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Abstract

Motivation: Recent progress in N7-methylguanosine (m7G) RNA methylation studies has focused on its internal (ra-
ther than capped) presence within mRNAs. Tens of thousands of internal mRNA m7G sites have been identified with-
in mammalian transcriptomes, and a single resource to best share, annotate and analyze the massive m7G data gen-
erated recently are sorely needed.

Results: We report here m7GHub, a comprehensive online platform for deciphering the location, regulation and
pathogenesis of internal mRNA m7G. The m7GHub consists of four main components, including: the first internal
mRNA m7G database containing 44 058 experimentally validated internal mRNA m7G sites, a sequence-based high-
accuracy predictor, the first web server for assessing the impact of mutations on m7G status, and the first database
recording 1218 disease-associated genetic mutations that may function through regulation of m7G methylation.
Together, m7GHub will serve as a useful resource for research on internal mRNA m7G modification.

Availability and implementation: m7GHub is freely accessible online at www.xjtlu.edu.cn/biologicalsciences/
m7ghub.

Contact: kunqi.chen@liverpool.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over 150 different RNA modifications have been identified in all
three kingdoms of life, playing important roles in various cellular
processes (Jaffrey, 2014; Zaccara et al., 2019). Among them, N7-
methylguanosine (m7G), the most ubiquitous RNA cap modifica-
tion, is added to the 50 cap co-transcriptionally during the initial
phases of transcription and before other RNA processing events
(Cowling, 2010). As a positively charged RNA modification, m7G
capping plays significant roles in gene expression, protein synthesis
and transcript stabilization (Furuichi et al., 1977). It has been found
that almost every phase of the life cycle of mRNA can be regulated
by m7G cap modification, including transcription (Pei and Shuman,
2002), mRNA splicing (Konarska et al., 1984), nuclear export

(Lewis and Izaurflde, 1997) and translation (Muthukrishnan et al.,
1975). The m7G RNA modification was also found in tRNA (Guy
and Phizicky, 2014) and rRNA (Sloan et al., 2017), where its pres-
ence has been associated with various diseases. For example, muta-
tions in the METTL1-WDR4 may cause a distinct form of
microcephalic primordial dwarfism (Shaheen et al., 2015).

Thanks to the advances of high-throughput sequencing
approaches developed for transcriptome-wide mapping of internal
m7G modification (Chu et al., 2018; Enroth et al., 2019; Malbec
et al., 2019; Marchand et al., 2018; Zhang et al., 2019a), recent
studies confirmed the widespread internal existence of m7G RNA
modification on mRNAs, and revealed its conservation (Malbec
et al., 2019), regulation and dynamics (Zhang et al., 2019a) as well
as its role in translation control. Zhang et al. (2019a) invented the
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m7G-MeRIP-Seq and m7G-Seq techniques based on antibody immu-
noprecipitation and termination of reverse transcription, respective-
ly. While m7G-MeRIP-Seq (Zhang et al., 2019a) provides only
limited resolution (�100 bp), m7G-Seq (Zhang et al., 2019a)
achieved base-resolution in the detection of internal mRNA m7G
sites by taking advantage of the misincorporation at m7G sites dur-
ing reverse transcription. In addition, an alternative approach m7G-
miCLIP-Seq (Malbec et al., 2019) was also developed by combining
anti-m7G antibody immunoprecipitation enrichment with ultravio-
let cross-linking. It provided an improved resolution (�30 bp) than
the conventional MeRIP-Seq method, and its resolution may be fur-
ther narrowed down to base-resolution if combined with motif
analysis.

Experimental methods are usually effective but still costly and la-
borious. To ensure that the massive data related to internal mRNA
m7G methylation generated from high-throughput experiments are
properly shared, annotated and taken advantage of, it is often bene-
ficial to develop complementary bioinformatics solutions. To date,
many in silico efforts have been made to support the study of the
epitranscriptome or RNA epigenetics (Chen et al., 2017b, 2019c).
For example, the experimentally validated m6A and other RNA
modification sites in different species were collected in RMBase and
MetDB (Liu et al., 2017; Xuan et al., 2018) along with various func-
tional annotations such as the splicing sites, microRNA targets and
RNA protein binding sites. The RNA modification pathways can be
queried from MODOMICS (Boccaletto et al., 2017). Dedicated soft-
ware tools and pipelines were developed for high-throughput
sequencing data profiling various RNA modification marks (Cui
et al., 2016; Hauenschild et al., 2015; Meng et al., 2013; Rieder
et al., 2016; Schmidt et al., 2019; Zhang et al., 2019c), and machine
learning approaches such as iRNA-Methyl (Chen et al., 2015),
iRNA-m7G (Chen et al., 2019b), BERMP (Huang et al., 2018),
SRAMP (Zhou et al., 2016), DeepPromise (Chen et al., 2019c),
Gene2Vec (Zou et al., 2018) and WHISTLE (Chen et al., 2019a)
were designed for accurate prediction of RNA modification sites.
Enzyme-specific RNA modification site predictions were made pos-
sible for PSI (He et al., 2018a) and m6A (Song et al., 2019).
Annotations related to RNA modifications may be obtained with
RNAmod (Liu and Gregory, 2019), RCAS (Uyar et al., 2017) and
RNA framework (Incarnato et al., 2018). Meanwhile, the disease
and functional association of m6A RNA modification were revealed
by m6AVar (Zheng et al., 2017), m6ASNP (Jiang et al., 2018),
m6Acomet (Wu et al., 2019), Deepm6A (Zhang et al., 2019b),
DRUM (Tang et al., 2019) and FunDMDeep-m6A (Zhang et al.,
2019c) via disease-associated genetic variants or gene regulatory
network and enrichment analysis. However, to the best of our
knowledge, bioinformatics efforts for internal m7G RNA modifica-
tion are still scarce. None of the existing bioinformatics databases
collected the internal mRNA m7G sites, and their disease association
has not been systematically inferred.

