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Abstract

Motivation: Flow cytometry (FCM) is widely used in both clinical and basic research to characterize

cell phenotypes and functions. The latest FCM instruments analyze up to 20 markers of individual

cells, producing high-dimensional data. This requires the use of the latest clustering and dimen-

sionality reduction techniques to automatically segregate cell sub-populations in an unbiased man-

ner. However, automated analyses may lead to false discoveries due to inter-sample differences in

quality and properties.

Results: We present an R package, flowAI, containing two methods to clean FCM files from un-

wanted events: (i) an automatic method that adopts algorithms for the detection of anomalies and

(ii) an interactive method with a graphical user interface implemented into an R shiny application.

The general approach behind the two methods consists of three key steps to check and remove

suspected anomalies that derive from (i) abrupt changes in the flow rate, (ii) instability of signal ac-

quisition and (iii) outliers in the lower limit and margin events in the upper limit of the dynamic

range. For each file analyzed our software generates a summary of the quality assessment from

the aforementioned steps. The software presented is an intuitive solution seeking to improve the

results not only of manual but also and in particular of automatic analysis on FCM data.

Availability and implementation: R source code available through Bioconductor: http://bioconduc

tor.org/packages/flowAI/

Contacts: mongianni1@gmail.com or Anis_Larbi@immunol.a-star.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Flow cytometry (FCM) is a laser-based methodology designed to

capture the physical and biochemical characteristics of a cell or a

particle in a stream of fluid. Fluorescence-conjugated antibodies are

used to target antigens expressed inside or at the surface of the cells

of interest. As cells pass through the laser (excitation), the fluoro-

chrome will change its state of energy and emit a light (emission)

that is captured by a series of detectors. FCM applications have been

developed mainly for both research and clinical settings in medicine

but also for other non-biomedical domains such as marine and plant

biology. The most common application is the immune-phenotyping

of blood samples and thus the quantification of the number and fre-

quency of various immune cell populations. In hematology, FCM is

the technology of choice, as, for example, it requires only few drops

of blood to diagnose leukemia through the detection of the perturb-

ation of normal cell frequencies (Brown and Wittwer, 2000).

Moreover, FCM helped increase our understanding of cellular func-

tions of the immune system and is widely used in cell cycle analysis,

pre-transplant crossmatching, cell sorting, apoptosis, vaccine devel-

opment and other applications that scrutinize cellular properties
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(Jaye et al., 2012; Mulley and Kanellis, 2011; Pozarowski and

Darzynkiewicz, 2004; Vermes et al., 2000).

The data are stored in Flow Cytometry Standard (FCS) files that

include the fluorescence and scattered light levels for each cell that

passed through the laser beams. Nowadays it is possible to analyze

up to 20 markers at a time in a single staining panel by using an

equal number of different fluorochromes detected in separate chan-

nels. The common approach used to analyze the data produced by

FCM is to visually select cells of interest through 1 or 2 markers

known to be highly specific. However, to delineate the high hetero-

geneity of immune cell populations, it is necessary to look simultan-

eously at the whole staining panel. Principal component analysis has

been used to detect the complexity in CD8 T cell populations char-

acterized by intermediate phenotypes that show a continuum of ex-

pression of different combinations of cytokines and surface markers

(Newell et al., 2012). Another dimensionality reduction technique

called t-Distributed Stochastic Neighbor Embedding (t-SNE)

(Becher et al., 2014; Maaten and Hinton, 2008; Shekhar et al.,

2014) was successfully applied to identify ambiguous cell popula-

tions, including monocyte–macrophage intermediates and granulo-

cyte variants in a mass cytometry experiment based on a

38-antibody panel (Becher et al., 2014).

Several computational tools that aim to automatically charac-

terize cell populations without losing multi-dimensional informa-

tion are constantly developed and periodically benchmarked by the

FlowCAP consortium (Aghaeepour et al., 2013). Undoubtedly, the

widest range of tools has been distributed by the BioConductor

platform based on the R programming language. The root package

for FCM data is flowCore, since it defines the container class and

it enables to perform essential manipulations such as compensation

and transformation (Hahne et al., 2009). In addition, a series of

complementary packages has been developed for further oper-

ations, such as visualization, quality assessment, statistical analysis

and automated gating (Finak et al., 2014; Hahne et al.; Sarkar

et al., 2008).

