analysis, which have also been compared with others programs,
are WGCNA [54], DICER [4] and DiffCoEx [100], all of which first
identify modules co-expressed across the full set of study sam-
ples. These co-expressed modules can then be correlated to pre-
defined sample subpopulations representing, for example,
disease status or tissue type.

WGCNA determines the activity and importance of each
module in each subpopulation of samples (Figure 3A and 3C).
For each module, an eigengene is calculated, which is the vector
that best describes the expression behaviour (in a linear fash-
ion) of all genes within this module in the samples included in

the analysis. It then prioritizes which genes in these modules
are likely to underlie the phenotype associated with the module
by identifying either genes behaving similarly to the eigengene
of the module or those genes that are intra-modular hub genes
(these tend to coincide). By design, DICER is tailored to identify
module pairs that correlate differently between sample groups,
e.g. modules that form one large interconnected module in one
group compared with several smaller modules in another
(Figure 3D). DICER may be particularly useful for time series ex-
periments in which co-expression changes are gradual, e.g. cell
cycle series experiments, where modules are specific to a par-
ticular phase and co-expressed in transitions between phases.
DiffCoEx focuses on modules that are differentially co-
expressed with the same sets of genes. The most extreme case
of this behaviour is sets of genes that ‘hop’ from one set of cor-
related genes to another in a coordinated manner (Figure 3E). In
this case, DiffCoEx would cluster ‘hopping’ genes in a similar
manner. DINGO is a more recent tool that works similarly to
DiffCoEx by grouping genes based on how differently they be-
have in a particular subset of samples (representing e.g. a par-
ticular condition) from the baseline co-expression determined
from all samples [102]. These are the most likely genes to ex-
plain different phenotypes that are associated with the two dif-
ferent networks. Each of the methods detects specific module
changes by design, but they can also detect modular changes
that they were not specifically designed for and may outper-
form other tools in the identification of these changes [130].

Table 1. Continued

Tool/method Description, strengths (þ) and limitations (�)

Genie3 [113] � A tool that incorporates TF information to construct a regulatory network by determining
the TF expression pattern that best explains the expression of each of their target genes.

þ Creates directional networks.
� Requires TF information.

CoRegNet [114] � A tool that identifies co-operative regulators of genes from different data types.
cMonkey [115] � Calculates joint bicluster membership probability from different data types by identifying

groups of genes that group together in multiple data types.
Visualization

Cystoscape [116]
http://www.cytoscape.org/

� A widely used tool for the visualization of networks.
þ Has many plug-ins available for specific analyses.

BioLayout [117]
http://www.biolayout.org/

� Similar to Cytoscape but less widely used.
þ Can load and visualize much larger networks than Cytoscape.

Co-expression databasesa

COXPRESdb [60]
http://coxpresdb.jp/

� A web resource incorporating 12 co-expression networks for different species created
from �157 000 microarrays and 10 000 RNA-seq samples. Has a focus on protein-coding
RNAs.

GeneFriends [2]
http://www.genefriends.org/

� Human and mouse gene and transcript co-expression networks.
� Networks constructed from �4000 RNA-seq samples each.
þ Includes a number of non-coding RNAs (�10 000 for mouse and �25 000 for human).

GeneMANIA [118]
http://www.genemania.org/

� Also includes physical and genetic interaction, co-localization, pathway and shared pro-
tein domain information data sets.

þ Networks for nine species.
GENEVESTIGATOR [119]
https://genevestigator.com/gv/

� A database constructed using �145 000 samples.
þ Curated database.
þ Networks for 18 species.
þMultiple data types.

GIANT [120]
http://giant.princeton.edu/

� Tissue-specific interaction network database.
� Includes 987 Datasets encompassing 38 000 conditions describing 144 tissues types.
þ Integrates physical interaction, co-expression, miRNA binding motif and TF binding site

data.

