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Abstract

Motivation: One way to identify genes possibly associated with ageing is to build a classification model (from the
machine learning field) capable of classifying genes as associated with multiple age-related diseases. To build this
model, we use a pre-compiled list of human genes associated with age-related diseases and apply a novel Deep
Neural Network (DNN) method to find associations between gene descriptors (e.g. Gene Ontology terms, protein–
protein interaction data and biological pathway information) and age-related diseases.

Results: The novelty of our new DNN method is its modular architecture, which has the capability of combining sev-
eral sources of biological data to predict which ageing-related diseases a gene is associated with (if any). Our DNN
method achieves better predictive performance than standard DNN approaches, a Gradient Boosted Tree classifier (a
strong baseline method) and a Logistic Regression classifier. Given the DNN model produced by our method, we use
two approaches to identify human genes that are not known to be associated with age-related diseases according to
our dataset. First, we investigate genes that are close to other disease-associated genes in a complex multi-
dimensional feature space learned by the DNN algorithm. Second, using the class label probabilities output by our
DNN approach, we identify genes with a high probability of being associated with age-related diseases according to
the model. We provide evidence of these putative associations retrieved from the DNN model with literature support.

Availability and implementation: The source code and datasets can be found at: https://github.com/fabiofabris/
Bioinfo2019.

Contact: A.A.Freitas@kent.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

An increasing number of researchers are focussing on solving the
‘ageing problem’, that is, trying to delay ageing in humans. This
goal seems to be more and more plausible in the not so distant fu-
ture: biologists can already considerably extend the lifespan of sev-
eral animal species, such as the fruit fly and the mouse (De
Magalh~aes et al., 2017). Also, advances in sequencing and analysis
have successfully identified several potentially ageing-related pro-
teins (Tacutu et al., 2018). In addition, some organisms (including a
few animals) seem to have negligible and even negative senescence
(Jones et al., 2014), which indicates that ageing may not be as inevit-
able as it was first thought.

Another possible outcome of studying ageing as a whole is to re-
duce the incidence of many different age-related diseases at the same
time. This may be more effective than the current approach of treat-
ing one disease at a time and could potentially stop the trend of

increasing costs of treating age-related diseases (Goldman et al.,
2013). To this end, instead of focussing on a single disease, in this
work we focus on predicting whether or not human genes are associ-
ated with several age-related diseases at the same time using Deep
Neural Network (DNN) methods. For a review of machine learning
applied to ageing research in general, see Fabris et al. (2017).

The machine learning field went through an explosion of DNN
applications in the last few years due to the development of new DNN
architectures and algorithms, the availability of powerful and access-
ible processing hardware and the increasing volume of data available
to train the models. The areas of bioinformatics and medicine were no
different, DNNs have been applied to tackle several problems in these
fields, such as MRI image processing (Angermueller et al., 2016), pre-
diction of non-coding DNA function (Quang and Xie, 2016) and pre-
diction of Gene Ontology terms (Kulmanov et al., 2018).

The contributions of this article are 2-fold: (i) to propose and
evaluate a novel DNN architecture (using Keras/tensorflow) to
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predict which age-related diseases (our class labels) are associated
with human genes (our instances)—note that a gene can be associ-
ated with no ageing-related disease or multiple ageing-related dis-
eases and (ii) based on the output of the model, to suggest some
genes for further investigation. Our proposed architecture, called
‘Modular DNN’, integrates several data sources to get the final
model’s prediction. We compare the Modular DNN approach with
more traditional deep learning architectures, with a Gradient
Boosted Tree (BT) classifier (lightgbm implementation) and with a
traditional Logistic Regression (LR) classifier in terms of predictive
power.

The remainder of this article is organized as follows: Section 2
describes how the DNN was constructed and how we compiled our
data. Section 3 reports the results of our experiments, including a
statistical analysis of the predictive performance of the DNN, BT
and LR classifiers. Sections 3.3 and 3.4 presents a list of promising
genes for further analysis according to our DNN approach. Finally,
Section 4 concludes our work.

