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Abstract

Biologists very often use enrichment methods based on statistical hypothesis tests to identify gene properties that are
significantly over-represented in a given set of genes of interest, by comparison with a ‘background’ set of genes. These
enrichment methods, although based on rigorous statistical foundations, are not always the best single option to identify
patterns in biological data. In many cases, one can also use classification algorithms from the machine-learning field.
Unlike enrichment methods, classification algorithms are designed to maximize measures of predictive performance and
are capable of analysing combinations of gene properties, instead of one property at a time. In practice, however, the
majority of studies use either enrichment or classification methods (rather than both), and there is a lack of literature
discussing the pros and cons of both types of method. The goal of this paper is to compare and contrast enrichment and
classification methods, offering two contributions. First, we discuss the (to some extent complementary) advantages and
disadvantages of both types of methods for identifying gene properties that discriminate between gene classes. Second, we
provide a set of high-level recommendations for using enrichment and classification methods. Overall, by highlighting the
strengths and the weaknesses of both types of methods we argue that both should be used in bioinformatics analyses.
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Introduction

Given a predefined set of genes (or gene products) associated
with some known process or disease (the seed set), a common
bioinformatics task is to find biological properties shared by
the genes, or gene products like proteins, in the set. This gene
set could be, for instance, the set of over-expressed genes from
an RNA-Seq differential expression analysis or a compilation

of genes associated with some disease of interest. Common
characteristics can help biologists understand the underlying
biological process being studied and also help identify other
genes, not present in the original set, that may be also associated
with the phenotype of interest.

The most common approach to achieve this goal is to use
enrichment analysis techniques to identify significantly over-
represented gene properties in the seed set. Most enrichment
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methods work by using a set of seed genes that are associated
with a phenotype (e.g. are differentially expressed, genetically
associated with a disease or linked to a target phenotype). Next,
some type of statistical analysis is performed to find gene prop-
erties that are over-represented in the set of ‘seed’ genes with
respect to some ‘background’ set of genes at a statistically sig-
nificant level. Sometimes, another set of genes called ‘candidate
genes’ is also defined; these are genes that might be candidates
for the phenotype of interest. The candidate genes can be filtered
using the enriched properties (or some other descriptor derived
from these properties, e.g. biological pathways associated with
the enriched properties) as an inclusion criterion and used as
possible targets for further research.

Enrichment analysis techniques have several layers of com-
plexity; they are usually based on tests of statistical significance
that are, by themselves, nuanced and difficult to interpret [1].
Also, commonly used gene/protein descriptors have their own
set of caveats and complexities [2]. The Gene Ontology (GO),
for instance, can be easily misused by inexperienced users [3]
that fail to take its hierarchical structure into account. In addi-
tion, selecting the appropriate statistical test to find common
patterns in the set of enriched genes is a problem in itself,
as each technique has its own biases and limitations [4], as
discussed in the next section. Some authors even recommend
trying several types of statistical tests and selecting the results
of the ones that make more biological sense [2], which is a highly
controversial approach due to unintentional ‘p-hacking’ risk
[5,6]. In this approach, all statistical tests that were not discarded
due to issues with their underlying assumptions should always
be reported to the readers, and this approach should be limited
to exploratory studies.

The objective of this paper is to contrast commonly used
enrichment method types with the increasingly popular (but
still relatively less popular) approach of using classification
algorithms from the area of machine learning to find candidate
genes for further analysis and extract useful knowledge from the
available data [7, 8], such as a list of predictive gene properties
or rules that predict a phenotype of interest defined by the
user. Classification algorithms work by using a ‘training set’ to
learn a classification model that predicts the value of a class
variable. The training set comprises instances (genes) usually
represented as a numerical feature vector and a class variable
with two (or more) possible class labels (the gene phenotype).
In the binary case, usually one class label is considered the
‘positive’ label (the gene is associated with the phenotype),
whereas the other label is the ‘negative’ one (the gene is not
associated with the phenotype). The classification algorithm
treats the class variable as the ‘ground truth’, meaning that it
assumes that each instance is deterministically associated with
a class label, which is not always the case due to the complex
nature of biological processes. In any case, the classification
model can then be used to classify instances in a ‘test set’ that
have an unknown class label (e.g. to classify a new gene as
‘associated with disease‘ or not). The reader should be aware
that the machine-learning nomenclature is not completely
standardized; what we call ‘test set’ here is sometimes called
‘validation set’.

We stress that in this work we assume that the genes under
study are pre-labelled with discrete class labels. Ranked gene
lists (e.g. expression ranks), genes with continuous target vari-
ables (e.g. absolute expression values) and unlabelled gene lists
are out of the scope of this paper.

Note that the training set used by classification algorithms is
conceptually similar to the union of the ‘seed’ and ‘background’

genes in the enrichment setting, since both sets are used as
input knowledge by the methods. In the case of enrichment
methods, the ‘positive’ instances (the instances annotated
with a positive class label) come from the ‘seed’ set, and the
‘negative’ instances come from the ‘background’ set. Note,
however, that classification algorithms assume that instances
annotated with the negative class label are necessarily not
associated with the phenotype, while the background set is
often the whole genome. Also, the ‘test set’ can be thought
of as being similar to the ‘candidate genes’ set, which, like
the ‘test set’, is a set of genes with unknown class labels that
may or may not be associated with the phenotype of interest
(the positive class label), with two differences, as follows. First,
the intersection between the test set and the training set in
the classification setting is necessarily empty, while in the
enrichment setting there may be some candidate genes in
the background set [2]. Second, it is assumed that the genes
in the test and training sets are random samples from the same
gene population, whereas the candidate genes are normally
chosen because they are more likely to have the phenotype of
interest than the other genes in the genome, according to expert
knowledge.

In this work, we compare classification and enrichment
methods by analysing their approaches for finding over-
represented gene properties, contrasting the underlying assump-
tions of both methods. We also comment briefly on the use of
classification algorithms to perform gene prioritization tasks,
which is a direct by-product of the machine-learning workflow
studied here. The contribution of this paper is twofold. First,
we discuss the advantages and disadvantages of applying
classification algorithms and enrichment methods to identify
biological patterns—in particular, identifying gene properties
that discriminate between gene classes. Second, we provide
high-level recommendations for using enrichment and classifi-
cation methods.