This is a non-comprehensive list of available tools and methods.
aThese databases can be queried for a gene or multiple genes of interest to identify commonly co-expressed genes across the samples the database was created from.
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A number of studies have used differential co-expression
network analyses to identify networks unique to specific tissues
[11] or disease states [134]. The rapid increase in publicly avail-
able RNA-seq data and projects such as GTEx and ENCODE,
which generate large-scale RNA-seq profiles, has enabled co-
expression analysis within and across different tissues [11, 15].
The GTEx project collects and provides expression data from
multiple human tissues for the study of gene expression, regu-
lation and their relationship to genetic variation [135]. In a study
comparing RNA-seq data from 35 tissues from the GTEx data
set, a tissue hierarchy was constructed based on the average
gene expression in each tissue. Related tissues, such as those
from different brain regions, clustered together. This hierarchy
was used to construct a single combined co-expression network
derived from the tissue-specific co-expression networks—a
meta-network. It was then shown that in tissue-specific net-
works, TFs with functions specific to that tissue tend to be
highly expressed together with tissue-specific genes. These
genes tend to form a stronger connection with each other than
with other genes, but remain at the periphery of the network
(thus having low centrality), while the tissue-specific TFs be-
come more central to that module [11]. Thus, tissue-specific TFs
could be uncovered by identifying modules with increased co-
expression strength in tissue-specific networks (Figure 3A and
3C) and by pinpointing the central hubs of these modules. In
contrast, genes that are not TFs but are tissue-specific should be

detectable by identifying genes that are at the periphery in
these modules (Figure 3B). Moreover, some TFs have different
roles in different tissues. These TFs would be expected to be
hub genes that are central to one module under one condition
and central to another module in another condition.

Differentially connected genes are those with different co-
expression partners between two sample groups. These genes
appear to play a regulatory part in the difference in the pheno-
type observed between two groups (Figure 3D) [8–10]. For ex-
ample, one study compared co-expression in mutant cattle with
increased muscle growth with co-expression in non-mutants,
using a method similar to DiffCoEx. By identifying the most dif-
ferentially expressed genes and TFs showing the highest differ-
ential connection to these genes [10] (Figure 3D), the TF
containing the causal mutation (myostatin) was identified.
Interestingly, the Mstn gene, which encodes this TF, hardly
changed in expression itself, providing an example of how dif-
ferential co-expression analysis can uncover biologically im-
portant findings not revealed by differential expression analysis
alone.

Not all methods construct a co-expression network to assess
differential expression. GSNCA [103] can be used to identify dif-
ferentially co-expressed gene sets, which have to be defined a
priori, between two sample groups. In the first step this method
determines weight vectors for each sample group, from a correl-
ation network. These weight vectors represent the cross-

Figure 3. Changes in gene co-expression patterns that can occur between samples. Differential co-expression can occur as the presence of a module in only one of the

sample groups (A), as differences in the structure of the module (B) or as differences in the correlation strength between members of the modules (C). Additionally, dif-

ferential co-expression can be detected if one larger interconnected module splits into several smaller ones (D) or if a group of genes changes its correlation partners

[‘gene hopping’ (E)]. If sample groups are not defined before the differential co-expression analysis, or are unknown, biclustering methods can identify modules unique

to a subpopulation of samples by simultaneously classifying the samples into groups in which these modules exist (F).
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correlation of each gene with all the other genes, effectively
summarizing a correlation matrix into a single vector, describ-
ing a weight for each gene. These weights for the genes repre-
senting a certain gene set are then compared between two
sample groups, to determine whether the gene set is differen-
tially co-expressed.