2 Materials and methods

2.1 The proposed deep neural network
In this work we investigate a DNN architecture using neurons with
RELU activation functions and using a stochastic gradient descent
algorithm as the optimization engine. Figure 1 shows a high-level
graphical representation of the proposed architecture. Our Modular
DNN approach comprises several Encoder ‘modules’, one module
for each feature type. Each module can be conceptualized as a super-
vised feature-extraction algorithm specialized in extracting new
higher-level features, also referred to as embeddings. Embeddings
represent high-dimensional features into dense low-dimensional nu-
merical features.

Each module is trained for a given feature type and is imple-
mented as a DNN with three fully connected layers followed by an
output layer that predicts whether or not each instance (gene) is
associated with each of the class labels (27 age-related diseases).
Each gene may be associated with several class labels at the same
time (or none). The hidden layers contain, respectively 64, 32 and
16 neurons. These three hidden layers have a dropout ratio of 0.5
during the training phase. The output layer of an Encoder module
contains 27 neurons, one for each of the 27 age-related diseases. The
number of trainable weights and neurons in each DNN type is
shown in Table 1.

Note that the predictive performance of the modules can be esti-
mated independently of one another. This will be shown in the next
section. After each Encoder module is trained, we remove its output
layer (predicting the 27 class labels) and use the outputs of its 16
neurons in the third hidden layer as higher-level features. To com-
bine the individual feature type modules, the outputs of the third
hidden layers of all Encoder modules are combined and passed to a
final module (the Combiner) that makes the final prediction. The
Combiner contains two extra hidden layers, the first one containing
32 and the second one containing 16 neurons.

The number of trainable weights of the non-modular
DNNs, which do not use the combiner module
(rows 1–5 in Table 1) follows the formula

ðnfeats þ 1Þ � 64þ 65� 32þ 33� 16þ 17� 27 ¼ ðnfeats þ 1Þ � 64

þ3067, where nfeats is the number of features in the dataset, shown
in the third column of Table 1. Note that the expression 65� 32þ
33� 16þ 17� 27 corresponds to the number of neurons in the first
hidden layer plus one for the bias (65) times the number of neurons
in the second layer (32), followed by the number of neurons in the
second layer plus one (33) times the number of neurons in the third
layer (16), followed by the number of neurons in the third layer plus
one (17) followed by the number of neurons in the output layer
(27).

Similarly, the number of trainable weights in
the combiner module of the modular DNN is
ð16� 4þ 1Þ � 32þ 33� 16þ 17� 27 ¼ 9211. The first term of
the sum corresponds to the number of projections features

extracted from the four modules (16 features from the last hidden
layer of each one of the GO, PPI, PathDIP and GTex modules, plus
one for the bias) times the number of neurons in the first hidden
layer (32), followed by the number of neurons in the first layer plus
the bias (33) times the number of neurons in the second hidden
layer (16), followed by the number of neurons in the second layer
(16) plus the bias times the number of classes (27). Note that this is
the number of trainable weights, in the Combiner module, after
each of the Encoder modules have been trained. The total number
of weights is 9211þ ðð13 615þ 1Þ � 64þ 65� 32þ 33� 16Þ þ
ðð13 887þ 1Þ � 64þ 65� 32þ 33� 16Þ þ ðð4790þ 1Þ � 64þ 65
�32þ 33� 16Þ þ ðð84þ 1Þ � 64þ 65� 32þ 33� 16Þ ¼
2 091 963

Note that each module learns a more compact and richer repre-
sentation of the input features, which can be more powerful than the
original sparse, high-dimensional representation of the features. For
this reason, our hypothesis is that combining several specialized
modules using a Combiner achieves better predictive performance
than the individual modules and than a DNN trained concatenating
all feature types into a single input layer. We evaluate this hypoth-
esis in the next section.
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Fig. 1. Architecture—Gray nodes represent the inputs coming from several biologic-

al databases. Followed by nodes representing the supervised feature extraction mod-

ules. The Combiner joins the higher-level features coming from the feature

extraction modules to make a final prediction (rightmost node). Each of the encoder

nodes, as well as the combiner node, are deep multi-layer neural networks (DNNs)
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We also investigate if sequentially adding modules to the
Modular DNN in a forward greedy manner, the Forward Sequential
Selection Modular DNN approach (FSS Modular approach),
achieves better predictive performance than the modular DNN using
all four modules. In this FSS approach the training set is divided into
a learning set and an evaluation set, with 2/3 and 1/3 of the training
instances, respectively. This FSS approach works by initializing the
DNN with no modules, then tentatively testing the performance of
the DNN with one module at a time, re-training the Combiner node
and measuring the predictive performance of the network on the
evaluation set. The best single module is permanently added to the
DNN, and the procedure is repeated by tentatively adding one of
the three remaining modules at a time to the current DNN and so
on. The procedure stops if tentatively adding each of the remaining
modules does not increase predictive performance, or of course if all
modules were already added to the DNN.