To accompany and support the large development of automatic

methods to define populations, it is crucial to use high quality FCM

data as input in order to optimize the robustness of the results. This

is especially true since research is looking deeper into the complexity

of cell distribution. For instance, target cell sub-populations may

represent as low as 0.05% of the total cell population suggesting

that minute variation in the quality of the data may lead to false

positive results or loss of signal. Standardization, calibration and

quality control guidelines using beads have been defined to ensure

that the signal acquired is the most accurate and with the least vari-

ation (Oldaker, 2007; Perfetto et al., 2006). Nonetheless, these pro-

cedures are not always carefully monitored and even having the

FCM instrument at optimal conditions before sample processing

does not exclude electronic drifts or fluidic instability issues at the

time of data recording. An R package, flowQ (Bashashati and

Brinkman, 2009; Gentleman et al., 2006), creates concise reports of

quality checks on single and multi-panel experiments to highlight

issues that can be encountered in data acquisition. The reports indi-

cate the number of cells, percentage of boundary events and anoma-

lies on the fluidics and signal acquisition over time. Another

package, flowClean (Fletez-Brant, 2014), determines and marks low

quality cells using compositional data analysis. In brief, it splits the

time in equally sized bins and flags the events that are within time

frames containing unusual ratios of cell populations. However,

flowQ does not actively detect and remove the anomalies and

flowClean is poorly intuitive and thus it does not allow to infer the

source of the anomalies.

We present our package called flowAI that provides two solu-

tions, one automatic and one interactive, to discard cells from FCM

data that do not reach appropriate quality standards. Our workflow

adapts and expands previous ideas with methods never implemented

before to provide a more objective, efficient and intuitive solution

for the quality control of FCM data.

2 Implementation and methods

2.1 The software
Both the automatic and interactive methods have been implemented

in the R package flowAI and distributed by the Bioconductor plat-

form (http://bioconductor.org/packages/flowAI/). Our tools incorp-

orate functionalities from several other R packages. For example,

the automatic method integrates functions from the mFilter

(Balcilar, 2007) and changepoint (Killick and Eckley, 2014) pack-

ages in the algorithms aiming to automatically detect the anomalies

while the interactive method leverages on the R shiny package

(Chang et al., 2105) to build the web graphical interface.

2.2 Workflow
The entire quality control analysis of flowAI contains three main

steps to detect and remove anomalies from FCM data complemen-

tary for both the automatic and the manual methods (Fig. 1).

2.2.1 Flow rate check

The first step evaluates the steadiness of the flow rate of the analysis.

The flow rate is reconstructed by reporting the number of cells

acquired per unit of time. This is only possible for FCS files of ver-

sion equal or greater than 3.0 which implement the keyword

$TIMESTEP to allow for kinetic analysis (Seamer et al., 1997).

Flow rate

Signal acquisition

Dynamic Range

Removal of surges and large 

deviations of the trend from 

Removal of acquisition regions whose 

statistics are shifted from the most

 stable acquisition region

Removal of outliers in the lower limit 

and margin events from the upper limit

of the dynamic range 

MANUAL - GUI AUTOMATIC

Import to a quality control tool

signal decomposition and automatic selection

changepoint analysis and automatic selection

Legend

Flow rate: number of 

events per unit of time

Intensity line: Signal per 

unit of events 

manual selection

manual selection

Channel density plot

automatic selection

Export

Anomalies selected 

automatic selection

Fig. 1. Workflow of the quality control of FCM data using the flowAI package.

Data can be processed manually with a Shiny application or automatically

with the call of an R function. The steps are complementary in both cases. On

the one hand, the manual method allows the user to interactively choose ap-

propriate thresholds on plots portraying flow rate and signal acquisition

through visual inspection. On the other hand, the automatic method performs

this selection through anomaly detection algorithms. Both the interactive and

automatic methods eliminate events recorded outside an acceptable dynamic

range using standard thresholds
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The keyword stores a value corresponding to the resolution of the

‘Time’ channel in terms of seconds or fractions of a second. Ideally,

the detection of anomalies in the flow rate check should be per-

formed at the maximum time resolution allowed by the FCM instru-

ment. However, the setting of a larger time step for the analysis

greatly decreases the running time and memory usage.

A stable flow rate of FCM instruments can be pictured by a line

with non-periodic fluctuations but with a constant variation. The

anomalies in the flow rate that mostly affect the quality of signal ac-

quisition are abrupt surges and significant changes in the speed of

the fluid, generally caused by factors such as debris and air intrusion

in the fluidic system. To discard anomalies through the interactive

method, users can adjust two horizontal sliding bars to eliminate

flow rate surges and two vertical sliding bars to discard regions at

the beginning and the end of the flow rate where the instabilities

mostly occur. Instead, for the automatic version we designed an

anomaly detection algorithm built upon the generalized extreme stu-

dentized deviate (ESD) test (Rosner, 1983) and optimized to work

on time series data.

