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ABSTRACT

Motivation: Gene expression profiles have been widely used to
study disease states. It may be possible, however, to gather insights
into human diseases by comparing gene expression profiles of
healthy organs with different disease incidence or severity. We tested
this hypothesis and developed an approach to identify candidate
genes associated with disease development by focusing on cancer
incidence since it varies greatly across human organs.
Results: We normalized organ-specific cancer incidence by organ
weight and found that reproductive organs tend to have a
higher mass-normalized cancer incidence, which could be due
to evolutionary trade-offs. Next, we performed a genome-wide
scan to identify genes whose expression across healthy organs
correlates with organ-specific cancer incidence. We identified a
large number of genes, including genes previously associated with
tumorigenesis and new candidate genes. Most genes exhibiting a
positive correlation with cancer incidence were related to ribosomal
and transcriptional activity, translation and protein synthesis. Organs
with enhanced transcriptional and translational activation may have
higher cell proliferation and therefore be more likely to develop
cancer. Furthermore, we found that organs with lower cancer
incidence tend to express lower levels of known cancer-associated
genes. Overall, these results demonstrate how genes and processes
that predispose organs to specific diseases can be identified using
gene expression profiles from healthy tissues. Our approach can
be applied to other diseases and serve as foundation for further
oncogenomic analyses.
Contact: jp@senescence.info
Supplementary Information: Supplementary data are available at
Bioinformatics online.

Received on April 11, 2011; revised on August 10, 2011; accepted
on September 29, 2011

1 INTRODUCTION
Large-scale gene expression analyses employing microarrays have
been widely used to study human diseases. The majority of
such studies compare disease and non-disease states or different
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pathological conditions to identify disease biomarkers and gain
insights into pathophysiological processes. Few studies, however,
have compared data between healthy tissues to identify normal
tissue-specific pathways that predispose or contribute to disease.
One study focused on the expression of disease-associated genes
in healthy tissues and found that they tend to be overexpressed in
tissues where their disruption causes pathology (Lage et al., 2008),
but this remains a largely unexplored area. Herein, we wanted to
develop a method that takes advantage of gene expression profiles
from healthy organs to determine new candidate genes and processes
associated with complex diseases.

Although many diseases are tissue specific, for others disease
incidence and severity varies widely across organs. It is plausible
that variation in particular organ features affects their predisposition
to pathophysiological mechanisms and therefore identifying such
features will provide clues on disease etiology. Given that large-
scale gene expression data is available for the major human organs
(Su et al., 2004), the basic premise behind this work is that it may
be possible to gather insights into human disease by comparing
gene expression profiles of healthy organs with differences in
disease incidence or severity. Our aim in this work was to test
this hypothesis and develop a method for identifying genes and
processes associated with organ-specific disease incidence using
gene expression data from healthy tissues. Because cancer can
originate in multiple organs, we focused our proof of concept
analysis on cancer incidence.

Cancer is caused primarily by alterations in the genome of
the affected cells (Hanahan and Weinberg, 2000; Stratton et al.,
2009), yet organ characteristics may predispose or protect from
tumorigenesis. In fact, there is a great variation in the incidence of
cancer across organs. Differences in cell proliferation and turnover
have been put forward as an explanation, though the topic remains
controversial (Ward et al., 1993). A previous study found that while
gain-of-function cancer genes (i.e. oncogenes) are overexpressed in
tissues more associated with cancer, loss-of-function cancer genes
(i.e. tumor suppressor and caretaker genes) are underexpressed in
such tissues (Lage et al., 2008).

In order to study the differences in cancer incidence between
different human organs, we conducted a genome-wide correlation
study between cancer incidence normalized for organ weight and
gene expression patterns using microarray data from healthy tissues.
Our results reveal a large number of genes and processes whose
expression is associated with cancer incidence and show it is
possible to employ gene expression profiles across healthy organs to
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identify mechanisms predisposing organs to disease development.
This methodological framework may be useful for further studies
on cancer as well as other diseases.