We present here m7GHub, a centralized online platform for
deciphering the location, regulation and pathogenesis of internal
mRNA m7G RNA methylation. The m7GHub consists of the fol-
lowing four major components:

i. m7GDB: a database for experimentally validated internal

mRNA m7G sites annotated with the post-transcriptional regu-

lations potentially affected.

ii. m7GFinder: a web server for high-accuracy prediction of puta-

tive internal mRNA m7G sites from DNA sequences or human

genome coordinates.

iii. m7GSNPer: a web server for assessing the epitranscriptome im-

pact of genetic mutations on internal m7G RNA methylation.

iv. m7GDiseaseDB: a database for the disease-associated genetic

variants that may lead to the gain or loss of an internal m7G

site, with implications for disease pathogenesis involving m7G

RNA methylation.

Together, m7GHub serves as a useful online resource for the
studies of internal mRNA m7G modification.

2 Materials and methods

2.1 Internal mRNA m7G sites collected in m7GDB

(m7G database)
We collected a total 69 159 internal m7G sites reported from eight

experiments in two independent studies (Malbec et al., 2019; Zhang
et al., 2019a). The data were generated using three different techni-

ques (m7G-Seq, m7G-MeRIP-Seq and m7G-miCLIP-Seq). In m7G-
Seq, a chemical reactivity can induce misincorporation at m7G sites
during the process of reverse transcription, and all the known gen-

omic mutation sites from dbSNP were excluded from the results to
reveal m7G modification sites at base-resolution. The same data-

processing protocol was implemented as the original publication
(Zhang et al., 2019a) to reproduce the internal m7G map in HeLa
and HepG2 cell lines, respectively, at base-resolution level. For

m7G-MeRIP-Seq and m7G-miCLIP-Seq, all the guanosines localized
within the reported m7G peaks or clusters (of 30-bp window) were
collected. It is worth mentioning that, as m7G-MeRIP-Seq and m7G-

miCLIP-Seq are not base-resolution approaches, the G sites
extracted from the reported regions by the two techniques should

still contain a large proportion of non-m7G sites. In m7GDB, the re-
liability of the m7G sites reported from these two techniques was
further assessed using our customized m7G site predictor

m7GFinder (detailed in the following). The datasets collected in
m7GDB are summarized in Table 1.

2.2 Internal small RNAs m7G sites collected in m7GDB

(m7G database)
Besides the internal m7G sites on mRNAs, m7GDB also collected

the known internal m7G sites on small RNAs (tRNA and rRNA)
reported from m7G-MaP-Seq (Enroth et al., 2019) and
MODOMICS (Boccaletto et al., 2018) (see Supplementary

Table S1).

Table 1. Data collected in m7GDB

ID Site no. Cell line Technique Resolution (bp) Dataset Source

H1 6032 Hela
m7G-Seq 1

GEO: GSE112276 Zhang et al. (2019a)

H2 3333 HepG2

H3 17 225 Hela

m7G-MeRIP-Seq �100H4 21 577 HepG2

H5 18 956 HEK293T

H6 517 Hela

m7G-miCLIP-Seq �30 GSA: CRA001302 Malbec et al. (2019)H7 942 RppH-HEK293T

H8 568 TAP-HEK293T

Total 69 159 record (44 058 unique sites)

Note: m7GDB collected 44 058 unique internal mRNA m7G sites reported by three different sequencing approaches under eight experiment conditions.
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2.3 Training and testing data for m7GFinder

(m7G site predictor)
We developed a customized predictor, m7GFinder, for internal m7G
sites. The primary training and testing datasets were generated from
the base-resolution m7G profiling technique m7G-Seq (Zhang et al.,
2019a). Additionally, m7GFinder is validated on two independent
techniques (m7G-MeRIP-Seq and m7G-miCLIP-Seq). For those m7G
peaks identified by m7G-MeRIP-Seq (Zhang et al., 2019a), all the
guanosines localized within the reported peak ranges were consid-
ered as positive sites in the validation. For m7G-miCLIP-Seq
(Malbec et al., 2019), we retained only the guanosines located with-
in both the reported 30-bp flanking windows and the claimed m7G
motifs AACAAG (Malbec et al., 2019) for performance validation
of m7GFinder. To construct the m7G prediction model under the
full transcript mode, the human m7G base-resolution sites from
m7G-Seq were used as positive data, and the negative m7G sites
were randomly collected from unmodified G sites located on the
same transcripts as sites used as positive data. As the existing data
overwhelmingly relies on polyA selection, it cannot effectively cap-
ture intronic RNA fragments and may lead to an over-estimation in
the prediction accuracy under the full transcript mode, a mature
mRNA mode was also considered as previously described (Chen
et al., 2019a). Under the mature mRNA mode, the positive and
negative m7G sites were filtered so that only those located on mature
mRNAs remained (see Supplementary Fig. S1).