As stated in a review of outlier detection methods, the anomalies

are contextual to the nature of the data (Chandola et al., 2009) and

hence it is preferable to develop techniques customized for the do-

main of interest. The patterns depicted by the flow rate of FCM data

are generally similar to the ones treated by economists, engineers

and social scientists in time series analyses, whose basic idea is to ex-

tract additional information from time series data by splitting into

its components.

As a first step for our automatic method, we implemented the

Christiano–Fitzgerald band pass filter (Balcilar, 2007; Christiano

and Fitzgerald, 2003) to split the value (yt), corresponding to the

number of events recorded at the time point t, into the trend (st) and

cyclical (ct) components:

yt ¼ st þ ct (1)

The trend component will be a smooth line that indicates long-

term increase or decrease in the flow rate, while the cyclical compo-

nent will contain the non-periodic fluctuations and abrupt surges

from the trend line.

Second, the flow rate values are penalized by adding or subtract-

ing the corresponding absolute values of the cyclical component ac-

cording to their direction from their median:

y:pent ¼
yt þ jctj; yt � medianðyÞ

yt � jctj; yt < medianðyÞ

(
(2)

Lastly, the generalized ESD test is applied on the penalized flow

rate to detect the anomalies. This method, with an iterative process,

searches for a number outliers not exceeding a predefined threshold

k, r1:k¼ {r1, r2, . . ., ri, . . ., rk}, in a dataset of sample size n. At each

iteration, an observation ri is tested as a potential outlier and it is

removed from the data before the next iteration. Practically, an ex-

emplary iteration has the following steps:

1. Extraction of the observation that largely deviates from the cen-

tral tendency indicator (mean or median) scaled by the measure

of dispersion (standard deviation or median absolute deviation):

ri ¼
max jy:peni �median yð Þj

MADðyÞ (3)

2. Computation of the critical value lambda ki from the t distribu-

tion using a defined level of significance a. The observation is

flagged as an outlier if its value is higher than lambda: ri> ki.

3. The observation ri is removed from the data that is now reduced

to the sample size n – i.

Our procedure uses the median and the median absolute devi-

ation (MAD) because, particularly in presence of outliers, they are a

more robust alternative to the mean and standard deviation (Leys

et al., 2013).

2.2.2 Signal acquisition check

The second step verifies the stability of the signal acquired over

time. A common practice to verify the quality of signal acquisition is

to use Levy–Jennings-type graphs, where fluorescence is plotted

against time (Barnett and Reilly, 2007). A stable signal acquisition

should produce intensity values whose distribution is consistent

throughout the course of the entire experiment. This is the expected

behavior if we assume that cells from a heterogeneous sample are

randomly aspirated by the FCM tube over time. Therefore, changes

in the signal intensities are not due to biological variation but rather

to technical issues such as defective laser-detection system, voltage

instability or poor quality of sample preparation, for example, inad-

equate vortexing.

For each channel, flowAI creates Levy–Jennings-type graphs by

splitting the intensity values of a marker in equally sized bins and

plotting their median against time. This method is already imple-

mented by the flowQ package, where the user can infer the quality

of an FCS file from the visualization of time line plots. However,

in addition to that, flowAI allows the removal of the regions with

an unstable signal. As for the flow rate, this operation can be per-

formed manually through visual inspection or automatically. The

latter method implements a step detection algorithm to identify

shifts in the mean and variance of the intensity values. The algo-

rithm used, binary segmentation, is implemented in the change-

point package (Killick and Eckley, 2014). Its basic concept has

been firstly described by the genetists Edwards and Cavalli-Sforza

as a new clustering method based on the analysis of variance

(Edwards and Cavalli-Sforza, 1965). This method is computation-

ally fast and most frequently used among the changepoint detec-

tion methods.

This approach iteratively splits the data in two groups at a time

simply applying the method of least squares. In our case, given an

ordered set of n fluorescence values m1:n¼ (m1, m2, . . ., mi, . . .,

mn) corresponding to the medians of all bins, the total sum of

squares (SST) from their mean is calculated as a measure of

dispersion:

SST ¼
Xn

i¼1

ðmi � �mÞ2 (4)

A changepoint mi that splits the data in two segments,

s1¼(m1, . . ., mi) and s2¼(miþ1, . . ., mn), is detected when the cost

function, represented by the within-groups sum of squares (SSW),

is minimized:

arg min
i

Xi

s1¼1

ðms1
� �ms1

Þ2 þ
Xn

s2¼iþ1

ðms2
� �ms2

Þ2 (5)

The minimization of the cost function (5) is equivalent to the

maximization of the between-group sum of squares (SSB), and the

sum between SSW and SSB results in the SST.