2 METHODS
The main aim behind this method is to detect genes whose expression
correlates with organ-specific disease incidence. Groups of genes correlating,
positively or negatively, with disease incidence can then be analyzed with
standard functional enrichment tools to detect processes and functions that
can be related to the disease process and gain new insights. Analyses also
focus on identifying trends among known disease-associated genes such as
determining whether they tend to be overexpressed in the organs with high
disease incidence, as done previously (Lage et al., 2008), or the proportion
of tissue specific genes correlating with disease incidence.

2.1 Data sources and processing
Epidemiological data on cancer incidence rates for multiple organs were
obtained from the United States Cancer Statistics (United States Department
of Health and Human Services, 2009), referring to the 1999–2005 period
and using data from all ages and ethnic groups. For both men and women,
age-standardized cancer incidence rates per 100 000 person-years were used.
This cancer incidence data presented heart and skeletal muscle together
as ‘Soft Tissue including Heart’. In order to estimate the incidence for
heart and skeletal muscle separately, data belonging to the Northern Ireland
Cancer Registry was used to estimate the percentage of cancers in the
heart and skeletal muscle belonging to the soft tissue including heart
cancer registries. Based on data from the Northern Ireland Cancer Registry
(http://www.qub.ac.uk/research-centres/nicr/), it was estimated that 4.2% of
soft tissue including heart cancer is due to cancer in skeletal muscle and
that 0.68% is due to heart cancer. These percentages were applied to the US
data for incidence in soft tissue to estimate the incidence of cancers in the
heart and skeletal muscle.

Anumber of environmental factors, including smoking, infections, alcohol
consumption and diet, are known to impact on the incidence of specific cancer
types. Even though it is impossible to control for all these factors and focus
only on intrinsic biological determinants of cancer in different organs, and
because smoking is such a major, specific and artificial risk factor for lung
cancer, only data from never-smokers was used for lung cancer incidence
(Thun et al., 2008). Moreover, data from Arab Gulf States (Al-Madouj and
Al-Zahrani, 2005) was used as a second population to validate results from
the US population, since an Arab population is expected to have a much
lower alcohol consumption.

Because larger organs will have more cells, cancer incidence rates were
normalized to the size of the organ. Although there are differences in cell
density between organs, these are difficult to quantify and thus organ weight
was used as an approximation to correct for any bias due to size. Typical
or average organ weights were obtained from standard sources (Crichton-
Browne, 1879; de la Grandmaison et al., 2001; Ludwig, 2002; Nagaoka
et al., 2004; White et al., 1987). To standardize the results, weight of tissues
were normalized by the mean weight of women (58 kg) and men (70 kg),
when applicable. Mass-normalized cancer incidence (CIorgan) was obtained
by dividing the age-adjusted cancer incidence rate (CIage) by typical organ
weight (Morgan) divided by the gender weight (Mgender):

CIorgan =
⎛
⎝ CIage

Morgan
/

Mgender

⎞
⎠

When applicable, the average of CIorgan for males and females was
used. Data employed in our calculations plus CIorgan results for all
organs are available as Supplementary Material and on our website
(http://genomics.senescence.info/cancer/tissues.html).

Tissue-specific gene expression data from the Genomics Institute of the
Novartis Research Foundation (GNF data) was used in this study. GNF

data was generated using both custom-designed and Affymetrix arrays that
interrogate the expression of the vast majority of protein-encoding human
genes and were used to profile a panel of 79 human tissues (Su et al., 2004).
Normalized gcRMA-condensed data was downloaded from the BioGPS
portal (http://biogps.gnf.org/downloads/). Cancerous tissues in the GNF data
were excluded and only healthy tissues/organs were used. Probe sets with a
maximum expression <150 were filtered, resulting in 7737 probes. Mappings
between GNF and Affymetrix arrays’ probes and genes were obtained from
Gene Expression Omnibus and from the BioGPS portal.