Generalized Single Value Decomposition (GSVD)
Generalized Single Value Decomposition (GSVD) is a unique
type of differential co-expression analysis that relies on spectral
decomposition to identify modules of co-regulated genes.
Unique to this approach is that it summarizes the expression of
samples and all genes into a smaller number of variables, aim-
ing to explain as much expression variation in as few variables
as possible. Here we focus on the summary of gene expression
into principal components or ‘genelets’, a term introduced in
[104] that can be interpreted as an analogy to co-expressed
modules, and which represent the partial expression of mul-
tiple genes. The relative significance of these genelets—
describing the extent to which a signal from the genelet is pre-
sent (that is, the extent to which the genelet is expressed) in a
data set—can be compared between two data sets. If the signifi-
cance is similar, the genelet represents a co-expression pattern
shared between the two data sets, whereas differences in sig-
nificance indicate that the co-expression pattern is unique to
one of the data sets. Higher Order (HO)-GSVD was more recently
developed and uses a similar approach for comparisons be-
tween more than two data matrices [105].

GSVD was first used in 2003 to analyse microarray expres-
sion data from human and budding yeast to identify common
and unique pheromone and stress response patterns between
these two species [104]. HO-GSVD recently proved effective at
identifying pathways important for self-renewal of neural pro-
genitors [136]. GSVD was shown to identify patterns unique to
glioblastoma multiforme, a type of brain tumour, which was
useful for prognostic purposes [137]. Similarly, genelets that are
active in normal samples were identified [138]. These genelet
signals were then removed from the total signal in cancer sam-
ples, revealing a cancer-specific signature [138]. Both of these
studies demonstrated that signatures unique to the cancer had
a strong signal for genes duplicated in the cancer [137, 138], as is
common in cancers, suggesting that identified profiles reflect
the oncogenic events in the genome.

It is not surprising that differential co-expression methods
are growing in popularity as the cost of high-quality expression
data decreases. While these methods have not yet been applied
to RNA-seq data, recent findings from microarray studies make
this an exciting prospect. However, because these methods are
sensitive to outliers, they require high-quality data.

Differential co-expression without prior grouping

An alternative method for detecting differentially expressed
clusters between subpopulations of data is biclustering. If a data
set contains several biologically distinct but unknown sample
groups, biclustering can identify genes with a similar expression
pattern in only a sub-set of the samples without the need for
prior sample classification (Figure 3F). This is particularly useful
when such information is not available, as can be the case for
large-scale single-cell RNA-seq experiments like those using the
Drop-seq system [139] or inDrop [140].

In a clinical study it is often possible to predefine groups of
healthy and diseased samples. However, the same disease can
manifest through different mechanisms. This is a scenario

common in cancer, where different mutations can lead to dif-
ferent alterations in co-expression patterns but a similar pheno-
type [7]. Biclustering allows researchers to disentangle the
mechanisms in the cases where predefining biologically rele-
vant sample groups is difficult. For this purpose, biclustering is
more effective than other co-expression analysis methods [7].

Cheng et al. were first to use biclustering in co-expression
analysis [141], followed by the development and application of
many more biclustering approaches (reviewed by Pontes et al.
[106]). The choice of biclustering method depends on the num-
ber of samples and factors such as whether the samples are
species- or tissue-specific and whether the included samples
constitute disease phenotypes and/or different time points.
Biclustering methods can be computationally challenging de-
pending on the method used [106]. Methods should be selected
carefully because different biclustering approaches can have
varying results in the same data set [142].

Biclustering approaches were recently applied to RNA-seq-
based expression data. Analysis of the expression data from
several developmental stages of worm and fruit fly, by identify-
ing biclusters containing similar orthologous gene sets unique
to different developmental stages between the two species, led
to the identification of genes with a similar, and thus conserved,
function in development [132]. Biclustering has also been
applied to single-cell RNA-seq data [5]. Because biclustering
groups genes and samples simultaneously, it enabled the sim-
ultaneous identification of groups of cell types and correspond-
ing gene modules to reveal 49 different cell types and their
corresponding cell-type-specific gene modules, results that
were later supported by experimental validation [5]. With the
emergence of single-cell RNA-seq, biclustering methods may be
able to identify cell-type-specific modules that are present in
diseased but not in healthy cells.