Each new segment created is in turn split in two segments by the

repetition of the same procedure. The search of new changepoints

terminates if either the minimized cost function is higher than a

defined threshold or if a pre-established maximum number of

flowAI 2475
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changepoints has been detected. In flowAI we used a variant of this

method provided by the changepoint package that not only searches

for shifts in the mean but also in the variance.

The binary segmentation algorithm is performed independently

on each fluorescence channel and lastly the longest region that does

not contain changepoints in any of the channels is chosen as high

quality signal.

2.2.3 Dynamic range check

A third quality step is performed on the lower and upper limit of the

dynamic range. Signals recorded by FCM instruments can only fall

within a determined dynamic range. The last generation of FCM has

reached a dynamic range of 224 channels (Novo and Wood, 2008),

but most of the instruments nowadays used in laboratories and clin-

ics have a range of 218. Due to this limitation, all measurements

with a real value higher than the upper limit will be recorded in the

last channel of the dynamic range causing an accumulation of sig-

nals that is not directly comparable with the rest of the data. These

values are commonly called margin events. Our package allows the

removal of events where at least one of the parameters has an inten-

sity value on the upper limit of the dynamic range.

The values of the lower limit are treated in a different way. For

the signal of the light scatter channels (reflecting the morphology of

the cells) any value less than zero is removed. Instead, for the im-

munofluorescence channel, small fluctuations in the range of nega-

tive values are usually acceptable since they are the byproduct of

standard operations such as correction of background noise, auto

fluorescence and spectral overlap. Nonetheless, technical issues,

such as flow rate surges or voltage instability, can exacerbate the

magnitude of a negative value to an unacceptable range that would

also interfere with the downstream signal processing, such as logicle

transformation or automatic gating.

The flowAI package uses an outlier detection method to remove

the outliers among the negative values. Every value that is inferior to

a certain threshold is labelled as outlier and consequently removed.

For each channel, a threshold referred to as Z-score is computed

with a method recommended by Iglewicz and Hoaglin (1993). The

formula is given in (6), where the threshold is obtained for a set of n

negative values x1:n¼ (x1, . . ., xn):

Z ¼ �3:5 MADðx1:nÞ
0:6745

þmedian x1:nð Þ (6)

Alternatively to the removal of negative outliers, the lower limit

of the dynamic range can be truncated to the cut-off suggested by

the FCS file. This method was previously adopted as preprocessing

step for the cleaning of FCM data from erroneous measurement

(Qian et al., 2012; Van Gassen et al., 2016).

2.2.4 Results evaluation

At the completion of the analysis with the automatic method, a re-

port is generated indicating the percentage of cells that did not pass

the quality checks and a series of graphs showing where the anoma-

lies in terms of time and parameters were detected. Our suggestion

is first to run the automatic method with default settings on a small

sample of FCM data, second to customize the settings if necessary,

third to perform the quality control automatically on the entire data-

set and lastly to intervene manually only for those files whose auto-

matic control is not able to meet the accuracy required.

3 Results and discussion

Here, we provide analysis results obtained using the automatic

method in flowAI on several FCM data. We studied the nature of

the abnormalities detected in each quality control step and then we

evaluated the overall improvement of computational analysis with

the cleaned data.

3.1 Overview of the datasets
A total of 4469 FCM files from 11 different datasets, precisely 2 in-

house and 9 from the online database FlowRepository (Spidlen

et al., 2012), were used for our evaluation. The two in-house data-

sets contain 84 samples each, and are part of a larger project called

the Singapore Longitudinal Aging Study (SLAS). Ethical approval

was obtained from the National University of Singapore

Institutional Review Board for SLAS blood collection and experi-

ments. A different panel was used for the two datasets. Panel 1 con-

sisted of 16 antibodies targeting markers for the overall white blood

cell populations: CD16, CD4, CD38, CD62L, CD19, CD66b,

CD45, CD27, CD56, CD3, CD8, CD14, CD123, HLA-DR. Panel 2

consisted of 14 antibodies targeting the B lymphocyte populations:

CD19, CD20, CD21, CD23, CD24, CD27, CD38, IgG, IgM, IgD,

HLA-DR. Regarding the 9 datasets retrieved online, we selected the

ones used for the flowCAP contests. Data and details are available

on flowrepository.org under the IDs with the prefix FR-FCM- and

followed by: ZZYA, ZZZU, ZZY2, ZZY3, ZZYY, ZZY6, ZZYZ,

ZZZV, ZZ99.