Gene expression GNF data were matched to mass-normalized cancer
incidence. Where possible, suborgans were used; however, limitations in
either the GNF dataset or cancer incidence meant that in most cases (e.g.
uterus and brain) whole organs were used. Data on colon and rectum were
combined. Gene expression data on lymph nodes was mapped to lymphoma
cancer incidence and data on bone marrow was mapped to leukemia cancer
incidence, as these are the tissues in which these cancer types most often
originate. In total, mass-normalized cancer incidence was obtained for
22 tissues in the GNF dataset (Supplementary Table S1).

Data on cancer mutations in germline and somatic tissues were
obtained from the COSMIC database (http://www.sanger.ac.uk/genetics/
CGP/cosmic/) (Bamford et al., 2004).

2.2 Identifying genes and processes associated with
cancer incidence

Both gene expression and mass-normalized cancer incidence data were
log-transformed and a regression analysis was performed between these
two variables for the 7737 probes in the GNF dataset passing our filters
using custom R scripts. Pearson’s correlation coefficients and P-values were
obtained that reflect the correlation between a probe’s gene expression signal
across tissues and tissue-specific cancer incidence. To assess the impact of
outliers, results with the Pearson’s correlation were compared with those
obtained using the Jackknife correlation. Correlation coefficients correlated
strongly between the two (r2 =0.84), with the most significant genes from
the Pearson’s correlation also highly significant when using the Jackknife
correlation (Supplementary Fig. S1). As such, this shows that the results
obtained are not due to individual outliers.

Using US data for all organs, 161 probes were significant at P<0.05 with
Benjamini–Hochberg correction (Benjamini and Hochberg, 1995); P-values
from the correlation analysis below 1.05×10−3 were deemed significant.
When excluding muscle and heart for the validation analysis, no probes
were significant with Benjamini–Hochberg correction and therefore the top
1% probes (i.e. 77 probes) were used for downstream functional enrichment
analysis.

To identify functions and processes correlated with cancer incidence in
healthy tissues, significant probes were split into probes with a positive
correlation and those with a negative correlation with cancer incidence. The
genes corresponding to these probes were then analyzed in DAVID, a web-
accessible set of tools that allow researchers to infer the biological meaning
behind large lists of genes (Huang da et al., 2009).

To detect genes with tissue-specific expression, gene expression signals
for healthy tissues were averaged (S) and standard deviation (SD) for all
probes was calculated. Probes with tissue-specific expression in a given tissue
were defined as probes with a signal intensity >S+SD×2. The number of
tissue-specific probes for each organ was counted and log-transformed. The
correlation between the number of probes with tissue-specific expression
patterns and cancer incidence was determined using standard regression
analysis.

Genes in which mutations have been associated with cancer were analyzed
for correlations with cancer incidence. Since very few of these genes
exhibited significant associations with cancer incidence from the above
analysis, the number of all probes targeting cancer-associated genes with
a positive and negative correlation with cancer incidence were counted.
Significant deviations from the expected ratio (59.4% genes with positive
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and 40.6% with negative correlations, based on the average for all probes)
were determined using a cumulative binomial test.

3 RESULTS
In this study, we sought to determine whether it is possible to
gain insights into disease development processes by comparing
gene expression profiles of healthy organs with organ-specific
disease incidence and, if so, develop a method that performs such
analyses. Organ-specific disease incidence can be obtained from
epidemiological studies, but because larger organs will have more
cells we think it is crucial to normalize disease incidence by
organ weight. Organ-specific gene expression profiles are publicly
available in databases such as the GNF dataset (Su et al., 2004).
Genes can then be scanned for those whose expression correlates
with mass-normalized disease incidence and common pathways
detected by functional enrichment analysis methods (de Magalhaes
et al., 2010). Known disease-associated genes can also be analyzed
for statistically significant patterns across organs of varying disease
incidence.