The remainder of this paper is organized as follows:
The Background section gives an overview of both enrichment
and classification methods for bioinformatics. The Enrichment
methods versus classification methods from machine learning
section discusses the advantages and disadvantages of clas-
sification and enrichment methods in bioinformatics (our 1st
contribution). Lastly, the Conclusions and recommendations
section presents our conclusions and gives high-level recom-
mendations for using enrichment and classification methods in
bioinformatics (our 2nd contribution).

Background
Overview of enrichment methods for bioinformatics

Enrichment analysis methods are popularly divided into three
categories [2, 9, 10]: Singular Enrichment Analysis (SEA), Gene
Set Enrichment Analysis (GSEA) and Modular Enrichment
Analysis (MEA). Briefly, these categories group enrichment
methods based on the type of statistical tests used and what
corrections, if any, are made.

SEA methods calculate an enrichment p-value for each tested
term based on its representation in a user-defined seed gene set,
often using the hypergeometric distribution [2]. Next, the subset
of terms with statistically significant p-values (after correcting
for multiple hypothesis testing) is considered ‘enriched’ in the
gene set.

GSEA methods do not require a user-defined seed gene set,
instead calculating an ‘enrichment score’ for each term based
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on its distribution along a list of all the genes studied in the
experiment, ranked by some experimental measure such as fold
change or significance of differential expression. The original
GSEA method used a Kolmogorov-Smirnov-like statistic as the
enrichment score [11], whereby the algorithm walks down the
ranked list of genes, increasing a running statistic each time a
gene is annotated with the term of interest and decreasing it
each time a gene is not. The enrichment score is then given
as the maximum deviation from zero that the Kolmogorov-
Smirnov-like statistic reaches.

MEA methods build on the SEA and GSEA approaches by
incorporating corrections for the network structures of the data,
for instance by accounting for the hierarchical nature of GO
terms or correlations between genes themselves [2]. A subset of
MEA, introduced by [4], is pathway topology-based approaches
(PTA). These methods focus on incorporating network and
pathway interaction information from knowledge bases such
as KEGG [12], Reactome [13] and RegulonDB [14]. PTA, similarly
to GSEA methods, use a ranked list of genes instead of using a
predefined score cutoff, with the difference that the structure
of the biological pathways is taken into consideration when
computing gene-level statistics, not just the fact that the gene is
in the pathway.

Recently, an ensemble method has been developed that
combines methods from all three categories, referred to as the
ensemble of gene set enrichment analyses [15]. This approach
calculates a range of gene set statistics using multiple methods
and then computes a score based on these statistics with which
to rank the gene set. Although this is only one approach, it does
constitute a potentially new ensemble category of enrichment
analyses.

Although MEA is the most sophisticated non-ensemble
approach, given its incorporation of knowledge on the complex
networks common to biological systems, it is not necessarily
the best option. SEA methods have been shown to give equally
good or better results in real data sets [16], while GSEA
may be more appropriate for experimental designs where it
is difficult to provide user-defined gene sets. Examples of
this could be an RNA-Seq experiment producing very few
significantly differentially expressed genes, which would likely
result in very few (or no) significantly enriched GO categories
when testing by MEA, or conversely an RNA-Seq experiment
producing thousands of significantly differentially expressed
genes, which would result in a large number of significantly
enriched GO categories when testing by MEA and thus leave the
biological interpretation of the results open to a large amount
of bias based on the expertise of the researcher analysing
them [11].

All of these approaches have proved popular in the analysis
of high-throughput data. SEA methods have been used to good
effect for focusing investigations into differentially expressed
gene lists, for instance focusing a study on multiple sclerosis
principally onto the differentially expressed genes involved
in oxidative phosphorylation and synaptic transmission [17].
Further, SEA methods have been used to link high-throughput
results to an observed phenotype, as in an analysis of a
colon and rectal cancer data set that was able to link the
enrichment of 'response to wounding’ proteins to poor prognosis
in these cancers [18]. GSEA methods were instrumental in
establishing the pathways affected by resveratrol, a drug of
interest for its effects on metabolism and lifespan [19, 20],
and along with MEA methods continue to see wide use, for
instance in the determination of pathways involved in cancer
[21, 22].
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Overview of classification methods (from machine
learning) for bioinformatics

The classification task is the computational problem of inducing
a classification model that maps given instances to classes using
the (typically) numerical features of each instance (Box 1 gives
a complete glossary of the main machine-learning terms used
in this paper). We will now illustrate this with a hypothetical
computational experiment wherein the instances are genes, the
features are the GO terms associated to each gene and the class
label to be predicted is ‘change in expression with age’. Thus, the
purpose of the experiment is to induce a model that, for a given
gene, predicts whether that gene will be differentially expressed
with age based on its associated GO terms.

To perform this experiment, two sets of genes are required—
a training set and a test set. The training set contains genes for
which the class label is already known; in this case, it would be
a set of genes known to either be differentially expressed (the
positive class label) or not differentially expressed (the negative
class label) with age. The test set, on the other hand, contains
genes for which the class label is not known, so in this case, it
would be all the genes for which the expression change with age
was not known.

Once these sets are established, the classification model
can be constructed based on the training data—a model is
created that predicts whether a given gene will be differentially
expressed with age based on its annotated GO terms. Before
applying this model to the test set, however, it should first
be validated. Validation is an important step to estimate the
predictive performance (generalization ability) of the model and
thus estimate its accuracy. In this case, a validation set should be
used consisting of genes with known class labels that were not
present in the training set. It is important that the validation set
does not overlap with the training set to prevent overestimation
of the accuracy of the model.

Once the model has been validated, if its estimated predictive
performance is satisfactory then it can be used to classify the
test set and thus predict hitherto unknown expression changes
with age that can later be validated experimentally (the task is
selecting the genes for further validation is called ‘gene prioriti-
zation’). Note that, in academic studies, very often there is no test
set in the aforementioned sense, there is no ‘real’ prediction and
conclusions about predictive power are based on the validation
set only with no empirical confirmation. In addition, machine-
learning terminology is not completely standardized, and what
is here called the validation set is often called the test set in the
literature.