Our modular approach has three advantages when compared to
the usual approach of concatenating all features and training a single
classifier: (i) the possibility of adding new feature types to the pre-
dictive model without the need of re-training the whole model, just
the Combiner module; (ii) a more modular, clearer analysis of the ef-
fect of each feature type on the predictive performance of the entire
DNN, i.e. as feature types are only ‘mixed’ at the Combiner module,
the effect of the extracted feature types reaching the Combiner mod-
ule can be analyzed individually in terms of predictive performance;
and (iii) reduced memory consumption (the modules do not need to
be loaded into the computer’s memory at the same time).

Our source code, implemented using the Python programming
language and the Keras DNN API, is freely available at https://
github.com/fabiofabris/Bioinfo2019

2.2 Dataset compilation
Human protein coding genes were downloaded from NCBI BioMart
v87 and age-related disease gene associations were obtained from
Fernandes et al. (2016). These disease associations represent an age-
related disease-specific subset of the Genetic Association Database
(Becker et al., 2004), a large database of genetic association study
results collected until 2014. As such, a gene having a positive class
label for a disease association indicates that when this database was
frozen in 2014, it contained SNPs associated with the given disease
for that gene.

After this list of gene–diseases associations was compiled, we
combine each gene with the four feature types used in this work
(GO, PPI, PathDIP and GTex). GO term–gene associations were col-
lected from the NCBI website using the following query:

“Homo sapiens”[Organism] AND “source_genomic”

[properties]

AND “genetype protein coding”[Properties] AND

alive[prop])

PPI data was collected from BioGRID (database version
3.4.146), and PathDIP information was collected from the PathDIP
website (version 7). Our datasets are available at https://github.com/
fabiofabris/Bioinfo2019.

3 Experiments

3.1 Comparing the Modular DNN approach with the

standard DNN and other methods
In this section, we compare our Modular DNN approach with five
baselines: (i) the standard DNN (trained using the individual feature
types and the dataset with all concatenated feature types); (ii) the
Gradient BT (Ke et al., 2017) algorithm (a state-of-the-art classifier)
also using individual feature types, the concatenated dataset and a
stacking approach; (iii) the FSS Modular DNN approach; (iv) a
‘Naive’ classifier that ranks the genes in terms of study ‘popular-
ity’—that is, more studied genes are ranked as ‘more associated with
the diseases’ than less studied genes. For GO, PPI and PathDIP data-
sets, we define ‘study popularity’ as the number of terms associated
with the gene. If the gene is not present in the dataset at all, the
popularity of the gene is ‘0’ by definition. For the GTex feature type
(a unbiased feature), we assume that all genes present in the dataset
have popularity ‘1’, and the genes not present in the dataset have
popularity ‘0’. We also combined the previously described ‘fre-
quency measures’ by adding up all four popularity counts, creating a
fifth ‘naive’ classifier that uses information from all feature types.
The Naive classifier is a useful heuristic to test if the sophisticated
classification algorithms (DNN and BT) are going beyond simply
assigning the positive class label to well-studied genes Gillis and
Pavlidis (2011). (v) The LR classifier from Sklearn using L2 regular-
ization and default parameters.

We have estimated the performance of the classification algo-
rithms using the popular 10-fold cross-validation procedure. This
procedure divides the dataset into 10 folds of approximately equal
size. Next, each fold is used as a validation dataset and the other
nine folds used as the training dataset. The performance of the clas-
sification algorithm is estimated by averaging the performance in
the 10 validation sets. Note that the predictive performance of each
one of the 27 classes is calculated independently using the AUROC
measure and averaged to get the final measure of predictive perform-
ance for the whole model.