Another biclustering method identified miRNAs deregulated
in breast cancer through their presence in biclusters unique to
cancer samples [7]. These miRNAs have been suggested as
markers for diagnosis and treatment response [7]. Biclustering
has also been used to identify tightly co-expressed sets of
protein-coding genes unique to subpopulations of cancer pa-
tients, which could be used to understand patient prognosis
and to further precision medicine approaches [18, 20]. In an-
other cancer data set, a three-dimensional clustering method
(triclustering) was used to identify genes co-expressed across
subpopulations of samples and time points [6]. This method ef-
fectively identified several known breast cancer genes in a
breast cancer cell line by identifying hub genes in triclusters dif-
ferentially expressed between cancer samples at early and late
time points using the eigengene changes between the samples
of each tricluster [6].

Comparison of differential co-expression
analysis methods

While a comprehensive and unbiased comparison of methods
used in differential co-expression analysis is desirable, the per-
formance of the tools may be situation-dependent, varying be-
tween species, disease states and perhaps even data sets, thus
making it difficult to identify the optimal method in each cir-
cumstance. An attempt was recently made to compare 10 differ-
ential co-expression algorithms, but concluded that it remains
difficult to evaluate these owing to the lack of gold standard
gene sets to validate the outcome of these methods [143].
Several of the tools described in this review have been com-
pared in publications introducing a competing method. DICER

584 | van Dam et al.

Downloaded from https://academic.oup.com/bib/article-abstract/19/4/575/2888441
by guest
on 24 July 2018

Deleted Text: if 
Deleted Text: . 
Deleted Text: 100
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: s
Deleted Text: 101
Deleted Text: 100
Deleted Text: 102
Deleted Text: ere
Deleted Text: 103
Deleted Text: 104
Deleted Text: 104
Deleted Text: 103
Deleted Text:  
Deleted Text: 105
Deleted Text: 106
Deleted Text: -
Deleted Text: 107
Deleted Text: 108
Deleted Text: 108
Deleted Text: 109
Deleted Text: 93
Deleted Text: Since 
Deleted Text: which 
Deleted Text: due <bold></bold>
Deleted Text: 110


has been argued to perform better than DiffCoEx and CoXpress
[4] based on functional enrichment analysis of differentially ex-
pressed modules. HO-GSVD outperformed WGCNA and
DiffCoEx based on its ability to detect clusters in simulated data
[136]. Although biclustering is a powerful approach, it does not
necessarily perform better than other network analysis meth-
ods such as WGCNA, as shown by a comparison using different
tools on simulated data [144]. However, as discussed earlier,
biclustering can be performed without the need for prior sample
group classification.

Although many of the tools and methods described in this
review were originally created for microarray data, they are also
applicable to RNA-seq data. There are RNA-seq-specific differ-
ential co-expression analysis methods, harnessing the exon- or
isoform-specific expression information or allele-specific ex-
pression effects, that have been reported to perform better than
other tools where this information is not considered [52, 145].
However, it is unclear whether these differential co-expression
methods also perform better if other methods are supplied with
the same isoform-specific expression information, which could
be determined before differential co-expression analysis. As a
result, it remains difficult to assess whether these new tools
perform better than already well-established tools such as
WGCNA, which can also be used on isoform-specific expression
data [50].

Because the tools described in this review create modules
based on different criteria, it is also questionable whether the
measures used in the comparisons represent desirable proper-
ties for all cases. For example, DiffCoEx groups genes based on
their differential co-expression behaviour, whereas WGCNA
identifies modules that are co-expressed in multiple samples
and conditions. In a homogenous data set, DiffCoEx will likely
detect fewer and smaller modules, indicating that there are not
many differentially co-expressed genes. This will likely lead to
lower enrichment scores when the performance of DiffCoEx is
compared with WGCNA on such homogenous data, whereas it
is merely an indication that not many co-expression partner
changes occur in the data. By contrast, tools that focus on
shared co-expression modules are likely to find strong correl-
ation modules with high enrichment scores, which may not be
relevant if the goal is to identify regulatory modules. WGCNA
has been widely shown to perform well under many different
circumstances and for different purposes [54]. However, it re-
quires information on the sample conditions to assign modules
to conditions. If this information is not available (as in large-
scale single-cell RNA-seq experiments) or if researchers wish to
identify subgroups within the sample groups, biclustering is a
more suitable approach.