Classification methods have been extensively used in bioin-
formatics [8, 23, 24]. In this context, usually both the training
and validation sets contain a list of genes with the phenotype
of interest (instances with the positive class value) with a list
of genes without the phenotype of interest. Note that, usually,
the latter list is actually a list of genes that are not known to be
associated with the phenotype. The test set is usually a set of
genes that could be associated with the phenotype of interest
(e.g. the whole genome excluding the genes in the training
and validation sets or a subset of genes selected using expert
knowledge).

Another important aspect of using classification algorithms
for gene prioritization is how to define the numerical features
describing the instances (genes). Popular approaches include the
use of experimentally derived gene properties, such as GO terms
[25], Protein-Protein Interactions from BioGrid [26], functional
protein associations from STRING [27] and pathway information
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Machine-learning glossary.

Classification Algorithm (or method)—an algorithm that builds a classification model from training instances during its training phase. Each
classification algorithm has its own biases, internal representation strategy and limitations.

Classification Model—a function (in the mathematical sense) that maps a classification instance to a class label.

Classification Instance—the entity being classified (a gene in our case). A classification instance comprises two parts: the features and the classes.
In this work, we are dealing with standard classification problems, where the instances have just one class variable. Note that in the test set (see
below) the instances’ classes are unknown.

Features—usually a numerical vector that describes the instances. E.g. a vector of real values representing co-expression strengths or a vector of
binary features, each representing the presence (value 1) or absence (value 0) of GO terms or KEGG pathways, where the value ‘1’ (‘0’) for a feature
is also known as the ‘positive’ (‘negative’) value.

Vector—an ordered set containing values, usually real numbers.

Class Variable—a variable in the instance that holds the phenotype of interest (the class labels). For instance, ‘associated with diseases’ (positive
class label) and ‘not associated with diseases’ (negative class label). One should be careful not to mix the concepts of class variable and class label.
A class variable is a gene property (e.g. expression change), and the class labels are the possible values the property can take (e.g. over-expression,
under-expression, no change in expression). The class variable takes discrete, or nominal, values.

A Model’s Prediction—the output of a classification model for an instance. The prediction is usually the most likely class label associated with
the instance according to the model. Alternatively, it may be a score for each class label representing the likelihood of each class label being
associated with the instance according to the classification model.

Training Set—a set of instances with known class labels used by a classification algorithm to induce (build) a classification model.

Validation Set—a set of instances with known class labels not present in the training set that is used to estimate the predictive power
(generalization ability) of the classification model.

Test Set—a set of instances with unknown class labels. The instances in this set are presented to the classification model, and the model’s
predictions for these instances may be used for further investigation. Note that the machine-learning nomenclature is not completely
standardized; what we call ‘test set’ is sometimes called ‘validation set’.

Predictive Performance—a measure of the accuracy of the predictions of the classification model. This value is estimated by classifying the
validation instances and comparing the model’s predictions with the instances’ class labels. Note that in practice the class labels are temporarily
removed from the validation instances when evaluating a classification model, making sure that the model is not using that information to make
its predictions.

Hyper-parameters—a set of parameters, set by the user before the training phase. The term ‘hyper’ is used to distinguish such parameter set
before training from other ‘parameters’ learned by the model during its training. Hyper-parameter setting is an important step in the classification
workflow; a poor hyper-parameter setting choice will likely lead to classification models with low predictive power.

Box 1. Glossary of machine-learning terms.

from databases like KEGG [12]. The features encoding these
properties are normally binary, where a feature value of ‘1’ (the
positive feature value) indicates that the property is associated
with the gene, while a value of ‘0’ (the negative feature value)
means that the property is not currently known to be associated
with the gene. Note that these features suffer from a high level
of ‘research bias’, that is, highly researched genes tend to have
more positive annotations than less popular genes. In addition,
the negative value of a feature is much less informative than
the positive value, since the negative value usually indicates
‘lack of evidence’ rather than ‘evidence of absence’ [28]. There
are ‘lower-level’ features, which are less impacted by research
bias, e.g. unbiased gene descriptors, such as physicochemical
gene properties [29], gene co-expression scores measured using
genome-wide methods [30, 31] and gene-expression levels
across tissues [32]. The values of these lower-level features, how-
ever, are harder to interpret, i.e. usually it is more useful to know
that a gene is involved in a given biological pathway (higher-
level feature) than to know its expression level (lower-level
feature).

In principle, the issues of research bias and uninformative
negative values affect both enrichment and classification meth-
ods. Standard classification methods, however, seem more vul-
nerable since they tend to compound these effects while making
a prediction, potentially using several unreliable feature values.
Decision trees, for instance, may use several properties with
negative values to predict the class of a single instance, perhaps
with no property being a reliable predictor. Also, the ‘enrichment’
statistics, as the name suggests, are focused on calculating
how probable the observed gene properties are (the properties

with positive feature values) given the null hypothesis and not
the unobserved gene properties (the properties with negative
feature values).

Some classification models, besides being useful for pre-
dicting the class labels of unknown-function instances (genes),
can also be used to gain knowledge about the underlying classifi-
cation problem. For instance, decision-tree models are relatively
easy to interpret, being capable of generating rules involving
several features to classify instances, and have been used in
bioinformatics to generate potentially interesting biological
knowledge [23]. Note that the kind of knowledge extracted
from classification models depends on the type of model being
used; while decision trees are capable of generating easily
interpretable rules, other types of classification models (e.g.
Bayesian networks) generate models that can be interpreted
with some effort [33]. Other types of classification models (e.g.
deep neural networks) are hardly interpretable at all, requiring
post-processing methods to be analysed [34].

One can also use the output of feature selection methods
to get insights about important features (gene properties)
[35]. Feature selection methods are typically used to rank
the features (or feature subsets) in terms of discriminative
power, placing redundant features and features with low
discriminative power lower in the rank than more discriminative
ones. Note, however, that the insight that feature selection
methods can provide is limited. Analysing a simple list of ranked
features does not explicitly show complex feature relationships
or value-dependent conditions, which is the kind of more
detailed insight provided by analysing classification models
such as sets of IF-THEN prediction rules or decision trees. For
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instance, in [36] the authors report the following classification
rule:

IF GO:0050896 (response to stimulus) = yes
ANDGO:0048518 (pos. reg. of biological process) =yes
AND number_of_ protein_interacting_partners > 15

THEN class 1is aging-related DNA repair gene

which means that if a gene satisfies all three conditions in its IF
part (i.e. a case of feature interaction), the gene is classified as
an ageing-related DNA repair gene.