It is worth noting that the full transcript and mature mRNA
modes we considered here are different from those implemented in
the SRAMP method (Zhou et al., 2016). In the SRAMP method, the
two models (full transcript and mature mRNA) describe whether
predictive features should be extracted from pre-mRNA or mature
mRNA; while in our method, the two models describe whether in-
tronic sites were considered in the training and evaluation process.
Due to the polyA selection step in RNA-Seq library construction, in-
tronic signals are likely to be under-represented in experiment data,
leading to an over-estimation in performance evaluation under full
transcript mode when intronic sites were considered; a mature
mRNA mode is thus proposed for more accurate performance
evaluation.

For optimal use of the limited number of experimentally vali-
dated internal mRNA m7G sites, we collected 10 negative sites for
each positive one, and the negative sites were randomly split into 10
subsets to generate 10 separate predictors each with 1:1 positive-to-
negative ratio. The same procedure was also applied to generate
negative sites for testing data, and the prediction results of the 10
predictors were averaged. For datasets generated from base-
resolution technique (H1 and H2), dataset level cross-validation was
performed, in which one of the datasets was used as training pur-
pose, while the other one was used for independent testing.
Furthermore, the H3–H8 datasets generated from m7G-MeRIP-Seq
and m7G-miCLIP-Seq were also used for performance validation.

2.4 Predictive features of m7GFinder
To achieve the best possible predictive performance, the m7G site
predictor, we constructed considered both sequence and genome-
derived features as previously described in similar work (Chen et al.,
2017a, 2019a).

Sequence-derived features. The sequence-based features centered
on m7G and non-m7G sites within the 41-bp flanking window were
encoded by the chemical properties of nucleotides and nucleotide
density. The chemical properties of the four types of nucleotides (A,
G, C and U) were classified into three categories. The first category
focused on the difference of the ring structure, in which adenosine
and guanosine have two rings, while cytidine and uridine have one
ring; In the second category, hydrogen bonding is considered, in
which guanosine and cytidine can form one more hydrogen bond
than adenosine and uridine. In the last category, distinction is made
in which adenosine and cytidine contain the amino group, whereas
it is the keto group in the case of guanosine and uridine. To sum up,
a vector Si ¼ ðxi; yi; ziÞ can represent the i-th nucleotide from the
sequence:

xi ¼ 1 if si2fA;Gg
0 if si2fC;Ug; yi ¼ 1 if si2fA;Cg

0 if si2fG;Ug ; zi ¼ 1 if si2fA;Ug
0 if si2fC; Gg

nnn
(1)

Therefore, the A, C, G, U can be encoded as a vector including
three features (1,1,1), (0,1,0), (1,0,0) and (0,0,1), respectively.
Additionally, the cumulative nucleotide frequency of nucleotide in
the i-th position is calculated for the nucleotide density. To define
the density of nucleotide in i-th position, the formula di ¼ Ai=i is
introduced as the sum of the occurrences of the nucleotide Ai before
the iþ 1 position divided by its position i. If we use a sample se-
quence ‘CGGAUAC’ to explain the formula, the cumulative fre-
quency for adenosine at the fourth and sixth position is calculated as
0.25 (1/4) and 0.33 (2/6), respectively; similarly, the frequency for
cytidine is 1 (1/1) and 0.29 (2/7) at the first and seventh positions of
the sample sequence.

Genome-derived features. Besides the conventional sequence-
derived features mentioned above, we also integrated 42 additional
genome-derived features (Supplementary Table S2) into our m7G
site prediction model that may contribute to the prediction accuracy,
including 35 features considered previously (Chen et al., 2019a) and
7 new features. Specifically, we first paid attention to the transcript
regions within which the guanosine falls: this information was repre-
sented by the Genomic Features 1–16 as dummy variable features,
as generated by the GenomicFeatures R/Bioconductor package using
the transcript annotations hg19 TxDb package (Lawrence et al.,
2013). We only extracted the transcript sub-regions on the primary
(longest) transcripts of each gene, helping to eliminate isoform ambi-
guity from our analysis. For Genomic Features 17–20, we consid-
ered the relative position of the transcript regions (30-UTR, 50-UTR,
CDS and whole transcript) as encoded by a real value, such as the
distance from the guanosine to the 30 end divided by the width of
the region. If a site does not belong to one specific region, the value
is set to zero. The length of the transcript region where m7G modifi-
cation sites fall was represented by Genomic Features 21–25. For
Genomic Features 26–27, the distance from the guanosine sites to
the 50 end or 30 end of the splicing junctions is considered. The
Phast-Cons (Siepel, 2005) score and the fitness consequence (Gulko
et al., 2015) scores are used to measure the conservation degree,
which are shown in features 28–31 calculated for the guanosine sites
and its flanking regions. The RNA secondary structures around the
guanosine site are predicted using RNAfold from the Vienna RNA
package (Lorenz et al., 2011) and shown in features 32–33.
Genomic properties of transcripts where m7G sites are located were
represented in features 34–38. Last but not least, the attributes of
genes or transcripts were represented in features 39–42, such as
microRNA targeted genes (Chou et al., 2018) and HNRNPC bind-
ing sites (ENCODE Project Consortium, 2012). Please refer to
Supplementary Table S2 for the details of all the 42 genomic fea-
tures considered in m7GFinder.