3.2 Examination of anomalies in FCM data from

different perspectives
In this section, the anomalies detected in each quality control step is

analyzed separately. The main consideration is that even though our

workflow schematizes the quality control in three different steps,

they are usually strictly related. For example, a surge in the flow

rate often corresponds to an unstable signal acquisition that in turn

would potentially result in a value in the upper margin or in the

negative outlier space of the dynamic range. Nonetheless, given the

high variability of anomalies that can occur in a FCM experiment,

the division of the quality control in the three steps defined in our

work is necessary to assure the detection of those anomalies that are

not visible from a single perspective.

In this manuscript, we focus on the file 220662.fcs from the

ZZZV dataset to show how a complete quality control with flowAI

works on an FCS file. In addition, numerous other examples are re-

ported in the supplementary material.

3.2.1 Surges and trend shifts in the flow rate

The flow rate was recreated dividing the time channel of an FCS file

in equal intervals with a time step of 1/10 of a second. Fluidics’ sta-

bility in the sample is a good indicator for the absence of anomalies

such as clogging and air bubbles in the flow cell and other disturb-

ances in the flow stream. Our algorithm has been designed to ac-

knowledge cyclical patterns to detect local anomalies, i.e. surges, as

well as to remove global anomalies, i.e. large deviations of the trend

from the median flow rate (Fig. 2a). From all the FCS files analyzed,

we verified that the beginning and the end of the flow rate are the re-

gions where irregularities occur the most. FCM experts recognize

these patterns as being frequent and mainly due to air bubbles, deb-

ris or clogged cells (Supplementary Fig. S1a, e, f). In Figure 2a, the

flow rate takes about 10 s to stabilize but usually strong fluctuations

vanish more quickly (Supplementary Figs S1a, S2a and S3a).
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Nevertheless, there are cases of flow rate surges interspersed over

the entire course of the experiment (Supplementary Figs S4a and

S5a) possibly caused by clusters of debris suddenly aspirated by the

FCM tube (Supplementary Fig. S5a–c). However, even though it

was not always possible to associate flow rate surges with debris or

clogged cells, surges removal is still necessary because of their asso-

ciation with signal intensity variation.

Lastly, in an FCS file we observed a steady change of the flow

rate, and hence the signal, in the last part of the analysis. The result-

ing low quality cells have a distribution uniformly shifted compared

to the one of the high quality cells. This is probably due to the ma-

nipulation of the speed settings by the instrument operator during

the running of the experiment (Supplementary Fig. S6).

3.2.2 Mean and variance deviation from stable acquisition regions

For each channel, the signal acquisition over time is reconstructed

first dividing the total number of cells in equally sized bins and se-

cond calculating the median value of each bin. The output is

graphically shown with line plots (Fig. 2b). Mean and variance shifts

in the signal acquisition are detected using the binary segmentation

method from the changepoint package (see Section 2.2.2).

In most of the analyzed cases, signal instability is strongly related

to flow rate fluctuations (Fig. 2, Supplementary Figs S1–S3 and S6).

However, anomalies caused by laser-detection systems can eventu-

ally occur independently of the speed variations of the flow rate. In

Supplementary Figure S4, for example, the numerous flow rate

surges are hardly detectable in the signal plots and the channels stor-

ing the signal elicited by the green laser (G780-A, G710-A, G660-A

and G610-A) show a delay in the reaching of stability that warrants

a careful monitoring of the functionality of that specific laser-detec-

tion system.

In Supplementary Figure S5, even though the flow rate surges are

associated clearly with the signal plots, the signal acquisition grad-

ually weakens at different rates in different channels after a first re-

gion of steadiness (FSC-A, FSC-H and APC-A), while in other

channels it remains constant for a longer period. In this rare case,

other technical issues should be investigated. Some of the factors

that might cause less common anomalies, but have to be kept in

mind, are laser power instability, detection system irregularities,

poor quality of the sheath fluid and accumulation of dirt in the flow

cell.

3.2.3 Refining the dynamic range: removal of negative outliers

and margin events

Because of the quantum nature of light, both the scatter and fluores-

cence channel values cannot theoretically fall in the negative range

of values. However, because of the background and noise correction

of the optical detection system of FCM instruments, negative values

are recorded for both light scatter and immunofluorescence chan-

nels. This problem is also exacerbated by instable signal acquisition,

for instance during flow rate surges (Supplementary Figs S2a–c and

S4a–c), or by compensation, where a value proportionate to the

spectra overlap of other channels is subtracted from each channel.

Negative estimates are considered part of a negative population of

cells with a low mean and a large coefficient of variation. Therefore,

with the logarithmic transformation not being able to handle nega-

tive values, new transformation methods have been developed.