In recent years, the use of deep-learning neural networks has
been growing significantly in almost every field where labelled
data is abundant, including biology [37]. Deep neural networks
differ from traditional neural networks mainly in their highly
flexible model, capable of automatically creating higher-level
representations of the data that, in many cases, result in very
good predictive performance. However, one should note that this
potential is usually realized when the training sets are consid-
ered ‘large’. As a rule of thumb, training sets should have more
than 20 000 instances, and each class label should annotate at
least 5000 instances [38], which is much more data than available
in many biological data sets.

A good example of the practical limitation of deep learning
when the number of instances per class is not large can be
found in [39]. In that work, deep learning was applied to a
more complex variation of the classification task called hier-
archical classification [40], where there is a large number of
class labels organized into a hierarchical structure, with gen-
eralization/specialization relationships among the class labels.
More precisely, in [39] two hierarchical classification tasks were
addressed, where the class labels to be predicted are GO terms
and protein families (as defined in the UniProt database). How-
ever, instead of trying to predict all possible class labels, deep
learning was used to predict only the labels associated with
at least 200 instances (genes) in the case of GO terms and at
least 150 genes in the case of UniProt (super/sub) families. This
reduced the number of class labels to be predicted to ‘only’ 983
for the GO terms and 698 for UniProt families. Although these
are large numbers of class labels, they represent a relatively
small proportion of the available class labels, and importantly,
in general, they represent the class labels at higher levels of
the class hierarchy, i.e. more generic GO terms or UniProt fam-
ilies. These are, broadly speaking, the easiest class labels to
be predicted because there are so many instances annotated
with those class labels. It would be much harder to predict the
numerous most specific GO terms and UniProt families, which
are annotated with less (often much less) than 200 and 150
instances.

The studies [28, 41] are examples of classification techniques
applied to find biological patterns. In [28] the authors proposed
an approach to identify important features to predict ageing-
related classes using random forests (an ensemble of decision
trees). The authors interpreted the biological meaning of the
extracted patterns and concluded that they are indeed related
to ageing. In [41], a relatively simple classification model (also
based on decision trees) was able to achieve high predictive
performance while classifying human genes as ageing related
or non-ageing related. The authors identified new candidate
proteins having strong computational evidence of their role in
ageing and also found a small set of highly predictive features to
classify the genes as ageing related.
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Enrichment methods versus classification
methods from machine learning

Enrichment analysis is strongly based on the concept of statisti-
cal significance. This concept is related to the concept of predic-
tive power in the classification task of machine learning since
both enrichment and machine-learning approaches tend to give
more importance to gene properties that are over-represented
in one of the experimental conditions (or class labels). Rule-
induction algorithms, for instance, in general will choose to use
a predictive feature value that is over-represented in one class,
rather than choosing an under-represented feature value in that
class, since the former has better predictive power. However, a
high degree of enrichment (significance) does not necessarily
imply high predictive power, and vice versa, high predictive
power does not necessarily imply statistical significance. An
example of each of these two cases is discussed next.

Suppose we have two classes of genes, say overexpressed
(positive class) and not overexpressed (negative class), each gene
annotated with many GO terms that can be used as features.
Suppose these classes have prior probabilities (before observing
any GO term) of 10% for the positive class and 90% for the
negative class. Hence, if a certain GO term shows no correlation
with the class variable, we would expect, by chance, that out
of the genes annotated with that GO term, 10% belong to the
positive class, and 90% belong to the negative class. Suppose now
that we observe, in the data, that 50% of the genes annotated
with that GO term belong to the positive class, and the other
50% belong to the negative class. Assume the actual number of
genes with these annotations is large enough for this result to
be statistically significant, indicating a significant enrichment
of that GO term in the positive, over-expressed, class. Now, if
we use only the presence of that GO term annotation to predict
the class of a gene, that occurrence of that GO term has low pre-
dictive power; given the information that the gene is annotated
with that GO term, there is a 50% chance of the gene belonging
to each class.

Note that this does not mean that the GO term is completely
useless for classification. After all, the probability of observing
that GO term in the over-expressed class is five times higher
than by chance. So, if we combine the occurrence of that GO term
with the occurrence of other GO terms that are also significantly
enriched for the over-expressed class, it is quite possible that a
combination of those GO terms increases the probability of the
over-expressed class to substantially higher than 50%. This is
why it is important to consider GO term interactions by doing
a multivariate analysis.

In the above example, the problem is that the relatively large
increase in the probability of the class given that we observe an
enriched GO term is not enough to compensate for the very low
relative frequency of the positive (over-expressed) class. That is,
despite statistical significance, the ‘signal’ is not strong enough
to predict the over-expressed class. Also, broadly speaking, the
result of a statistical significance test tends to be quite sensitive
to the size of the sample. Even if the data is nearly random (with
a very small effect size), if an extremely large sample is used, the
test will tend to return a significant result anyway [5].

The above example shows that a statistically significantly
enriched GO term may not have a strong predictive power by
itself. Let us now consider the opposite case. Suppose that in
the data set there are only 20 genes annotated with a cer-
tain GO term, and 18 of these genes belong to the positive
class (overexpressed), with two genes belonging to the negative
class. Assume these small numbers are not enough to achieve
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A. Enrichment Analysis
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Figure 1. Graphical representation of a hypothetical statistically significantly enriched GO term with poor predictive performance (Subfigure A, on the left-hand side)
and a non-statistically significantly enriched GO term with high predictive performance (Subfigure B, on the right-hand side). This figure shows that although the
hypothetical GO term is significantly enriched in Subfigure A, it has poor predictive power (only 50% of the genes annotated with the GO term are over-expressed). On
the other hand, the non-significantly enriched hypothetical GO term in Subfigure B (that annotates fewer genes) has good predictive power (90% of the genes annotated
with the hypothetical GO term are overexpressed). This shows that significantly enriched gene properties are not necessarily good predictions and vice-versa.

statistical significance, so the GO term would not be considered
to be (significantly) enriched in the positive class. Despite that,
this GO term has a high predictive power; given that we observe
the occurrence of that GO term in a gene to be classified, if we
classify that gene based just on that GO term, there is a 90%
probability of the gene having the over-expressed class, a 9-fold
increase in the prior probability of the class. The small number
of genes with that GO term clearly means that only that GO term,
by itself, would not be able to classify many genes, so again we
would need to do a multivariate analysis of the data (considering
many other GO terms as features) in order to reliably classify
many more genes. However, the example showcases that, when
looking at each GO term separately, without considering inter-
action with other GO terms, a non-enriched (i.e. not statistically
significant) GO term can have a lot more predictive power than
an enriched (significant) GO term. Figure 1 illustrates the above
two cases graphically.