2.5 Machine learning approach and performance

evaluation of m7GFinder
Support vector machine (SVM) has been shown to be a quite effect-
ive machine learning algorithm in the field of computation biology
and achieved good performance previously in prediction of m6A
RNA methylation sites (Chen et al., 2017a). We applied the R lan-
guage interface of LIBSVM (Chang and Lin, 2011) to construct our
m7G site prediction model, and the radial basis function was set as
kernel following the default setting for other parameters. A 5-fold
cross-validation was performed on training dataset, and the final
performance of the m7GFinder was evaluated by independent test-
ing datasets including those generated from the same or different
techniques, as described previously. The prediction accuracy was
represented by the ROC (receiver operating characteristic curve)
(sensitivity against 1-specificity), and the area under ROC curve
(AUROC) was calculated as the main performance evaluation met-
ric. Only the m7G sites not previously applied to training data were
considered in the performance testing, so that the performance dir-
ectly reflects the capability of our approach in discovering less prom-
inent (or condition-specific) previously unknown m7G sites, rather
than well-established (or house-keeping) internal m7G sites that are
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robustly detected in different m7G profiling experiments, as previ-
ously implemented (Chen et al., 2019a).

When comparing the performances of m7GFinder and a previous
developed m7G site predictor iRNA-m7G, since the iRNA-m7G
web server reports only the putative m7G sites with scores above its
cutoff level, we cannot calculate the AUROC as previously; instead,
the sensitivity (Sn), specificity (Sp), accuracy (ACC) and Matthews
correlation coefficient (MCC) were presented for performance
evaluation, specifically:

Sn ¼ TP

TPþ FN
(2)

Sp ¼ TN

TNþ FP
(3)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p

(4)

ACC ¼ TPþ TN

TPþ TNþ FPþ FN
(5)

where TP represents the true positive, while TN represents the true
negative, FP is the number of false-positive and FN the number of
false-negative.

2.6 Output of m7GFinder
To convey whether a guanosine site is more likely to be an m7G
RNA methylation site or not, the likelihood ratio (LR) is calculated
as the formula below, and reported in m7GFinder as its output:

LR ¼ Pðobservation jm7GÞ
Pðobservation jGÞ (6)

A larger LR value means that the site is more likely to be an m7G
RNA methylation site. The upper bound of a P-value can be inferred
from the LRs of all the transcriptome G sites. It suggests how ex-
treme is the observed LR among all the transcriptome G sites, and
can be used to assess the statistical significance of a LR value. This is
also reported by m7GFinder.

2.7 Annotation of post-transcriptional regulations

affected by internal mRNA m7G
To unveil the potential impact of m7G in post-transcriptional regula-
tions, we found the intersection of all the internal m7G sites with
RBP regions and miRNA targets. Notably, although the binding in-
formation of METTL1, a known m7G methyltransferase, is not
available from existing RBP database. This information has been
manually added to m7GHub (Bao et al., 2018). Furthermore, we
obtained the regions of splicing sites within 100 bp upstream and
downstream, the m7G sites localized on this regions were also col-
lected for analysis. These functional annotations are available in
both m7GDB and m7GFinder (when the inputs are genome
coordinates).

2.8 Assessment of the impact of genetic mutations on

internal mRNA m7G methylation status by m7GSNPer
The web server m7GSNPer was designed to evaluate the epitran-
scriptome impact of genetic mutations on internal m7G RNA methy-
lation status. A variant is defined as m7G-associated variant if it can
cause the alteration of methylation status of an internal mRNA m7G
site, including two scenarios: (i) a mutation directly alters G to an-
other base, leading to the loss of an experimentally validated or
computationally predicted m7G site, or alters another nucleotide to
G, leading to the gain of a computationally predicted m7G site; (ii) a
mutation alters the nucleotide within the 41-bp flanking window of
an experimentally validated or computationally predicted m7G site,
causing significant increase or decrease in the probability of m7G

methylation, as is reported by our customized m7G site predictor
m7GFinder.