To test our approach, we focused on the large observed differences
in cancer incidence between human organs. Data on cancer incidence
rates by site was obtained from the USA (United States Department
of Health and Human Services, 2009). Since our focus was on
intrinsic biological features of each organ and its cells, we tried
to minimize effects of environmental factors and as such used
lung cancer incidence data from never-smokers. To account for the
differing numbers of cells between organs, tissue-specific cancer
incidence rates were normalized by organ weight (see Section 2).
Nonetheless, it is interesting to note that cancer incidence did not
correlate with organ weight (Supplementary Fig. S2); yet, because
our focus is on cellular properties that may predispose to cancer the

Fig. 1. Weight-normalized cancer incidence per organ. Organs associated
with reproduction are highlighted in red. Data for all organs is provided in
Supplementary Table S2.

use of mass-normalized cancer incidence will only accentuate those
properties.

After normalizing, we obtained mass-normalized organ-specific
cancer incidences for multiple organs (Fig. 1). The prostate had
the highest cancer incidence rate, whereas skeletal muscle had the
lowest rate. There was a large variance in mass-normalized cancer
incidence, spanning six orders of magnitude from prostate to skeletal
muscle. Interestingly, five of the eight tissues with the highest mass-
normalized cancer incidence are related to reproduction (Fig. 1).

To identify genes and processes associated with cancer incidence,
we mapped mass-normalized cancer incidence with organs in
the microarray GNF tissue-specific gene expression dataset (see
Section 2). We then correlated the gene expression signal of
each microarray probe across organs with the mass-normalized
organ cancer incidence. Overall, we found 161 significant probes
(Benjamini–Hochberg test; see Section 2). The genes corresponding
to the top 20 probes are displayed in Table 1 and include several
ribosomal genes as well as proteins that are part of the transcriptional

Table 1. Top 20 genes most strongly correlated with cancer incidence

Gene symbol Gene name P-value r2 n significant
probes

RPL3P7 Ribosomal protein L3
pseudogene 7

4.6×10−8 0.78 1

RPL3 Ribosomal protein L3 8.4×10−8 0.77 4

EEF1A1 Eukaryotic translation
elongation factor 1
alpha 1

7.3×10−6 0.64 4

C6orf48 Chromosome 6 open
reading frame 48

1.4×10−5 0.62 1

RPS3A Ribosomal protein S3A 1.6×10−5 0.61 3
HMGN1 High-mobility group

nucleosome binding
domain 1

1.9×10−5 0.61 1

RPS27 Ribosomal protein S27
(metallopanstimulin 1)

2.6×10−5 0.60 1

C6orf106 Chromosome 6 open
reading frame 106

2.6×10−5 0.59 1

PABPC1 Poly(A) binding protein,
cytoplasmic 1

3.0×10−5 0.59 1

RPL41 Ribosomal protein L41 3.5×10−5 0.58 1
RPL5 Ribosomal protein L5 3.6×10−5 0.58 2
BTF3 Basic transcription

factor 3
3.7×10−5 0.58 2

RPL15 Ribosomal protein L15 3.8×10−5 0.58 1
RPS7 Ribosomal protein S7 4.8×10−5 0.57 1

RPL22 Ribosomal protein L22 5.6×10−5 0.56 3
RPN2 Ribophorin II 5.7×10−5 0.56 3
TACC1 Transforming, acidic

coiled-coil containing
protein 1

5.7×10−5 0.56 1

RPL9 Ribosomal protein L9 5.7×10−5 0.56 1
PABPC3 Poly(A) binding protein,

cytoplasmic 3
5.9×10−5 0.56 1

SON SON DNA binding
protein

6.4×10−5 0.56 1

For genes with multiple microarray probes, values shown refer for the most significant
probe. All genes exhibited a positive correlation with cancer incidence, except for
C6orf106 which exhibited a negative correlation.
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Table 2. Clusters from DAVID with an enrichment score >2.5 are displayed