It is clear that the importance given to gene properties
by enrichment and classification methods are misaligned.
This is not surprising, as the objectives of these methods are,
although related, fundamentally different. Enrichment methods
are designed to, given two or more sets of genes, find properties
that are significantly over-represented in one of those sets,
with respect to the other set(s). Classification methods, on the
other hand, seek to ‘explain’ how the gene sets associated with
the classes given by the user were created. In other words, a
classification algorithm aims to create a model that reproduces
the division of the genes into mutually exclusive classes given by
the user as close as possible using gene properties. This model
can be used to classify previously ‘unseen’ genes into the groups
(classes). For this reason, a gene property that correctly classifies
18 out of 20 genes (as in the previous example) is much more
valuable to the classification model than properties that are
over-represented in many genes but misclassify the majority of
them. Recall that, even though a rare highly predictive GO term is
not enough to correctly classify many genes, the combination of
many such relatively rare GO terms can correctly classify many
genes, as mentioned earlier.

In summary, the main similarity between enrichment and
machine-learning methods to find biological patterns rests on
their principles for finding gene properties (features) that are
over-represented in the class label (phenotype) of interest. That
is, both types of methods tend to rank or select features based
essentially on their degree of over-representation in the class of

interest. However, enrichment and machine-learning methods
have different biases when ranking the features. Enrichment
methods rank features (gene properties) according to their
statistical support independent of their predictive power, while
machine learning tends to give more importance to features
(gene properties) with greater predictive power. In concrete
terms, this means that highly predictive features (features that
can differentiate the instances among the classes with high
predictive accuracy) will tend to be considered more important
than features with high statistical support (features whose
correlation with the class variable is statistically significant but
that do not necessarily have high predictive power).

Also, these methods differ greatly on how they search for
over-represented features and how they measure the feature’s
over-representation score. Machine-learning methods usually
employ some type of optimization procedure to search for over-
represented features that, when taken together, are good pre-
dictions of the class label, whereas enrichment methods usually
follow a simpler procedure that considers only one feature (gene
property) at a time, ignoring feature interactions. For this rea-
son, machine-learning methods are capable of providing richer
results than a list of gene properties ranked by their importance.
Decision tree algorithms, for instance, can return classification
rules involving several gene properties that can be much more
predictive than any individual feature taken in isolation. Enrich-
ment methods, on the other hand, have the advantage of having
a more grounded statistical support for their findings.

In Table 1 we show a real example contrasting the results
of using traditional enrichment methods and machine-learning
approaches to identify biological patterns. These results were
taken from the supplementary material of [35] (Supplemen-
tary files ‘GO-Terms-rankings-biological-process.xls’ and ‘Pro
longevity.xlsx’, available at https://github.com/maglab/genage-
analysis/blob/master/Dataset_2_data_mining.zip and https://
github.com/maglab/genage-analysis/blob/master/Dataset_1_
functional_enrichment.zip (respectively)), where the authors
used traditional enrichment methods and also a feature
selection method that takes into consideration the hierarchical
structure of the GO to find the GO terms most related to pro-
longevity in the Caenorhabditis elegans model organism. Feature
selection is a widely used machine-learning technique that
seeks to find a subset of highly predictive features, eliminating
the uninformative ones. It is clear from Table 1 that the top 10
GO terms identified by the ‘traditional’ enrichment approach
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Table 1. Comparison of the top 10 GO terms associated with ‘pro-longevity’ genes in the worm model organism according to enrichment and
machine-learning (feature selection) methods. Each sub-table shows the GO term identifier, the full GO term name and the p-value used to rank
the GO terms (note that these p-values are not directly comparable since they are testing different hypotheses). The results were taken from
the supplementary materials of [35]. Note that although the two GO term sets are distinct at first glance, they have important similarities. For
instance, GO terms that appear both in the machine-learning gene set (GO:0001708, GO:0045138, GO:0010172) and in the enrichment method
set (GO:0010259, GO:0007568, GO:0002119, GO:0002164, GO:0040024) are related to developmental processes

Rank Machine-learning method

Enrichment method

p-value GO Id.

GO term name p-value

GO Id. GO term name
1 G0:0006914  autophagy
2 G0:0051094  positive regulation of developmental process
3 G0:0001708  cell fate specification
4 G0:0008285  negative regulation of cell proliferation
5 G0:0044262  cellular carbohydrate metabolic process
6 GO:0045138  tail tip morphogenesis
7 GO0:0070265  necrotic cell death
8 G0:0018991  oviposition
9 G0:0010172  embryonic body morphogenesis
10 GO:0006352  DNA-templated transcription, initiation

1.53E-03  GO:0010259 multicellular organismal aging 1.69E-48
3.56E-03  GO:0008340 determination of adult life span ~ 1.69E-48

5.19E-03  GO:0007568 aging 1.69E-48
2.46E-02  G0:0002119 nematode larval development 4.49E-39
2.46E-02  G0:0002164 larval development 4.97E-39
2.46E-02  GO0:0009791  post-embryonic development 8.13E-39
2.46E-02  GO:0040007  growth 4.05E-25
4.77E-02  GO:0040024  dauer larval development 2.76E-21
6.21E-02  G0O:0040008  regulation of growth 1.81E-19
6.21E-02  G0:0045927  positive regulation of growth 2.88E-19

contain several redundancies (e.g. positive regulation of growth
is a type of regulation of growth), whereas the results of the
feature selection method contain more distinct terms. This
is expected, as removing redundancies among features to
improve predictive power is one of the aims of feature selection
algorithms.