The m7G sites considered in m7GSNPer were classified into
three confidence levels. The high confidence level involves experi-
mentally validated m7G sites reported by base-resolution sequencing

approach m7G-Seq. The medium level involves m7G sites identified
from non-base-resolution approaches (m7G-MeRIP-Seq and m7G-

miCLIP-Seq). In addition, m7GFinder was applied transcriptome-
wide to identify all the putative m7G sites, which are defined as m7G
sites of low confidence level. The complete dataset of 37 094 832

germline variants (dbSNP151) from dbSNP (Sherry, 2001) and
3 820 716 somatic variants (TCGA v15.0) from TCGA (Tomczak

et al., 2015) was collected as inputs to decipher the applications of
m7GSNP. Only the variants localized on exons were considered in
the analysis.

2.9 Association analysis between m7G and various

diseases (m7GDiseaseDB)
The m7GDiseaseDB was developed to explore the potential associ-

ation between m7G sites and disease-associated genetic mutations,
which might implicate possible disease pathogenesis involving m7G

RNA methylation. In this analysis, the disease-associated variants
act as a potential bridge to link m7G RNA modification to known
diseases. In order to unveil the potential impact of m7G modification

on diseases, disease-associated SNPs (tagSNPs) were derived from
different resources, including GWAS catalog (Buniello et al., 2019),

Johnson and O’Donnell (2009) and ClinVar (Landrum et al., 2016),
we then mapped all m7G-associated variants to the collected
tagSNPs. To annotate m7G sites and m7G-associated variants, the

transcript structure from UCSC (Lawrence et al., 2013) was used,
and the evolutionary conservation of sequence was extracted from
phastCons 20-way (Siepel, 2005). In addition, the deleterious level

of each m7G-SNPs was analyzed by SIFT (Kumar et al., 2009),
PolyPhen2 HVAR (Adzhubei et al., 2010), PolyPhen2HDIV

(Adzhubei et al., 2010), LRT (Chun and Fay, 2009) and FATHMM
(Shihab et al., 2013) using ANNOVAR package (Wang et al.,
2010).

2.10 Website construction
MySQL tables were exploited for the storage and management of
the metadata in m7GHub. Hypertext Markup Language (HTML),

Cascading Style Sheets (CSS) and Hypertext Preprocessor (PHP)
were used to construct the web interface. The multiple statistical

diagrams were presented by EChars, and Jbrowse genome browser
(Skinner et al., 2009) was employed for interactive exploration and
visualization of relevant genome coordinate-based records.

3 Results

3.1 Collection of internal mRNA m7G sites in m7GDB
A total of 44 058 internal m7G sites were collected from data gener-
ated under eight samples profiled with three different techniques in

two independent studies (see Table 1). These sites were annotated
with post-transcriptional regulations such as miRNA target sites, al-

ternative splicing sites and RNA binding protein target sites, which
may be potentially regulated by internal mRNA m7G methylation.
The reliability of internal m7G sites extracted from non-base-

resolution techniques was also re-evaluated using our customized
m7G predictor m7GFinder. To the best of our knowledge, m7GDB

is the first and only database for internal mRNA m7G sites. Besides,
m7GDB also collected internal m7G sites detected in small RNAs,
for example, tRNA and rRNA, as well as the m7G sites collected in

MODOMICS database (see Supplementary Table S1), making
m7GDB the most comprehensive collection of internal RNA m7G
sites.
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3.2 Feature selection and performance evaluation of

m7GFinder
For m7G site prediction, both full transcript mode and mature
mRNA mode were constructed. The m7G-Seq introduced by Zhang
et al. (2019a) performed polyA selection in the step of RNA-Seq li-
brary preparation. Therefore, the mature mRNA mode was consid-
ered to reduce the potential over-estimation of accuracy. Feature
selection was implemented to identify the most important subset of
genomic features, which in return avoids the over-fitting issue. We
implemented the Perturb method (Gevrey et al., 2003) to evaluate
the relative importance of each genomic feature under the two
modes. The ranking of each genome-derived feature can be found in
Supplementary Figure S2. To achieve the most robust performance,
we used the top 19 genomic features to construct the predictor under
full transcript mode, and the top 22 for mature mRNA mode.

The performance of the newly constructed m7G site predictor
(m7GFinder) was evaluated by 5-fold cross-validation, independent
testing, and compared with other sequence-derived encoding meth-
ods, including PseKNC2 (Liu et al., 2015a, b), EIIP (He et al.,
2018b; He et al., 2019), PSNP (He et al., 2018b; He et al., 2019),
Composition (Zhou et al., 2016), MethyRNA (Chen et al., 2017a)
and AutoCorrelation (Liu et al., 2015a, b) (see Table 2). When test-
ing on independent datasets generated from two cell lines,
m7GFinder achieved an average AUROC of 0.974 and 0.889 under
full transcript and mature mRNA modes, respectively, which was
superior to the other sequence encoding schemes as well as the
newly developed iRNA-m7G method (AUROC of 0.946 under full
transcript mode) (Chen et al., 2019b).