To get a systematic assessment of the performance of differ-
ent tools and methods, projects such as DREAM4 and DREAM5
[146] have been invaluable. These challenged researchers to
construct regulatory networks from simulated and in vivo
benchmark data sets. As these challenges are predefined they
allow researchers to test their methods/tools in an unbiased
manner. However, these challenges were last posed in 2010 and
many new methods and tools have been developed since.

Integrated network analysis

Experimental validation often focuses on single genes. As these
experiments are costly and time-consuming, high confidence
predictions of causal genes are of great importance. An analysis
based solely on co-expression does not (yet) provide this level of
confidence. Therefore, incorporation of information from other

types of data can help to prioritize genes that may underlie a
phenotype. This can be achieved, for example, using informa-
tion describing which genes are TFs, as is done for regulatory
predictions by GENIE3 [113]. However, a focus on TFs is rarely
sufficient, and integration of multiple data types is often
required to increase the accuracy and usefulness of the result-
ing networks [13, 147].

TF binding site analysis

Genome-wide transcription factor binding site (TFBS) analysis
was introduced in the beginning of this millennium using chro-
matin immunoprecipitation followed by microarray analysis,
also known as ChIP-chip [148], which was later replaced by the
more accurate ChIP-seq [149]. These data were used to create a
genome-wide integrated regulatory network from gene expres-
sion and TFBS data [150]. Combined analysis of ChIP-chip-based
TFBSs and expression data initially showed that, in 58% of the
cases, the TFs bound to the promoter region of the gene were in-
deed regulated by the corresponding TF [151]. A partial least
squares approach (a well-known method for analysis of high-
dimensional data with several continuous response variables)
was later proposed to identify false positives and distinguish
the activation and repression activities of TFs [152]. A more re-
cent method harnesses the rapidly increasing availability of
ChIP-seq data in combination with expression data to rank the
genes bound by a TF, which can be used to prioritize the most
likely TF targets [153]. Tools to conduct similar analyses, inte-
grating expression and ChIP data, have also been published
[154].

Multilayer integrated networks

Independent from the approach used to identify them, network
modules can be further investigated for shared eQTL gene tar-
gets, TF/miRNA targets or enriched binding motifs [15, 120].
Several computational methods and publicly available data sets
are available for multi-omics data integration. For example, in-
formation about eQTLs can be acquired from recent large-scale
blood-based trans-eQTL meta-analysis [155] or eQTL studies
conducted in other tissue types [156]. Transcription factor bind-
ing sites (TFBSs) can be collected from databases such as
JASPAR and DeepBind [157], which consist of TF binding motifs
inferred from experimental data. Binding sites can be further
prioritized by investigating tissue-specific ChIP-seq peaks from
ENCODE [15]. Finally, miRNA–target interactions can be identi-
fied using several in silico target prediction tools [158, 159] or
using manually curated databases of experimentally supported
target interactions [160–162].

Combining information from different layers of data may
lead to new biologically interpretable associations in a number
of ways. If intra-modular hub genes are TFs or targets of a TF,
this TF is more likely to have a causal role in the phenotype
under investigation [10]. If multiple Genome-Wide Association
Study (GWAS) hits exist in the same module, their cumulative
presence can significantly contribute to disease development
[120, 163, 164]. Differential methylation states of genes within a
co-expression module can elucidate methylation patterns
underlying disease [165]. If multiple genes are regulated by the
same genetic variant (under a trans-eQTL effect), it may be pos-
sible to identify the gene responsible for the alterations of the
network by identifying the cis-eQTL gene driving the trans-eQTL
effects (Figure 4). This is supported by the fact that genes under
trans-regulation of disease-associated genomic variants are
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sometimes functionally connected with the processes or path-
ways associated with the corresponding disease. Good ex-
amples of this are IFN (interferon)-a and complement pathways
in which several genes were under trans-regulation of a sys-
temic lupus erythematosus-associated variant, possibly via cis-
regulation of IKZF1 [155]. The integration of regulatory genetic
variant information into co-expression network analysis, with
cis-eQTLs used as causal anchors, identified TYROBP as the most
likely causal factor in late-onset Alzheimer disease patients, a
finding supported by the observation that mutations in this
gene are known to cause Nasu-Hakola disease [128]. Lastly,
copy number variation can affect gene expression levels, and
including such information may help identify and/or explain al-
terations in co-expression network structures present in dis-
eases or traits [138].