Note also that, overall, the top 10 GO terms identified by the
enrichment and feature selection approaches are quite different,
although there is some overlap (e.g. for GO terms related to
development). This difference reinforces the motivation to use
both approaches, since they make different assumptions and
have, to some extent, complementary pros and cons, as dis-
cussed next. Using both approaches we have more opportunities
to discover biological patterns, and patterns identified by both
approaches (like development-related GO terms in the above
example) can be considered particularly strong.

Advantages and disadvantages of classification
methods from machine learning

The main advantages of classification methods are as follows.

First, most modern classification methods are non-
parametric in the statistical sense—i.e. they do not assume that
the data are distributed in a certain way. Instead, they adapt the
learned model to the characteristics of the problem automati-
cally during their training phase. Therefore, in principle, most
classification algorithms can be used to discover very different
types of relationships among variables in the data, including the
discovery of highly non-linear correlations between the features
(gene properties) and the class labels (the phenotype of interest).
Most enrichment methods, on the other hand, are parametric
in the statistical sense, and each method performs the same
statistical calculations regardless of the extent to which the
data satisfies the assumptions of the statistical test used.

Second, some types of classification models (e.g. decision
trees) are relatively easily interpretable by users [42]. Such mod-
els can be used both for predictions and to gain insights about
how the class label is related to the features in a relatively
human-friendly fashion.

Third, most classification methods consider multivariate
interactions between the features and the class label. On the
other hand, most enrichment methods analyse one feature at

a time, ignoring the fact that, sometimes, two or more gene
properties, when taken at the same time, can be much more
predictive (or enriched) than the individual properties.

The main disadvantages of classification methods are as
follows.

First, some classification methods lack formal statistical
basis—several classification algorithms cannot make principled
statistical assessments regarding the data. That is, the predic-
tions are made without confidence intervals or p-values.

Second, many classification methods are very computation-
ally intensive. For instance, deep neural networks are very com-
putationally demanding, often requiring the use of specialized
hardware to run in reasonable times [7]. Note, however, that
some well-known classification methods, like most decision tree
algorithms and Naive Bayes, are relatively fast [43].

Third, hyper-parameter setting is not trivial. Recall that most
classification algorithms have settings (hyper-parameters) that
control important aspects of the learning process. A poor hyper-
parameter choice can lead to low (even close to random) pre-
dictive performance. Many classification algorithms are very
sensitive to these settings, requiring either expert knowledge
or computationally expensive hyper-parameter tuning methods.
These tuning methods usually work by running the classifica-
tion algorithm several times, with different hyper-parameter set-
tings, estimating the predictive performance of the constructed
models to determine which hyper-parameter setting is the best
one. One must be careful while performing this hyper-parameter
tuning to not measure the predictive performance in the ‘valida-
tion set’, where the final predictive performance estimation will
be carried out, but rather in a subset of the ‘training set’. The
predictive power of classification algorithms will very likely be
grossly overestimated if one uses the ‘validation set’ to tune the
algorithm’s hyper-parameters.

Fourth, bioinformatics data sets often have two important
particularities that can negatively impact the predictive perfor-
mance of traditional classification algorithms: high class imbal-
ance and structured biological descriptors. Regarding the issue of
class imbalance, the data sets are often very unbalanced towards
the negative class label—most whole-genome enrichment anal-
yses involve thousands of genes without the phenotype of inter-
est and only a few dozens with the phenotype of interest. Most
classification algorithms do not cope well with this high level of
class imbalance. However, there has been extensive research on
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methods for improving the performance of classification algo-
rithms in this scenario, including the use of over(under) sam-
pling of the minority (majority) class to create a more balanced
training set [44]. Regarding the issue of structured biological
descriptors, some descriptors (e.g. GO and FunCat terms) have a
hierarchical structure. However, most classification algorithms
treat them as unstructured, which may lead to problems due to
the high correlation between terms. Exceptions are classification
algorithms for hierarchical classification [40] and hierarchical
feature selection methods for classification [45].

Advantages and disadvantages of enrichment methods

Enrichment methods are an extremely popular approach to
summarize the functional characteristics of seed gene sets.
These methods present several advantages when compared
to other approaches, as follows. First, they are quick and
computationally light, often able to analyse large gene sets using
only a laptop computer, especially given the large number of web
tools available. This makes enrichment analysis very suitable for
small labs that may not have access to high-power computing
clusters or machine-learning experts or for situations where
a quick summary of gene set functionality is sufficient and a
more sophisticated method would be unnecessary and overly
time consuming.

Second, there are a wide variety of tools available covering
multiple statistical methods. Many of these tools (for instance
the highly popular DAVID tool [46]) are very user friendly with
good documentation and clear explanations of their methodol-
ogy to allow users to determine the best method for their data.
These tools tend to use methods based on classical statistical
tests that non-statisticians are likely to have at least some
understanding of.

Finally, although less popular, Bayesian statistical methods
have been incorporated into some enrichment analysis tools,
allowing a more sophisticated statistical approach. The oldest
of these is BayGO, which uses a Bayesian inference method
to incorporate Goodman and Kruskal’'s Gamma score of asso-
ciation. The association of differential expression to each GO
term is measured, and Monte Carlo simulations are employed
to determine the probability of randomly observing a stronger
level of GO term enrichment than the measured level [47]. Other
Bayesian tools are GO-Bayes [48], model-based gene set analysis
[49] and multi-level ontology analysis [50], which all attempt to
infer the probability that a given GO term is associated with a
supplied gene set. These methods alleviate some of the con-
cerns affecting most enrichment analysis methods, since the
probability estimations account for some of the network char-
acteristics inherent in biological data, while also considering
all terms simultaneously thus removing the need for multiple
hypothesis testing correction. Most Bayesian methods also have
the advantage of not relying on classical tests of statistical signif-
icance, whose limitations were discussed earlier. Instead, they
are based on the prior probability (before building the model)
and the probability of observing the data given the model, which
are, arguably, easier concepts for most people to grasp than
p-values.