It was shown previously that technological preference may sig-
nificantly affect the results of epitranscriptome profiling (Adachi

et al., 2018; Hussain et al., 2013; Zaringhalam and Papavasiliou,
2016). As m7GFinder was trained on base-resolution m7G-Seq data,
and the performance can be significantly over-estimated under the
full transcript mode, we further validated its performance on data-
sets generated from two other m7G profiling techniques (m7G-
MeRIP-Seq and m7G-miCLIP-Seq) under mature mRNA mode.
Consistent with previous results, the newly developed m7GFinder
approach substantially outperformed other encoding schemes
(Supplementary Table S3) on datasets generated by both m7G-
MeRIP-Seq and m7G-miCLIP-Seq techniques, with AUROC ¼
0.753 and 0.855, respectively. Taken together, these results suggest
that m7GFinder should be a reliable tool for identifying putative in-
ternal mRNA m7G sites. It is worth noting that, although different
overall patterns of internal mRNA m7G sites were reported previ-
ously in m7G-miCLIP-Seq (showing enrichment of internal mRNA
m7G in 50-UTRs) and m7G-Seq (showing enrichment of m7G in 30-
UTRs) (Malbec et al., 2019; Zhang et al., 2019a), the prediction
results of m7G-Seq-trained predictor agreed well with the m7G-
miCLIP-Seq data (AUROC ¼ 0.855), suggesting that the positive
sites captured by the two techniques share something significant in
common, and that these features were successfully captured by our
predictor m7GFinder. Meanwhile, as explained previously, m7G-
MeRIP-Seq is not a base-resolution technique, and there exists a
large number of unmodified G sites under the m7G peaks called
from m7G-MeRIP-Seq data; nevertheless, the results of m7GFinder
and m7G-MeRIP-Seq data were coherent (AUROC ¼ 0.753), sug-
gesting consistent patterns were captured among them.

In addition, we further compared the performance of
m7GFinder with iRNA-m7G, which, to our knowledge, is so far the
only computational model published for internal mRNA m7G site

Table 2. Performance evaluation of m7GFinder (AUROC)

Mode Testing method Encoding method Base-resolution technique (m7G-Seq)

Hela HepG2 Average

Full transcript

Cross-validation

m7GFinder 0.977 0.976 0.977

PseKNC2 0.750 0.721 0.736

EIIP 0.786 0.785 0.786

PSNP 0.844 0.837 0.841

Composition 0.785 0.783 0.784

MethyRNA 0.824 0.772 0.798

AutoCorrelation 0.700 0.640 0.670

Independent dataset

m7GFinder 0.973 0.974 0.974

PseKNC2 0.697 0.705 0.701

EIIP 0.737 0.783 0.760

PSNP 0.808 0.811 0.810

Composition 0.737 0.781 0.759

MethyRNA 0.728 0.759 0.744

AutoCorrelation 0.673 0.639 0.656

Mature mRNA

Cross-validation

m7GFinder 0.903 0.891 0.897

PseKNC2 0.673 0.647 0.660

EIIP 0.717 0.709 0.713

PSNP 0.788 0.785 0.787

Composition 0.717 0.708 0.713

MethyRNA 0.753 0.724 0.739

AutoCorrelation 0.553 0.528 0.541

Independent dataset

m7GFinder 0.904 0.874 0.889

PseKNC2 0.591 0.577 0.584

EIIP 0.651 0.614 0.633

PSNP 0.688 0.649 0.669

Composition 0.649 0.613 0.631

MethyRNA 0.730 0.718 0.724

AutoCorrelation 0.520 0.511 0.516

Note: About 93.9% of m7G sites reported by m7G-Seq can be identified by m7GFinder under full transcript mode (sensitivity: 0.939) at the cut-off of 0.5 in

prediction probability.
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prediction. As the AUROC cannot be calculated from the output of
the iRNA-m7G web server of, we instead calculated the Sn, Sp,
ACC and MCC for performance evaluation. Meanwhile, since the
training data used for iRNA-m7G were generated from m7G-Seq, to
avoid over-fitting, we applied the dataset from another technique
m7G-miCLIP-Seq for an independent testing. As is shown in
Table 3, our newly proposed model m7GFinder obtained the highest
accuracy of 0.760, which is �9.3% higher than that of iRNA-m7G
method.

The performance evaluation of predictor on the binding regions
of enzymes related to m6A RNA modification has been applied in
previously study (Zhou et al., 2016). In our study, we also tested
whether the newly purposed approach can predict the binding sites
of METTL1, which is a known m7G methyltransferase. The motifs
inside the experimentally identified METTL1 binding regions (Bao
et al., 2018) were used as the positive data. While the negative sites
were randomly selected outside the METTL1 binding region, keep-
ing the 1:10 positive-to-negative ratio. Consistent with previous
results, m7GFinder substantially outperformed other encoding
schemes under mature mRNA model (see Supplementary Table S4),

suggesting again the reliability of our method from a different per-
spective. Besides, the comparison between different algorithms indi-
cated that SVM was a quite effective machine learning approach
and achieved the best performance in our study.