Table 2 shows the predictive accuracy results across feature types
and corresponding combination approaches. The first column shows
the feature type or combination approach/method being analyzed,
with the sixth and seventh rows showing the proposed Modular and
FSS Modular DNN approaches. The second column shows the per-
centage of unknown genes in each feature type—by unknown gene
we mean a gene for which the values of all features (of a given type)
are unknown, because there is no annotation of that feature type for
the gene. For instance, a gene without any GO term annotations is
called an ‘unknown’ gene for that feature type. Note that the feature
type with the largest proportion of unknown genes is the PPI feature
type, with 19.4% unknown genes. The next four columns present
the experimental conditions as follows. The third column shows the
AUROC for the DNN algorithm when using the class label frequen-
cies in the dataset as the probabilities of predicting the correspond-
ing classes for the unknown genes. The fourth column shows the
AUROC results for the DNN algorithm when discarding the un-
known genes altogether. The next four columns show equivalent in-
formation for the Gradient BT and LR algorithms. The last column
shows the results of the Naive approach. Note that the last row
shows the result of a stacking approach (Witten et al., 2016) that

Table 1. Number of neurons in the DNN for each type of input feature

Module(s) No. of trainable weights No. of input neurons

(number of features)

No. of hidden neurons

(in all hidden layers)

No. of output neurons

GO 874 491 13 615 112 27

PPI 891 899 13 887 112 27

PathDIP 309 691 4790 112 27

GTex 8507 84 112 27

All (concat.) 2 075 195 32 376 112 27

Modular DNN 2 091 963 (9211 for the Combiner module,

2 082 752 for all four Encoder modules)

32 376 160 27

2204 F.Fabris et al.
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consists of training a meta-level BT or LR using as features the class
probabilities output by the four base level BTs or LRs trained with
the individual feature types.

First, we will analyze the predictive performance of the DNN
classifiers (columns 3 and 4) using four types of experimental condi-
tions: (i) trained using one feature type at a time (rows 1–4), (ii)
using a full dataset concatenating all feature types (row 5), (iii) using
our Modular DNN approach (row 6) and (iv) using the FSS
Modular DNN approach (row 7).

Table 2 shows that our new approach (Modular DNN) achieves
better predictive performance than all other individual feature types,
and also better performance than the FSS Modular approach and
the ‘Concat. all feats.’ approach, which uses a concatenation of all
feature types, training a single large, non-Modular DNN. Also,
when using the non-Modular DNN trained with a single feature
type (rows 1–4), the AUROC calculated using only known genes
(fourth column) is greater than the AUROC when using all genes
(third column) in three out of four cases. The only exception is the
GTex feature type, but the difference is very small (0.0031). This
generally greater AUROC when predicting only known genes is
expected, as removing validation instances representing unknown
genes tends to produce an ‘easier’ classification problem. Note that
the Modular DNN approach classifies all genes and still has better
predictive performance than the approaches that do not classify all
genes (including BT and LR approaches), being clearly superior both
in terms predictive power and classification coverage.

By analyzing the learning curves (presented as Supplementary
Material), we can clearly see that the DNN models learned from the
‘PPI’ and ‘Concat. all feats.’ datasets are overfitting, i.e. after a cer-
tain number of epochs, the error rate in the testing set starts to in-
crease, whilst the error rate keeps decreasing in the training set. This
overfitting explains why those feature types had poor predictive
performance.

Comparing the results of the Modular DNN and the BT algo-
rithm, overall, the Modular DNN approach (columns 3 and 4, sixth
row) achieves higher AUROC values than BT across all individual
feature types (columns 5 and 6, rows 1–4). Comparing columns 3
and 5, we can see that for the individual feature types (rows 1–4),
BT achieves higher AUROC values when using all genes (including
unknown genes) than the DNNs in three out of four feature types
(the only exception is the GTex feature type). Also, the performance
of BT using stacking (last row) is not competitive in comparison
with BT using all features (row 5).

Interestingly, it seems that the BT approach performs worse
when the unknown genes are removed from the validation set.
Comparing columns 5 and 6, the AUROC of BT decreased in three

out of four occasions when discarding unknown genes, performing
worse than the DNN in three out of four cases in this scenario, al-
though the differences are smaller than 0.01 in all cases. This
counter-intuitive result is due to the fact that the positive class (dis-
ease) probabilities the BT algorithm is assigning to the known genes
are in general higher than the probabilities assigned to the unknown
genes (which have a lower disease frequency in the dataset than the
known genes). Hence, the unknown instances are correctly ranked
below most true positives most of the time, which may ‘inflate’ the
AUROC results.