The main disadvantages of enrichment methods are as
follows.

First, most enrichment methods are heavily based on tests of
significance using p-values as the decision criterion. However,
p-values by themselves are not adequate as the main basis for
scientific conclusions, since they do not measure the effect size,

importance and reproducibility of a result. For this reason, they
should not be taken as definitive evidence for the existence or
size of an effect [1, 51]. Instead, researchers should use p-values
to help guide a broader analysis, avoiding absolute conclusions
based on them.

In [2] the authors point out that the p-values of enrichment
methods are often treated as a score of ‘interestingness’, and
seldom the sensitivity and specificity of the list of ‘interest-
ing’ properties are estimated. That is, little importance is given
to the actual predictive power of the properties, giving more
value to differences in relative frequencies instead. The authors
also make the interesting point that the definition of the seed
genes (for SEA methods) and gene rankings (for GSEA methods)
are based on the assumption that the higher the differential
expression of a gene, the more important the gene should be
considered in the analysis. This is often a valid assumption but
not always; a small change in expression of a regulatory gene
may be much more biologically relevant than larger changes in,
for instance, a metabolism-related gene.

Second, most ‘traditional’ statistical tests assume that the
sampling units are independent. This is clearly not the case in
most gene-expression experiments (where the sampling unit is
usually a gene), a common application of enrichment methods.
There are several regulatory genes that modulate the expres-
sion of other genes. When this assumption is not satisfied,
the tests tend to make more type I errors than what would
be expected (incorrectly rejecting the null hypothesis of ‘no
differential expression’) [52].

Third, SEA and GSEA enrichment methods (see the Overview
of enrichment methods for bioinformatics section) ignore corre-
lations between gene properties, analysing their enrichment
significance independently. However, normally there are strong
correlations among the gene properties; it is common that if
a gene is annotated with a property, it is much more likely to
be annotated with a 2nd property. This is particularly common
when using GO terms, which are hierarchically structured (e.g.
every gene annotated with the term ‘detection of stimulus’ is,
by definition, also annotated with the term ‘response to stimu-
lus’). Arguably, this fact is not so detrimental to the enrichment
methods as high gene correlation (mentioned in the previous
paragraph) [53], but it is still an important source of bias.

Table 2 lists the advantages and disadvantages of classifica-
tion and enrichment methods to identify gene properties.

Conclusions and recommendations
Conclusions

Given a list of genes associated with a phenotype of inter-
est (seed genes), enrichment methods have been extensively
used by biologists to retrieve properties associated with the
seed genes and sometimes to retrieve non-seed genes for fur-
ther investigation. Enrichment methods have several desirable
characteristics; they are usually computationally inexpensive
to run, produce principled statistically based scores of impor-
tance, are easily accessible and are popular among bioinformat-
ics researchers.

However, in some scenarios, machine learning-based classi-
fication algorithms may be more suited to deal with the task of
identifying patterns in genomic data. Unlike enrichment meth-
ods, classification approaches aim to maximize ‘predictive per-
formance’, thatis, building a classification model to discriminate
between gene classes by maximizing measures of predictive
performance estimated using different gene sets for training and
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Table 2. Summary of advantages and disadvantages for classification and enrichment methods to identify biological patterns

Method type

Classification

Enrichment

Advantages .

Most classification models are non-parametric in
the statistical sense; they do not assume the data
follows a certain type of probability distribution.
Some models are interpretable. For instance, deci-
sion trees and logistic regression models can be
easily interpreted by the user in many cases.

Most classification algorithms consider multivari-
ate interactions between the features and class
labels.

Computationally light.

There is a wide variety of tools, many with good
documentation and a clear methodology.

Some tools use Bayesian methods instead of clas-
sical statistical significance tests (whose problems
were discussed earlier).

Disadvantages .

Many classification algorithms lack formal statisti-
cal basis.

Many methods are very computationally expensive.
Hyper-parameter setting is not trivial.

Many methods do not cope well with high class
imbalance and structured feature types (e.g. GO
and FunCat), common in bioinformatics data sets.
Although there are methods to mitigate both issues.

Tests of statistical significance based on p-values
(used by many enrichment methods) are difficult to
interpret and provide limited information.

The assumption made by most enrichment meth-
ods that the genes are independent seldom holds
in the bioinformatics setting.

There are strong correlations between gene proper-
ties, which also violates the assumptions of many

traditional tests of statistical significance.

validation. Most enrichment methods, on the other hand, aim
at finding statistically significantly enriched properties in the
seed genes. These properties by themselves may not have good
predictive power.

Besides the focus on maximizing predictive power, some
classification models, like decision trees, are able to output an
interpretable classification model, which can be analysed by the
user, potentially giving insights about the underlying biological
processes. Also, most machine-learning methods are capable of
finding non-linear relationships and are capable of combining
different gene properties to make a prediction.

Recommendations

One of the main practical challenges faced by biologists when
applying machine-learning techniques to biological problems
is how to construct the classification data sets. While most
enrichment tools have built-in data sources, machine-learning
algorithms often require file inputs. Note that having a built-in
data source clearly facilitates the use of the tool but, on the other
hand, may lead to the unintentional use of low-quality data (due
to an out-of-date data source or to the use of low-confidence
annotations). Fortunately, most bioinformatics databases have a
link for downloading the entire database or Web APIs that can be
used to extract the desired data. Also, there are Python (https://
github.com/biopython), R [54] and Perl (https://www.ncbi.nlm.
nih.gov/books/NBK25501/) libraries that can be used to obtain
gene and protein data from several online resources. Biolo-
gists should also keep in mind the characteristics of the data
they are using. For instance, not all gene annotations have
the same level of confidence, and the lack of an annotation
does not guarantee the absence of that property [3, 28]. These
aspects should be carefully weighted when building and inter-
preting the results of both enrichment tools and classification
models.

Choosing the right type of classification method for the task
at hand is essential. For instance, classification model inter-

pretability is often desirable when working with biological data
[42]. If that is the case, the user can focus on interpretable clas-
sification models. Note that ‘interpretability’ is subjective and
highly dependent on the background knowledge of the user of
the classification system. Having said that, decision trees, rule-
based classifiers, naive Bayes and logistic regression classifiers
are commonly considered ‘interpretable’. When high predictive
power is more important than interpretability, we suggest using
‘black-box’ models, which are very difficult to interpret but tend
to have better predictive performance. Support Vector Machines
and Deep Neural Network classifiers are popular examples of
such models.