3.3 Assessing the impact of mutations on internal m7G

methylation (m7GSNPer)
The m7GSNPer web server was developed to evaluate the impact of
genetic variants on internal m7G RNA methylation based on both
our customized high-accuracy m7G site predictor (m7GFinder) and
the collection of experimentally validated internal mRNA m7G sites.
It critically assesses the changes (in the probability) of m7G methyla-
tion induced by an arbitrary genetic mutation, unraveling the poten-
tial functional machinery of the mutation via the epitranscriptome
regulation. The m7GSNPer server also systemically annotates the
m7G-associated variants with disease analysis and various post-
transcriptional regulations as with m7GDB. To our knowledge, it is
the first of its kind developed for assessing the impact of mutations
on internal m7G RNA modification.

3.4 Comparing the m7G- and non-m7G-associated

variants (m7GDiseaseDB)
With m7GSNPer, we systematically evaluated the potential relation-
ship between the methylation status of internal mRNA m7G sites
and all the known genetic variants around it. In total, we found
57 769 m7G-associated SNPs, which may cause the gain or loss of
an m7G site in human (see Supplementary Table S5). A total of 735
and 12 800 genetic variants may cause the loss of an experimentally
validated m7G site at high and medium confidence level, respective-
ly. We observed that the m7G-associated SNPs were enriched in cod-
ing DNA sequence (a total of 50 970 m7G-associated SNPs,
90.54%), and especially for the predicted level (40 275 SNPs,
92.75%). The distribution characteristics of m7G-associated SNPs
and non-m7G SNPs in different transcript structures were summar-
ized in Supplementary Table S6. We then asked that if m7G-associ-
ated variants differ from those non-m7G-associated variants (non-
m7G variants) in some biological meaning ways. PhastCons score
was considered to evaluate the conservation degree between the two
categories of variants. We found that the m7G-associated variants
were more conserved than non-m7G variants (see Fig. 1A), suggest-
ing that the sites where m7G-associated variants localized may
undergo stronger selection pressure than that of non-m7G variants,
and the genetic mutations on those more conservative sites may re-
late to relatively more important biological functions (e.g. the
change of m7G methylation). Besides, the m7G-associated variants
were predicted to have a higher proportion in both high-deleterious
(14 589 variants, 25.56%; P<0.001, v2 test) and medium-
deleterious (13 615 variants, 23.85%; P<0.001, v2 test) levels,
compared with non-m7G variants (Fig. 1B). Moreover, the propor-
tion of nonsynonymous variants in m7G-associated SNPs is higher
than non-m7G SNPs (Fig. 1C, P<0.001, two-tailed population
test), revealing the variants that affect m7G methylation were also
more likely to alter the amino acids in a protein sequence. We also
observed that m7G-associated SNPs occurred more frequently in
binding regions of METTL1 than the non-m7G SNPs with a P-value
<0.001 (Supplementary Fig. S3). To sum up, these results suggested
that the m7G-associated variants can be distinguished from the ma-
jority of passenger variants, and may have important roles in human
genomes.

3.5 Association of disease and internal mRNA m7G sites

(m7GDiseaseDB)
The identified m7G-associated variants were also annotated with
disease information and various post-transcriptional regulations (see
Supplementary Table S7). For RBP binding regions, 6863 and
22 078 m7G-associated variants from dbSNP and TCGA are related
to 166 and 170 RBPs. For disease association analysis, 1218 m7G
variants localized on 716 genes were found to be associated with
681 diseases, which highlights the potential pathogenic role of the

Table 3. Performance comparison of different methods tested on

independent dataset generated by m7G-miCLIP-Seq

Encoding method m7G-miCLIP-Seq

Sn Sp ACC MCC

m7GFinder 0.842 0.710 0.760 0.536

iRNA-m7G 0.866 0.469 0.667 0.364

PseKNC2 0.571 0.564 0.567 0.134

EIIP 0.634 0.620 0.626 0.253

PSNP 0.688 0.790 0.728 0.467

Composition 0.635 0.622 0.628 0.257

MethyRNA 0.684 0.664 0.673 0.347

AutoCorrelation 0.553 0.556 0.554 0.108

Fig. 1. The comparison between m7G-associated variants and non-m7G-associated

variants. (A) The cumulative distribution function of differences between phastCons

score of m7G-associated variants and non-m7G variants, m7G-associated variants

were more conservative than non-m7G variants. (B) Proportional distribution of the

m7G-associated variants and non-m7G variants at high, medium and low deleterious

levels. The deleterious level was analyzed by SIFT (Kumar et al., 2009), PolyPhen2

HVAR (Adzhubei et al., 2010), PolyPhen2HDIV (Adzhubei et al., 2010), LRT

(Chun and Fay, 2009) and FATHMM (Shihab et al., 2013), a high level indicated

that the variant was considered deleterious in at least three out of the five above-

listed methods. (C) Proportional distribution of the m7G-associated variants and

non-m7G variants at different variant types, nonsynonymous type constitutes the

majority of the m7G-associates variants
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disease-related genetic mutations via the regulation of internal m7G
RNA methylation functioning at the epitranscriptome layer.