Probably the most popular one is the logicle transformation, also

called ‘bi-exponential’ (Parks et al., 2006). With this method, values

with an absolute small magnitude are scaled linearly, while large

values are scaled in a log-like fashion. The transition from the linear

to the logarithmic scaling is defined by the x parameter of the for-

mula. It determines the width of the linearized data and its value is

directly estimated from the fifth percentile of the values below zero.

We noticed that this estimation method lacks accuracy when the

outliers in the negative range are more than 5% of negative values

and precision when the negative values acquired are low and with

sparse values. To overcome the arbitrary estimation of the x param-

eter, a cut-off at the value -111 has been suggested (Qian et al.,

2012). Nevertheless, this procedure does not have any theoretical

explanation either and, as the authors of the logicle transformation

method also implied, the truncation of the values would deform the

distribution of the negative population and result in an improper es-

timation of its statistics (Parks et al., 2006). Our idea is to use an

outlier detection method to remove only the negative values that

stray from the ones that compactly aggregate around zero. In Figure

2d, we depicted the differences among the distributions of the logicle

transformed data for a channel of the 220662.fcs file where the x

parameter was estimated on the raw data, after removing the
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Fig. 2. Quality control results of the file 220662.fcs from the ZZZV dataset. The

plots (a) and (b) were extracted from the report generated by the automatic

method of the flowAI package using default settings. (a) Strong fluctuations

are detected in the flow rate at the beginning of the experiment. The anoma-

lies detected are indicated with green circles. (b) Changepoint detection in

signal intensity over time, represented as median of equally sized bins. The

region discarded is complementary to the one detected as instable in the flow

rate check. The yellow region is selected as being steady and therefore cate-

gorized as high quality. (c) ECDF curves of raw intensity values of the low (in

red) and high (shades of blue) quality events of the PE Tx RD-A channel. The

sample size of the three high quality samplings equals the number of low

quality events detected. (d) Density plots of the logicle transformed data of

the PE Tx RD-A channel using the logicle parameters estimated from raw

data (green line), from data with negative values truncated at -111 (blue line),

and from data without negative outliers (red line). The density curves vary

among the three sets of data, indicating the repercussions on the estimation

of the logicle parameters according to the dynamic range used for the data
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negative outliers and after truncating the data at �111. Generally

speaking, a better estimation of the parameters of a negative cell

population is expected, since the data are neither affected by outliers

nor by a truncation to an arbitrary threshold. Overall, although this

procedure might not give any substantial advantage for downstream

manual analysis, it should improve the quality of the results for any

kind of automatic analysis, from simple statistics calculations to

gating.

A last issue to consider when analyzing FCM data is the signal

which value exceeds the limitations of the machine, thus generating

the so called margin events. In fact, the signal can only be recorded up

to the upper value of a dynamic range pre-set by the manufacturer of

a FCM instrument. Therefore, it is impractical to discern subpopula-

tions of cells whose values are stored in the upper margin of the dy-

namic range. This is already a common practice especially among

computational biologists that require clean data to improve the qual-

ity of the analysis which is why we implemented it in our pipeline.

3.3 Overall improvement using computational methods
In the previous sections, we described each step of our pipeline sep-

arately in order to examine the anomalies from different perspec-

tives. Instead, in this section, we look at the final results using

approaches to analyze the multi-dimensionality data in its entire

complexity.

3.3.1 Disappearance of undefined populations in high quality data

We used SPADE to identify and visualize populations from high di-

mensional FCM data (Qiu et al., 2011). In brief, SPADE first prunes

high density regions, second identifies clusters and third links them

together with a minimum spanning tree.

The SPADE results before and after quality control of the file

220662.fcs are reported in Figure 3. The FCS file was part of an ex-

periment where the functionality of CD4 and CD8 T cells in re-

sponse to an HIV vaccination was assessed through intracellular

cytokine staining. Looking at the SPADE results through the

markers CD3, CD4 and CD8 it is possible to identify CD4 T cells at

the bottom-right branch and CD8 T cells at the top-right branch

(Fig. 3a).

The analysis was made with default settings and, from the 200

populations identified by SPADE in the original file (Fig. 3a), 43 dis-

appeared in the high quality data (Fig. 3b and Supplementary Fig.

S7). To explain the nature of the faulty populations, we examined

the graphs reporting the coefficient of variation and a high variabil-

ity was found for the markers CD3 and CD8 in the discarded popu-

lations. One may also suspect that those are new undefined

populations that solicit further investigation. However, plotting the

CD3 channel against FSC-A with the flowJo software, it was pos-

sible to identify the faulty populations only in the files with high in-

stability in the flow rate (Supplementary Fig. S7).