It is common to use ensembles of classification algorithms
[55] to improve the predictive performance of the classifica-
tion system. Ensemble methods combine the prediction of sev-
eral ‘base’ classification models to output the final prediction
of the ensemble. Ensembles tend to have a better predictive
performance than the base models but have the drawback of
increased training and testing times and reduced interpretability
[56]. Random forests (ensembles of a type of decision tree), in
particular, are a popular approach in bioinformatics that usually
have high predictive performance [57] and are still somewhat
interpretable, having a good compromise between predictive
power and interpretability.

For readers with no machine-learning expertise who are
interested in more information about these (and other) machine-
learning topics, we recommend the comprehensive book of [43],
which covers these topics providing an accessible theoretical
basis and practical examples in the Java programming language
using the popular WEKA software tool [58]. The newer scikit-
learn software tool (https:/scikit-learn.org/) is another option
for readers interested in applying machine learning to their
data using the Python programming language. The scikit-learn
tool has several extensions that implement advanced machine-
learning approaches and is arguably a better option for users
looking for state-of-the-art algorithms.

When possible, we recommend testing a range of clas-
sification algorithms and hyper-parameter settings for the
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Table 3. Summary of recommendations for classification and enrichment methods to identify biological patterns

Method type

Classification

Enrichment

o One should carefully study the characteristics of the biological
data. Annotations may vary significantly in terms of con-
fidence and may have an underlying hierarchical structure,
which ideally should be considered by the algorithms. E.g.
GO term annotations have varying degrees of confidence
and have an underlying structure, which ideally should be
considered by the algorithms.

e Choosing the best kind of classification algorithm is impor-
tant. The user should consider aspects like model inter-
pretability, training time and predictive power.

o Testing several types of classification algorithm is always rec-
ommended (since different algorithms learn different types of
classification models), always being careful to estimate their
predictive performance properly. When comparing the perfor-
mance of multiple algorithms via statistical significance tests,
use appropriate multiple hypothesis correction methods.

o One should carefully choose which enrichment method to use
(checking its assumptions) rather than trying several methods
and choosing the preferred result—which could lead to the
‘p-hacking’ problem.

e According to some authors, the use of a seed gene set is
usually preferable to ranked lists of genes [16].

o If the creation of seed gene sets is too difficult, consider
using a GSEA approach or an MEA approach using multiple
thresholds.

e The results of enrichment methods are mainly descriptive.
If gene prioritization is required, consider using guilt-by-
association or machine-learning approaches.

problem at hand. This can be done either manually, using
expert knowledge, or automatically, using Automated Machine
Learning approaches (Auto-ML) [59, 60]. In either case, it is
important to compare the predictive performance of the models
using statistical tests of significance, always being careful to
apply the correct test and adjust the alpha (significance) values
if multiple hypothesis comparisons are made [61]—in order
to avoid the risk of unintentional p-hacking. Note that these
statistical tests can be applied regardless of the underlying
assumptions of the classification algorithms; the tests treat the
models as ‘black boxes’ capable of making predictions.

Choosing the right enrichment method is equally impor-
tant. It is essential to consider carefully which method to use,
checking the assumptions of the method, rather than trying
multiple approaches, and choosing the method that gives results
that ‘make sense’—which would lead to over-optimistic p-values
(p-value ‘hacking’ [5, 6]). The first consideration that should be
made is whether to use an approach requiring a seed gene set
or an approach that tests all genes simultaneously based on a
ranked list. Seed gene set-based approaches have been shown
to perform better in many cases [62, 63] and so should be used
when possible. However, the creation of a seed gene set is not
always easy. Seed gene set-based approaches can be extremely
sensitive to the thresholds used for inclusion in the seed gene
set [64, 65]. Creating a seed gene set based purely on statistically
significantly different expression changes, for instance, often
requires setting arbitrary cut-off values. E.g. when dealing with
large sample sizes, ‘popular’ p-value cut-offs will lead to inflated
seed gene sets, so using fold-change cut-offs is also necessary.
However, choosing a fold-change cut-off has its own problems, as
genes with low mean expression and high expression variance
may erroneously meet the cut-off (note that there are methods
to alleviate this issue [66]). If there is not strong evidence behind
a seed list, then consider using either a GSEA approach that
tests all genes simultaneously, or test for enrichment using MEA
methods using multiple thresholds for inclusion in the seed gene
set, with enriched terms overlapping between the tests being
likely true positives.

Enrichment analysis is mainly descriptive (rather than
predictive) in nature, and so the results should be interpreted

as such. Being able to describe the characteristics of a seed list
or ranked gene list is useful for understanding the mechanisms
behind a response to a perturbation, drug treatment or disease;
however, it is not sufficient evidence for the prioritization
of candidate genes for further study. For this purpose, there
are a wide range of further tools, ranging from guilt-by-
association methods [13, 31, 67] to the machine-learning
methods previously discussed. Combining enrichment analysis
with predictive analysis tools is thus a powerful way to identify
the biological response to a perturbation and subsequently
identify potential novel candidates for manipulating that
response.

Overall, we reinforce that none of the approaches discussed
here is the best for all problems. Nonetheless, we recommend
the addition of machine-learning classification methods in the
toolset of biologists when exploring their data. In addition,
machine-learning principles (such as the concept of separate
training and validation sets for predictive performance estima-
tion, see the Glossary in Figure 1) should be considered when
extracting candidate genes from the data. Finally, if enrichment
methods are used, one should be aware of the limitations
of the underlying statistical methods and how to properly
interpret the p-value statistics [1], which are not easy to fully
grasp.

A summary of the above recommendations is provided in
Table 3.

Key Points

® If enrichment methods are used, the limitations of null
hypothesis significance testing should be considered.
Also, p-value statistics, which are not easy to fully grasp,
should be properly interpreted.

® We recommend the addition of machine-learning clas-
sification methods in the toolset of biologists when
exploring their data.

® No single machine learning or enrichment method
approach is the best for all problems.
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