Overall, integration of multiple data types increases the ac-
curacy of the resulting predictions [13, 147]. For example, mod-
ules unique to different subtypes of cancer were identified by
integrating tumour genome sequences with gene networks
[166], and these modules may be useful for prognosis and iden-
tification of putative targets for personalized medicine-based
treatments. A number of tools, described earlier in this review,
can be used for differential co-expression analysis, but can also
be applied to other data types. In the initial DINGO publication,
the authors conducted a combined analysis on mRNA expres-
sion, DNA copy number variation and methylation data. By
overlaying the differential networks of each data type and iden-
tifying edges present in all of them, a number of genes from the
PI3K pathway were identified as important players in glioblast-
oma multiforme patients [102]. This pathway is an already-es-
tablished therapeutic target, supporting the notion that this is
an effective approach for identifying relevant targets for disease

studies [167]. A recently published tool, CoRegNet, allows the in-
tegration of different types of data in a co-expression analysis
by identifying co-operative regulators of genes from different
data types [114]. Another established approach, cMonkey,
achieves similar data integration by calculating the joint biclus-
ter membership probability from different data types by iden-
tifying groups of genes that group together in multiple data
types [115].

Future prospects

In recent years, differential co-expression analyses have been
increasingly used to analyse large data sets. This may be attrib-
uted to the decreased costs of large-scale gene expression
profiling, in particular RNA-seq, to increased sample sizes, and
to the greater availability of tissue-specific data from perturb-
ation experiments, which are required for fruitful differential
co-expression analyses [103, 168]. Likewise, biclustering algo-
rithms have benefitted from larger sample sizes and higher
data quality, as shown by the identification of co-expressed
modules unique to cancer subtypes [18, 20]. The usefulness of
biclustering on single-cell RNA-seq data has been demonstrated
by the classification of different cell types and by the identifica-
tion of clusters of genes uniquely co-expressed in specific cell
types [5]. We expect these approaches to be more widely applied
in the future, as they benefit from an increase in RNA-seq data
quantity and quality, which will allow for more accurate identi-
fication of tissue-specific and cell-type-specific disease-related
modules and regulators.

Large-scale single-cell sequencing technology is increasingly
used and the first co-expression studies using such techniques
have uncovered cell-type-specific co-expression modules that

Figure 4. Strategies for integrating multi-omics data with co-expression analyses. Networks are more informative if they are constructed using expression data specific

to the tissue of interest. Genomic variation can be mapped to a co-expression network either by linking suggestive GWAS hits to the genes in the network or by first

identifying genetic variants with an effect on gene expression levels (cis- and trans-eQTLs) and then mapping those to the co-expression network. Additional data

layers may include TFBSs (based on binding motifs or ChIP-seq/ChIP-chip experiments), miRNA target binding sites (based on in silico predictions or experimental tech-

niques) and established protein–protein interactions. A co-expression network can be used to identify modules, hub genes and for predicting the function of unknown

trait-associated genes. Identified modules can be analysed by enrichment analyses to identify overlaying features. Additionally, the research hypothesis can be sup-

ported by additional differential expression, co-expression and methylation analyses that can be performed if respective omics data are available for cases and con-