3.3.2 Erratic populations revealed using dimensionality reduction

Another approach consisted in applying a dimensionality reduction

method, t-SNE (Maaten and Hinton, 2008), to capture non-linear

relationships in the high dimensional space with the intensity values

of high and low quality events. For the analysis we used the R pack-

age cytofkit that includes also an algorithm based on support vector

machine to identify the clusters from the new components defined

by t-SNE (Supplementary Fig. S8a and b).

Using 2D plots of the first two components, we noticed that in

most of the files a fraction of low quality cells was still superimpos-

ing to the populations of high quality cells while a remaining

fraction formed separate sub-populations of events. In an FCS file

from the SLAS dataset (Panel 1), we ascertained that the new popu-

lations in the low quality data mainly derived from dead cells and

margin events; the borders are jagged and the shape is irregular re-

flecting the erratic nature of the acquired signal (Supplementary Fig.

S8b). In contrast, the populations of high quality cells have smooth

borders and a regular round shape.

T-SNE was then computed on a B cell population preprocessed

with flowJo, where debris, doublets and dead cells were removed

(Supplementary Fig. S8c and d). In Supplementary Figure S8c, an ir-

regular CD19 population is revealed that was not found in the ana-

lysis of the raw data (Supplementary Fig. S8b). Further analysis

revealed that the expression values of the CD19 channel were re-

corded at the upper margin of the dynamic range. This demonstrates

that anomalies in only one channel can be easily camouflaged as

valid cell populations in a multi-dimensional analysis if a careful

quality control has not been applied beforehand. Lastly, in

Supplementary Figure S8d, a significant shift in the average acquisi-

tion signal is visible in the t-SNE analysis by the formation of adja-

cent complementary population.

In summary, we advocate the importance of making a compre-

hensive cleaning on the data from different perspectives. Once faulty

(a)

(b)

Fig. 3. SPADE analysis of the file 220662.fcs from the ZZZV dataset (a) before

and (b) after quality control. The raw intensity median values and the coeffi-

cient of variation of the CD3, CD4 and CD8 channels are used as color-code

for the population identified by SPADE. In (a) it is possible to localize the

populations of CD4 and CD8 T cells and nodes with high coefficient of vari-

ation. In (b) the grey nodes are the population removed by the quality control
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signals are included in downstream analyses, it becomes hard to de-

tect them and they would eventually lead to false discoveries.

3.4 Benchmarking and performance
The automatic method in flowAI was compared both with a manual

quality control using flowJo and the method in R package

flowClean. The flowQ package was excluded from the comparison

because it does not actively detect anomalies.

3.4.1 Agreement assessment with other approaches

A fundamental element for the quality control of an FCS file to is

the time channel. The datasets ZZYA, ZZY2, ZZY3, ZZYY, ZZY6

and ZZYZ seemed to be already pre-processed and did not have a

proper time channel. Although flowAI is still able to check the signal

and dynamic range of a FCS file without the time channel, in this

case it is impossible for flowClean and impractical for flowJo to do

the quality control. Therefore, only the remaining datasets with a

proper time channel were used for the benchmarking.

The flowJo analysis was executed by removing the margin events

from the FSC-A and SSC-A scatterplot and unstable acquisition re-

gions from the channel with more visible anomalies plotted against

time. Regarding flowClean and the automatic method in flowAI, they

were both run with default settings. The Cohen’s kappa test was used

to measure the agreement of two quality control methods on each

FCS file. For the kappa statistic, a minimum value of anomalies was

required to reach the significance level. For each dataset, the median

of the significant kappa coefficients has been reported in Table 1.

Overall, flowAI showed a stronger agreement with the manual

quality control than with flowClean. Also, flowAI was the most strin-

gent towards anomalies while flowClean was the most tolerant (Table

1 and Supplementary Fig. S7). Nonetheless, both flowAI and

flowClean still require a fine tuning of the settings for certain datasets

to perform optimally. For example, better agreements would have

been reached for the SLAS panel I dataset if less stringent settings

were used for flowAI. In this respect, a decisive advantage of flowAI

is its intuitiveness. In fact, based on the flow rate and signal plots, it is

relatively easy to establish if the settings have to be more or less strin-

gent. On the contrary, we found the diagnostic plot produced by

flowClean harder to interpret.

3.4.2 Running time

The running time of the automatic method in flowAI was measured

on a laptop with a 2.7 GHz CPU and 16 GB of RAM. We used four

batches of datasets to evaluate the time performance. Each batch

consists of five datasets of increasing size (100, 500, 1000, 1500 and

2000 MB) formed using an increasing number of FCS files with

same size, number of events and parameters (Fig. 4).