As an example, consider an algorithm that randomly assigns
high positive class label (disease) probabilities to the known genes.
The AUROC of this classifier would be 0.5 on average. Next, as-
sume that we assign low positive class probabilities to the unknown
genes (which have a lower disease frequency in the dataset than the
known genes). The final AUROC of this experiment (combining
both sets of predictions) would be higher than 0.5, as the positive
class ‘density’ of the set of known genes is higher than the positive
class ‘density’ of the set of unknown genes.

The LR classifier (columns 7 and 8) had reasonable predictive
performance in some feature types, especially when using the PPI
feature type predicting all genes, where it outperformed both the
DNN and BT algorithms. The best overall performance for the LR
algorithm (using the stacking approach) is close to the best DNN re-
sult (the Modular Approach).

Finally, the Naive approach had considerably worse perform-
ance than the BT classifier across all feature types. The Naive ap-
proach outperformed the DNN in two feature types (PathDIP and
Concat. all feats.). The Naive approach also outperformed LR when
using two feature types (GO and PathDIP). However, the best
AUROC achieved by the Naive classifier (0.8105) is considerably in-
ferior to the best AUROC of the Modular Approach (0.8795).

3.2 Statistical analysis of the results
In this section, we perform a statistical analysis to compare the per-
formance of the Modular DNN algorithm with other DNN
approaches, the Gradient BT and the Linear Regression classifier
across several feature types considering the approaches that use un-
known genes (third, fifth and seventh columns of Table 2). We do
not compare the results of other columns as the underlying datasets
are not the same (they have different numbers of instances). Also, to
save space, we do not show the results comparing the Modular
DNN with the Naive approach since every test resulted in a P-value
very close to zero, i.e. the Modular approach is clearly statistically
significantly superior to the Naive approach.

Table 2. Comparing AUROC results of our Modular DNN approach (in bold) with the individual feature types and the full dataset concatenat-

ing all features (Concat. all feats.) using the DNN, BT and LR algorithms

Feature type or classi-

fication method/

approach

% of un-

known genes

in the feature

type

AUROC values

DNN BT LR Naive

pred. all

genes

pred. known

genes only

pred. all

genes

pred. known

genes only

pred. all

genes

pred. known

genes only

pred. all

genes

GO 4.0% 0.8498 0.8583 0.8520 0.8468 0.7900 0.7981 0.7995

PPI 19.4% 0.6381 0.6897 0.6585 0.6782 0.6844 0.6889 0.6080

PathDIP 16.8% 0.7535 0.8051 0.8392 0.8314 0.7600 0.7607 0.7817

GTex 4.1% 0.7507 0.7476 0.7156 0.7114 0.7173 0.7233 0.5062

Concat. all feats. 0.0% 0.7548 0.7548 0.8794 0.8794 0.8059 0.8059 0.8105

Mod. approach 0.0% 0.8795 0.8795 NA NA NA NA NA

FSS Mod. approach 0.0% 0.7525 0.7525 NA NA NA NA NA

Stacking 0.0% NA NA 0.7301 0.7301 0.8711 0.8711 NA

Note: This table also shows the results when varying the strategy to deal with ‘unknown genes’—i.e. genes for which the values of all features (of a given feature

type) are unknown—e.g. a gene where all GO term features have missing values. Columns 3, 5 and 7 show the results when classifying all genes (including un-

known genes) while columns 4, 6 and 8 shows the results when ignoring unknown genes. The last column shows the results for the ‘Naive’ approach. For the

AUROC results of our approach for the individual diseases, please consult the Supplementary File ‘auroc_per_disease.xlsx’.

Human genes with age-related diseases 2205

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2202/5679772 by guest on 09 M
ay 2020



We use a Bayesian test of statistical significance and a traditional
Null Hypothesis Significance Testing (NHST), both based on the
Wilcoxon signed rank test. The motivation is to use not only the
traditional NHST analysis, but also a more modern Bayesian ana-
lysis involves several major drawbacks of the popular NHST ana-
lysis, as discussed in Greenland et al. (2016), Benavoli et al. (2017),
Goodman (2008), Stang et al. (2010). For each algorithm pair, we
use the paired per-fold AUROC to test if they are significantly differ-
ent. Note that the 10 fold are divided always in the same way, i.e.
they contain the same instances across all tests.