trols for a corresponding trait. eQTL: expression quantitative trait loci; GWAS: genome-wide association study; OMIM: online Mendelian inheritance in man; miRNA:

microRNA; PPI: protein–protein interaction; TF: transcription factor; TFBS: TF binding site.
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would have gone undetected in multi-cell-type co-expression
analyses [5, 12]. Because the latter represent the aggregated sig-
nals of multiple cell types, they usually cannot detect alter-
ations in cell subpopulations between different experimental
groups. This is supported by the observation that the expression
of cell cycle genes associated with ageing decreased in the ana-
lysis of non-cell-type-specific data [169]. However, data from
single-cell experiments revealed that this observation was
caused by a decreased proportion of the G1/S cells that highly
express cell cycle genes rather than by altered expression across
the whole cell population [170].

An additional prospect is the detection of mutations from
RNA-seq data [171]. As mutations accumulate with age in differ-
ent cells, these can be used to identify the origin of the cell.
Mutation accumulation has been used to study cancer develop-
ment and the origin of metastases [172]. In large-scale single-
cell RNA-seq experiments, mutations could be used to separate
cells based on their origin, or to group cells based on the muta-
tions they harbour [173]. Cells harbouring the same mutations
can be investigated for co-expression patterns, and modules
unique to cells with a specific mutation may be detected. This
may allow the direct linking of mutations to expression mod-
ules, with the limitation that only mutations in coding regions
are detectable in RNA-seq data.

Although there are many exciting new possibilities with
single-cell RNA-seq data, important challenges remain. Typically,
a low number of reads per cell are sequenced and then the signal
from multiple cells of the same type is aggregated to acquire a
cell-type-specific gene-expression profile. It is hard to acquire
sufficient data for rarer cell populations, such as stem cells, and
this is currently limiting analyses on these cell types.
Additionally, the low number of reads per cell leads to sparse ex-
pression matrixes to which normalization methods currently
used in canonical RNA-seq analyses are not attuned. These nor-
malization methods often also assume that the majority of genes
do not change in expression between different samples, which is
not necessarily the case in single-cell RNA-seq owing to variation
in expression across different cells. This is further exacerbated by
the difficulty in obtaining high-quality RNA from single cells.
These and other issues are further discussed in [174].

In addition to the normalization issues that occur in single-
cell RNA-seq, the optimal method for normalizing bulk RNA-seq
data is also still not clear. The widely used Fragment/Reads Per
Kilobase Million (FPKM) normalization has been debated [58]
and although alternatives have and are being created, each
method has its limitations. Additionally, from our experience,
the use of different mapping tools can in some cases lead to dif-
ferent results. Although some comparisons between different
tools and methods have been made [175], a large-scale compari-
son, using e.g. public data, would identify such cases and define
best practices for pursuing each research question.

With the increased availability of different data types such
as RNA-seq, genome sequences, ChIP-seq, methylome and
proteome data, it will become possible to integrate these data
sets to more accurately predict regulatory genes. Projects from
large consortia like GTEx [156], the Epigenome Roadmap [176]
and ENCODE [15] are already generating data from multiple-
omics levels that facilitate these integrated analyses. To iden-
tify regulatory relationships, perturbation data are preferable,
as canonical data cannot distinguish between true and false
positives in regulatory relationships [129, 168]. Furthermore,
regulatory relationships can be highly cell-type-, tissue- or
developmental-stage-specific [129]. Only a handful of tools and
methods are currently available to investigate multi-omics

data, and the tools that exist mostly integrate only two layers of
omics data [177]. Integrated network analyses come with add-
itional mathematical challenges, and best practices are far from
established. Further research on this topic is of great interest to
the research community, as it will allow a better understanding
of regulatory mechanisms that can explain co-expression pat-
terns and disease mechanisms. A better understanding of these
disease mechanisms and corresponding co-expression patterns
will facilitate the identification of appropriate targets for inter-
vention studies.

Key Points

• RNA-seq-based co-expression analysis can be used to
assign putative functions to non-coding RNAs and to
identify candidates for roles in disease.