Cluster Enrichment score Categories Benjamini

1 11.9 Translational elongation 8.7×10−28

Ribosome 5.6×10−22

Protein biosynthesis 7.2×10−19

Translation 4.9×10−18

rRNA processing 2.6×10−4

ncRNA processing 0.0095
2 3.6 Nuclear lumen 1.2×10−4

3 2.8 RNA-binding 5.7×10−9

mRNA splicing 0.0024
Methylation 0.0047

Categories within clusters were chosen based on the most informative annotations
among those in the cluster with Benjamini–Hochberg <0.05.

machinery. In addition, there were some poorly studied genes, like
C6orf48, C6orf106 and TACC1 (Table 1). Two other significant
genes of note were taurine upregulated 1 (TUG1) and WD repeat
and SOCS box-containing 1 (WSB1), both of which positively
correlated with cancer incidence (P=1.1×10−4 and 1.8×10−4,
respectively). The vast majority of top probes (132 out of 160)
correlated positively with cancer incidence. In the top 20, only
C6orf106 showed a negative correlation with cancer incidence. Our
full results are available as Supplementary Material and on our
website (http://genomics.senescence.info/cancer/tissues.html).

The significant probes were matched with their gene symbols
and were then analyzed in DAVID to identify common functions
and processes. Probes with positive and negative correlations with
cancer incidence were analyzed separately. Among genes with
a positive correlation with cancer incidence, we identified four
significant clusters using DAVID, all of which containing categories
with a significant enrichment even after Benjamini–Hochberg
correction (Table 2). By far, the most significant cluster from
DAVID included ribosomal genes, genes involved in transcription
and protein synthesis. Among genes that correlated negatively with
cancer incidence, only categories related to muscle were significant
and thus assumed to be a bias caused by the low cancer incidence
of skeletal muscle and heart (data not shown).

Given the above potential bias due to skeletal muscle, and
because muscle has been reported to have unique ribosomal
biogenesis (Thorrez et al., 2008), the analysis described above
was repeated after eliminating skeletal muscle and heart. However,
ribosomal activity still appeared in DAVID analyses as the top,
highly significant cluster (enrichment score of 8.1) with ribosome
(Benjamini = 9.9×10−13), translational elongation (1.3×10−10)
and protein biosynthesis (7.6×10−11) having highly significant
enrichments. Similarly, we repeated our analysis using cancer
incidence data from an Arab population (see Section 2), in order
to validate our results in a population under different environment
and in particular one in which alcohol consumption is low, and
results were largely confirmatory with the top cluster (enrichment
score of 15.1) encompassing highly significant categories involving
transcription, translation and ribosomes (data not shown).

We then investigated whether the expression of genes in which
mutations have been associated with cancer may be related to
organ-specific cancer incidence. Several genes in which mutations
have been associated with cancer were among our significant

genes, including RPL22 (P=5.6×10−5) and SFPQ (7.8×10−5).
Although there were slightly more probes with a positive correlation
with organ-specific cancer incidence than a negative correlation
(59.4 and 40.6%, respectively), among probes (n=218) targeting
genes in which mutations have been associated with cancer
about three-fourth had a positive correlation with organ-specific
cancer incidence while one-fourth had a negative correlation. This
difference was statistically significant (P<10−5).

Lastly, for each tissue we counted the number of genes expressed
in a tissue-specific fashion (see Section 2) and determined whether
this in turn could also be related to mass-normalized cancer
incidence, but found no significant correlation (data not shown).

4 DISCUSSION
Gene expression analyses of pathological conditions have been
widely used, yet few studies have focused on comparisons
across healthy tissues to identify normal tissue-specific pathways
that contribute to disease. One can consider human organs as
different experimental samples with varying disease incidences
and understanding these differences could provide new biological
insights into disease etiology. As a proof of concept, we focused
on cancer incidence and developed a simple method to determine
genes and processes associated with organ-specific cancer incidence.
Elucidating the biological reasons for differences in cancer incidence
among organs could help our understanding, diagnosis and treatment
of cancer.