Table 3 shows the results comparing the Modular DNN with the
other approaches. The first column shows the baseline being com-
pared to the Modular DNN (the traditional DNN, the BT or the LR
classifiers), the second column shows the feature type, the third col-
umn shows the AUROC values, the fourth column shows results for
the Bayesian test of statistical significance and the fifth column
shows the P values of the NHST, under the null hypothesis of
equivalency of the classifiers’ AUROCs.

The three values reported in the fourth column of Table 3 repre-
sent, respectively:

1. the probability of the Modular DNN being better than the classi-

fier learned using the feature type or approach in the first column

(the baseline classifier);

2. the probability of the AUROC of the two classifiers being in the

Region Of Practical Equivalency (ROPE), which means the dif-

ference in their AUROC values is less than 1%; and

3. the probability of the baseline classifier being better than the

Modular DNN classifier.

Overall, the Modular DNN statistically significantly outper-
formed (at the significance level a ¼ 0:05) the baseline approaches
in every test with two exceptions: (i) when using the Gradient BT
and the ‘Concat. all feats.’ dataset, the probability of the Modular
DNN being better than the BT algorithm was 0.1086 according to
the Bayesian test, and the null hypothesis could not be rejected. We
could still say that the Modular DNN is at least equivalent to the BT
approach with P¼0.8771 (adding up the P values for the DNN and
ROPE in the 11th row of Table 3); and (ii) when using the LR model
and the stacking approach, the probability of the Modular DNN
being better than LR was 0.3920 according to the Bayesian test.
Note, however, that the probability that the LR algorithm is better
than our DNN approach is low (0.0492).

3.3 Analyzing the output of the Modular DNN

In the last step of our analysis, we mapped our instances (genes) into
a 16D space by training our Modular DNN using all available
instances and retrieving the 16-dimensional projection of the train-
ing instance from the values output by the 16 neurons of the last hid-
den layer of the Combiner module. This dense 16D projection is
known as an embedding. Next, for each class (disease) to be pre-
dicted, we multiply each element of the embedding vector by its cor-
responding weight in the network edge leading to the output layer’s
node representing that class in the Combiner module. This final step
creates 27 16D vectors for each instance, one vector per class.

Given these 16D data spaces, for each class (disease), we ana-
lyzed the projections of the instances, identifying several clusters of
instances (genes) annotated with a positive class label (i.e. a disease).
In some cases, instances annotated with the negative class label (i.e.
not annotated with the corresponding disease) are also located in
these clusters. These negative instances are clear targets for further
analysis since they are ‘close’ to positive instances and could be
wrongly annotated in our data. Recall that negative labels are less
reliable [lack of evidence is not the same as evidence for the absence
of disease (Fabris et al., 2018)].

To automatically identify these negative instances, we have pro-
ceeded as follows. For each one of the 27 classes, we have identified
all negative instances that have at least 9 neighbours with the posi-
tive class label among its 10 nearest neighbours (NNs) in the origin-
al 16D space extracted from the DNN (after multiplying the
instance embeddings by the corresponding output weights). Due to
the stochastic nature of the DNN training algorithms, we repeated
this procedure 30 times (varying the random seed), re-training the
Combiner module using a different random seed and reported the
candidate genes satisfying the nine neighbours conditions in at least
20 out of the 30 randomized runs. Most classes did not have any
gene with a negative class label satisfying the ‘9-positive-neighbours’
condition in at least 20 randomized runs. The condition is satisfied
only for the classes ‘Associated with Heart Diseases’ (two candidate
genes), ‘Associated with Myocardial Infarction’ (one candidate
gene) and ‘Associated with Type 2 Diabetes’ (three candidate genes).

Due to space limitations, we show in Table 4 two out of the six
interesting negative instances (genes TGFB1 and IL1B, both neigh-
bours of many genes annotated with the ‘Associated with Type 2
Diabetes’ class label). The other four instances satisfying the 9-posi-
tive-neighbours conditions are shown as Supplementary Material.
Table 4 consists of two sub-tables, each starting with the identifier
of the candidate gene (the gene annotated with the negative class
label and having at least nine positive neighbours) and the number
of times the gene was selected as a candidate in the 30 randomized
runs of the DNN. In the next row we show the average, minimum
and maximum positive class label probabilities across the 30 runs of
the algorithm. Next, we show a list of the candidate gene’s neigh-
bours annotated with the positive class label, followed by the list of
neighbours annotated with the negative class label, both with the
number of times the gene was in the NN list of the candidate gene
across the randomized experimental runs.