• In co-expression networks, hub gene identification has
a limited power for identifying targets for follow-up
studies; yet, this can be enhanced by integrated net-
work analyses, which may incorporate GWAS hits,
eQTLs, TFBSs and other data layers.

• Differential co-expression analyses can reveal genes
that have different co-expression partners between
healthy and disease state and can help to uncover
regulators underlying disease and other phenotypes.

• Methods such as biclustering and Generalised Single
Value Decomposition (GSVD) allow the identification
of signals/modules unique to specific cancer subtypes,
which may serve a purpose in prognosis and for preci-
sion medicine.
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Glossary

Betweenness centrality
This measure is used to describe the centrality (and there-
fore relevance) of a node in the network by counting the
number of shortest paths between any other pair of nodes
going through this node (Figure 2).
Biclustering
A clustering method that allows clustering based on two di-
mensions simultaneously, e.g. genes and different
treatments.
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ChIP-chip
This method identifies TFBSs by immunoprecipitation of
the TF together with bound DNA fragments (chromatin
immunoprecipitation—ChIP). A DNA microarray is subse-
quently used to identify the sequences where the corres-
ponding TF is bound.
ChIP-seq
This method uses the same approach as ChIP-chip, but
using RNA-seq rather than microarray to identify TFBSs.
Clustering
A statistical method of grouping variables. In the case of
gene co-expression, genes that have similar expression pat-
terns across multiple samples.
Co-expression partner
A gene whose expression shows a similar pattern across dif-
ferent samples to that of a gene of interest.
Co-expression network
A network that describes which genes have a tendency to
show a coordinated expression pattern across a group of
samples. In these networks, each node represents a gene
and each edge represents the presence and/or the strength
of the co-expression relationship.
Eigengene
A vector that best describes the expression changes of a
module between different samples. This describes the par-
tial expression of each gene (albeit to a different extent for
each gene) in a linear fashion.
Gene
A DNA sequence that can be transcribed into a transcript. In
the case of protein coding genes, this transcript can be
translated into a protein. Proteins are the building blocks of
our body. Non-coding genes are transcribed but do not en-
code proteins.
Genelet
Similar to the eigengene; a vector that represents the partial
expression of multiple genes, but calculated using a different
method. Unlike an eigengene, a genelet does not necessarily
best explain the expression variability present in the data.
Generalized single value decomposition
A type of differential co-expression analysis that compares the
strength of gene expression signatures existing in one group of
samples with the strength for this signal in another group.
Hierarchal clustering
A clustering method that creates a hierarchical tree based
on the distance between the nodes or genes in the network.
Nodes that are close to each other in the network are part of
the same branch. Clusters can be defined by cutting the
branches at a certain height.
Intra-modular hub
A gene with high centrality within a module. These tend to
have high biological relevance.
Inter-modular hub
A gene with high centrality in a network.
k-means clustering
A clustering method where a predefined number of clusters
are constructed so that each gene is assigned to the cluster
with the closest mean.
Microarray
A platform for quantifying gene expression that assays
mRNA molecules based on their hybridization to probes pre-
sent on an array, typically a glass slide.

Module
A group of co-expressed genes that form a sub-network in
the larger network, usually defined by applying clustering
algorithms on a co-expression network or directly on ex-
pression profiles.
Mutual information
The measure of dependence between two otherwise unre-
lated variables.
Network robustness
A measure of how resistant a network is to the removal of sin-
gle nodes, assessed by the effect of removal on the connectiv-
ity of the network. The connectivity indicates how many
nodes need to be removed to disconnect part of a network.
Regulatory gene
A gene that regulates the expression of other genes.
Subpopulation-specific modules
A co-expression module that only exists in a subset of the
samples analysed.
Transcript
A single-stranded RNA molecule resulting from the tran-
scription of a gene.
Triclustering
A clustering method that allows clustering in three dimen-
sions simultaneously, e.g. genes, different treatments and
time points.
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