We then identified the disease phenotypes that are most enriched
with m7G variants. Among them, 33 variants (2.71%) were related
to hereditary cancer-predisposing syndrome (ClinVar study,
Accession: RCV000130572.2), followed by 16 variants (1.31%)
related to cardiovascular phenotype and 16 variants (1.31%) in pri-
mary ciliary dyskinesia (see Table 4).

In the previous disease-relevant studies, synonymous variants
were often being neglected by their property of not altering the
amino acids sequence of a protein. As more evidences have been
found to support the effects of synonymous variants on various dis-
eases (Sauna and Kimchi-Sarfaty, 2011), m7GSNPer and
m7GDiseaseDB were designed to classify the predicted variants into
synonymous and nonsynonymous groups. Take rs158921 as an ex-
ample, this synonymous variant alters guanine to adenine at position
60241142 of positive strand on chromosome 15, and is related to
Cockayne syndrome (ClinVar study, accession: RCV000278856.1).
We also observed an m7G methylation site at this position by m7G-
Seq, and speculated that the dysregulation of m7G modification may
relate to Cockayne syndrome. Together, the disease-relevant infor-
mation provided in m7GDiseaseDB is particularly valuable for deci-
phering the disease mechanisms involving internal mRNA m7G
methylation.

3.6 The m7GHub website
As a comprehensive online platform, m7GHub consists of four
major components m7GDB, m7GFinder, m7GSNPer and
m7GDiseaseDB, as previously described, to support studies related
to internal mRNA m7G methylation in human (Fig. 2).

All the components of m7GHub can be easily accessed through
the homepage of m7GHub (www.xjtlu.edu.cn/biologicalsciences/
m7ghub) with simple and clear guidance (Fig. 3). In m7GDB, all the
experimentally validated internal mRNA m7G sites are classified by
their sequencing techniques (m7G-Seq, m7G-MeRIP-Seq and m7G-

miCLIP-Seq), together with the detailed annotation of potentially
affected post-transcriptional regulations. m7GFinder accepts either
FASTA format or a simply tab-delimited txt format containing gen-
ome coordinates as the input file, and returns as results a report of
the identified putative m7G sites with statistical summary and a lo-
cation map. For any particular genetic mutations that researchers
may be interested in, the web server m7GSNPer enables the users to
upload their genetic variant files for analysis. A comprehensive re-
port containing the epitranscriptome impact of the mutations on
m7G RNA methylation with disease relevance annotations will be
returned together with the statistical summary and explanation of
each returned results for the users to explore. For m7GDiseaseDB,
the details of disease-associated genetic variants and their affected
m7G sites are provided. Users can further filter the variants for infor-
mation related to ClinVar or GWAS database. In addition,
m7GHub provides four search modes to quickly query the databases
(m7GDB and m7GDiseaseDB): by Gene, RsID, Disease and
Chromosome region. The JBrowse Genome Browser is also avail-
able for exploring a genomic region of interest. Lastly, m7GHub
also provides a detailed help document, and all the materials pre-
sented in database and web server can be freely downloaded.

4 Conclusion

With recent advances in high-throughput sequencing techniques,
widespread occurrence of internal mRNA m7G modification has
been revealed (Chu et al., 2018; Enroth et al., 2019; Malbec et al.,
2019; Marchand et al., 2018 ). We present here, m7GHub, a com-
prehensive platform for deciphering the location, regulation and
pathogenesis of internal mRNA m7G methylation. The platform
provided the first collection of 44 058 previously reported internal
mRNA m7G sites identified under different conditions (m7GDB) by
different techniques; a newly developed high-accuracy predictor of
internal mRNA m7G sites that outperformed existing methods
(m7GFinder); the first web server for evaluating the impact of genet-
ic mutations on the m7G methylation status (m7GSNPer) and the
first database documenting the inferred 1218 associations between
681 diseases and the m7G methylation sites located on 716 genes
unveiled via disease-associated genetic mutations (m7GDiseaseDB).
We also provided the website with rich functional annotations, user-
friendly interfaces and detailed documentation. In summary,

Table 4. Disease types most enriched with m7G variants

Name No. Database Study accession Clinical significance Identifiers

Hereditary cancer-predisposing syndrome 33 ClinVar study RCV000130572.2 Uncertain significance MedGen: C0027672

Cardiovascular phenotype 16 ClinVar study RCV000249377.1 Likely benign MedGen: CN230736

Primary ciliary dyskinesia (PCD) 16 ClinVar study RCV000462181.1 Benign OMIM: PS244400

Fig. 2. The overall design of m7GHub. The m7GHub consists of m7GDB,

m7GFinder, m7GSNPer and m7GDiseaseDB for deciphering the location, regula-

tion and disease pathogenesis of internal mRNA m7G modification

Fig. 3. Homepage of m7GHub. The four main components can be easily accessed

from the homepage. m7GHub also provides a search bar for quick query of the

database contents by Gene, RsID, Disease and Chromosome region. The m7GHub

website also features with detailed help documents, and all the contents can be free-

ly downloaded
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m7GHub (www.xjtlu.edu.cn/biologicalsciences/m7ghub) will serve
as a useful resource for studies of the internal mRNA m7G modifica-
tion in human.
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