The speed of flowAI is mostly influenced by the size of the FCS

file rather than the number of parameters or events and the creation

of the graphics for the full report takes the greatest amount of time.

The possibility of creating a mini report containing only the percent-

ages of anomalies is provided but it is discouraged for now, unless the

user is sure of the nature of the anomalies in the entire dataset.

On the contrary, the running time for flowClean increases con-

siderably with the number of parameters because of its way of defin-

ing cell populations through combinations of positive signals from

the different parameters (Supplementary Fig. S9).

Overall, flowAI performance was faster for all the datasets used

and, in particular, at least 3 times faster when using FCS files with

22 parameters (Fig. 4 and Supplementary Fig. S9).

4 Conclusion

Over the last few years, we have seen increasing efforts in automa-

tizing pipelines of biomedical data analysis through computational

algorithms. FCM is still one technique that hardly abandons the

concept of manual analysis since usually the data produced has high

variability that requires human interpretation. Often, the analysis

demands high expertise and the results are still conditioned by a sub-

jective evaluation. Our idea was born from the intention of remov-

ing the technical variability of FCM data in an objective way, thus

reducing subjectiveness in interpretations and improving the per-

formance of downstream computational analyses. This is especially

the case when a high number of files is analyzed and when anoma-

lies are generated by multiple sources.

We defined an approach and created an R package, flowAI, to

automatically or interactively detect anomalies in FCM data. First,

anomalous patterns and peaks are removed from the flow rate auto-

matically by a method built upon time series decomposition and the

Table 1. Pairwise agreement scores among the quality control

made manually with flowJo, and automatically with flowAI and

flowClean

Dataset (n)* Median kappa coefficients (n)**

flowJo –

flowAI

flowJo –

flowClean

flowAI –

flowClean

ZZZV (240) 0.9 (177) 0.25 (88) 0.26 (86)

ZZZU (308) 0.33 (255) 0.33 (3) 0.26 (64)

ZZ99 (766) 0.81 (390) 0.7 (327) 0.82 (328)

SLAS panel I (84) 0.07 (73) 0.23 (4) 0.018 (3)

SLAS panel II (84) 0.57 (82) 0.1 (43) 0.07 (39)

*Total number of files per dataset.

**Total number of Cohen’s kappa tests with P-value< 0.05 selected for

the calculation of the median kappa coefficient.
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Fig. 4. Running time of a quality control analysis with the automatic method

of flowAI. The graphics’ creation for the full report, that is fundamental for an

accurate examination, takes a considerable amount of time. Alternatively, a

mini-report containing only the percentages of anomalies is produced with-

out significant running time increase
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Generalized ESD test. Second, the tool checks the stability of the sig-

nal over time for each channel; here the automatic method uses a

changepoint algorithm to detect durable shifts in the mean or variance

of the acquisition values. Lastly, the dynamic range of the values

acquired for each channel is refined. The upper limit is cleared of the

margin events and the lower limit is cleared of the negative outliers.

From the use of the flowAI package, we expect a general im-

provement in the quality of research that employs FCM instruments.

Removing events with erratic intensity values will facilitate different

aspects of FCM analysis such as: (i) more effective compensation

since the overlap signal is subtracted only from real values; (ii) more

accurate detection of rare cells due to the removal of background

noise; (iii) easier characterization of the nature of an ambiguous cell

population (either as undefined cell type or as technical issue).

When using the automatic method for the quality control of a

dataset of FCS files, it is preferable to infer the optimal settings for a

dataset using a sample of few FCS files. In fact, because of the intui-

tiveness of the flowAI report, it is easy to infer the source of recurrent

anomalies in a FCM experiment. Subsequently, the automatic

method of flowAI can be run on the entire dataset with customized

settings. Lastly, because the automatic quality control might still not

meet the expectations for certain FCS files, the checking of the full re-

ports reveals where it is necessary to intervene manually with the

interactive method of flowAI or with another method. This last point

is a limitation of flowAI that could be overcome by the dynamic ad-

justment of the settings of the automatic method, but for now it re-

mains an open question that warrants further investigation. An

additional consideration is that flowAI is designed to detect anoma-

lies within a single FCS file, hence, other tools are necessary to check

for anomalies between batches of FCS files. Also, another challenging

task is the designing of a complete automatic pre-processing pipeline.

In conclusion, our quality control approach produces a compre-

hensive check of the FCM data implementing algorithms never

employed before. We recommend the usage of flowAI as a first pre-

processing step of the data right after they are obtained from the

FCM instrument so that all the downstream analyses, from compen-

sation to detection or rare cells, will benefit from it.
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