Although to our knowledge no systematic studies have been
conducted to date, it is expected that the number of cells within
a tissue is proportional to cancer risk (Albanes and Winick, 1988).
We were hence surprised to find that organ cancer incidence does not
correlate with organ weight (Supplementary Fig. S2). On the other
hand, the two heaviest organs in our analysis (muscle and bone) have
relatively low cancer incidence, whereas the organ with the highest
incidence (prostate) is a relatively small organ. Our results provide
no evidence then that organ size determinants, like progenitor cell
number (Stanger et al., 2007) and p53-mediated stress and apoptosis
(Mesquita et al., 2010), contribute to cancer. Since no doubt a lower
number of cells will make it less likely to develop cancer, however,
there must be strong features in cells from tissues with high cancer
incidence that predispose them to cancer development. To find these
features, we used mass-normalized cancer incidence to control for
number of cells in organs and emphasize cellular properties that may
predispose to cancer.

To our knowledge, our work is the first to calculate cancer
incidence across organs controlling for the organ’s weight. This
normalization provides a measure of organ-specific cancer incidence
that can serve as basis for further studies, in particular since a large
variation in mass-normalized cancer incidence was observed for
healthy human organs. Strikingly, we observed that reproductive
organs were overrepresented among those with the higher rates of
cancer incidence (Fig. 1). This may reflect evolutionary trade-offs
involving selective pressures related to reproduction. Reproductive
organs may be under stronger evolutionary selection, because
reproduction is more important than late-life survival and thus alleles
that favor reproduction early in life will be selected for even if
they are deleterious later in life, as predicted by evolutionary theory
(Kirkwood and Austad, 2000). Indeed, although cancer is an age-
related disease, it is interesting to note that testicular cancer is
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the most prevalent cancer type in men aged 15–34 years (Bosl
and Motzer, 1997). From a physiological perspective, it is also
possible that the fact that reproductive tissues are more responsive
to hormones plays a role in their increased cancer incidence.

By employing microarray data across healthy human tissues,
we identified multiple genes associated, most positively but many
negatively too, with organ-specific cancer incidence. Some of these
genes, like C6orf48, C6orf106, RPN2, TACC1, TUG1 and WSB1,
may merit further study and thus our work provides candidate genes
for future experiments. In particular, RPN2 expression has already
been associated with drug resistance in breast cancer (Honma et al.,
2008), while TACC1 could play a role in translation and cell division
and is a candidate cancer gene (Conte et al., 2003) and WSB1 has
been associated with pancreatic cancer progression (Archange et al.,
2008). Another gene that may merit further study is TUG1, a non-
coding RNA associated with development and shown to repress
p53-dependant cell-cycle regulation (Khalil et al., 2009), but to our
knowledge not previously associated with cancer.

The results from our genome-wide scan showed a strong
correlation between organ-specific cancer incidence normalized for
weight and expression of genes associated with transcription and
protein synthesis, most notably ribosomal proteins (e.g. RPL3,
RPS3A and RPS27) and proteins associated with transcriptional
activity like EEF1A1, HMGN1, PABPC1 and BTF3 (Tables 1
and 2). Our results were highly statistically significant and were
consistent when muscle and heart tissues were excluded from the
correlation analysis, as these have been reported to have unusual
patterns of ribosomal activity (Thorrez et al., 2008), and when using
an Arab population which is exposed to different environmental
cancer risks.

Translational control and ribosome biogenesis are associated with
cell growth and proliferation and the loss of key points during
protein synthesis might contribute to the initiation and progression of
cancer (Clemens and Bommer, 1999; Holland et al., 2004; Ruggero
and Pandolfi, 2003). Overexpression of ribosomal proteins, in
fact, has been consistently associated with tumorigenesis (Ruggero
and Pandolfi, 2003), and changes in proto-oncogenes and tumor
suppressor genes that occur in cancer often cause an upregulation of
ribosome biogenesis (Montanaro et al., 2008). Similarly, translation
components have been found overexpressed in some cancers (Dua
et al., 2001), including EEF1A1 whose altered expression has been
linked to transformation (Clemens and Bommer, 1999; Lamberti
et al., 2004). It is plausible that organs with a higher cancer
incidence contain a larger fraction of proliferating cells and this
is reflected in higher ribosomal biogenesis and transcription. That
said, one caveat of our approach is that for most organs we
employ cancer incidence and gene expression values that represent
average values for the organ, yet differences between specific cell
populations (like epithelial cells or stem cells) could be important
in cancer development and may to some degree influence our
results.

Since increased ribosomal biogenesis, transcription and protein
synthesis are associated with cell growth and proliferation, which
in turn is a hallmark of cancer, our results are not surprising even
if they validate our rationale. One hypothesis is that a higher
activation of the transcriptional machinery decreases the number
of steps necessary for cancer to evolve since activation of ribosomal
biogenesis and transcription are frequent hallmarks of cancer. In
other words, higher protein synthesis may ‘prime’cells for neoplastic

development, perhaps by predisposing cells to high proliferation.
Therefore, our results fit in with the notion that while mutations
leading to the development of cancer might affect any tissue, those
organs with more active cells are much more likely to develop cancer
since cancer cells themselves show increased transcription. It seems
that normal cells from tissues more prone to develop cancer have
characteristics typical of cancer.

We observed that genes in which mutations have been associated
with cancer tend to have expression patterns across tissues that
correlate positively with cancer incidence more often than they
correlate negatively. As such, it seems that organs with lower cancer
incidence tend to express lower levels of known cancer-associated
genes, which is in line with previous results for loss-of-function
cancer-associated genes, but in contrast with results for gain-of-
function cancer genes (Lage et al., 2008). This discrepancy may be
related to the mass normalizing of cancer incidence that we employ.
We also did not observe any correlation between the number of
tissue-specific genes and cancer incidence, which is in line with
previous results showing that cancers express tissue-specific genes
with selective expression in tissues different from the tissue the
cancers’ originate (Axelsen et al., 2007).

Although many gene expression analyses have been performed to
study human disease, comparing data on healthy tissues to gather
mechanistic insights is a largely unexplored area. Since it can affect
so many different tissues, cancer is particularly suited for such
approach. Further studies may take advantage of more powerful
analytical techniques, for example by employing next-generation
sequencing technologies (de Magalhaes et al., 2010). Similar
approaches may also be employed to study tumor progression,
invasion and metastasis organ preference of various cancer types.
This may be useful for studying the tissue microenvironment in
which cancer develops and in particular for studying metastasis
development since many cancer types follow specific metastatic
patterns. As we enter the era of personalized medicine and large-
scale sequencing (de Magalhaes et al., 2010), including in cancer
genomics (Stratton et al., 2009), analyses of healthy tissues could
become a powerful paradigm in oncogenomics that complement
standard analyses contrasting cancer and healthy tissues. Our
approach employing data from healthy tissues can also serve as
foundation for analyses of other diseases and systemic diseases
in particular. Healthy tissue gene expression data can thus inform
about pathologies associated with the tissue and contribute to disease
systems biology analyses.

5 CONCLUSIONS
Our work provides a new paradigm to study disease etiology
that may be particularly suitable to study cancer. Taken together,
our results demonstrate that organ gene expression background is
important in cancer development and in particular suggest that
tissues with higher transcriptional and translational activation are
more likely to develop cancer. Although our results are somewhat
confirmatory, they demonstrate how employing data from healthy
tissues can provide insights into disease development. We also
identified numerous genes associated with cancer incidence in
healthy human tissues, including new candidate genes for further
studies. Our work thus provides a framework for future research to
understand variation in disease incidence across human organs using
gene expression profiles from healthy organs.
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