Summarizing Table 4, our analysis suggests that the genes
TGFB1 and IL1B are good candidates for association with type 2
diabetes. In fact, both TGFB1 and IL1B genes are established to be
involved in the pathogenesis of diabetic nephropathy (Chang et al.,
2016; Stefanidis et al., 2014). IL1B in particular has previously been
associated with coronary heart disease in some genetic backgrounds
(Rai et al., 2016), which in turn shares many genetic pathways with
type 2 diabetes and may share associated genetic variants (Zhao
et al., 2017).

3.4 Analyzing the probabilities output by the
Modular DNN

We present in Table 5 the top five negative genes in terms of average
probability of being associated with a positive class label by our
Modular DNN algorithm across 30 randomized runs. Due to space
limitations, we present only the results for brain diseases, neoplasms

Table 3. Comparing the Modular DNN approach (AUROC¼ 0.8795)

with the DNN, BT and LR approaches using Bayesian hypothesis

testing and the traditional NHST

Base. Feature type

or approach

AUROC Bayesian P values

(DNN, ROPE, Base.)

NHST P values

DNN GO 0.8498 0.9995, 0.0005, 0.0000 0.0051

PPI 0.6381 1.0000, 0.0000, 0.0000 0.0051

PathDIP 0.7535 1.0000, 0.0000, 0.0000 0.0051

GTex 0.7507 1.0000, 0.0000, 0.0000 0.0051

Con. all feats. 0.7548 1.0000, 0.0000, 0.0000 0.0051

FSS Mod. app. 0.7525 0.9989, 0.0011, 0.0000 0.0069

BT GO 0.8520 0.9980, 0.0020, 0.0000 0.0093

PPI 0.6585 1.0000, 0.0000, 0.0000 0.0051

PathDIP 0.8392 0.9999, 0.0001, 0.0000 0.0051

GTex 0.7156 1.0000, 0.0000, 0.0000 0.0051

Con. all feats. 0.8794 0.1086, 0.7685, 0.1229 0.8785

Stacking 0.7301 1.0000, 0.0000, 0.0000 0.0051

LR GO 0.7900 1.0000, 0.0000, 0.0000 0.0051

PPI 0.6844 1.0000, 0.0000, 0.0000 0.0051

PathDIP 0.7600 1.0000, 0.0000, 0.0000 0.0051

GTex 0.7173 1.0000, 0.0000, 0.0000 0.0051

Con. all feats. 0.8059 1.0000, 0.0000, 0.0000 0.0051

Stacking 0.8711 0.3920, 0.5588, 0.0492 0.3863
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and myocardial infarction, which are the most interesting results.
The full results are presented as Supplementary Material. We have
repeated the experiment 30 times due to the stochastic nature of the
DNN training algorithm. Note that negative genes predicted with a
relatively high positive class label probability are clear candidates
for further analysis.

Table 5 shows three sub-tables, each sub-table shows in its head-
er the class label under consideration and the 99% percentile of the

probability that the gene belongs to the positive class (i.e. 99% of
the genes have a lower average positive class label probability than
the one shown). Note that the probabilities of the genes in the table
are much greater than the 99% percentile probability, meaning that
these probabilities are much greater than the vast majority of the
probabilities output by the classifier. Each sub-table shows in its first
column the gene identifier and name. The second, third and fourth
columns show, respectively, the average, minimum and maximum
probabilities across the 30 randomized runs of the DNN.

There is biological plausibility for the top gene–disease associa-
tions for each disease in Table 5: the gene AGT (angiotensinogen) is
implicated in both Alzheimer’s disease (Mateos et al., 2011) and
breast cancer (Herr et al., 2008), with evidence that the renin-
angiotensin system of which it is a part may be closely involved in
cancer processes (Wegman-Ostrosky et al., 2015) and may even be a
target for the treatment of cancer (Vallejo-Ardila et al., 2018). The
gene TNF (tumour necrosis factor) is expressed in the myocardium
in response to mechanical overload or ischaemic injury
(Kurrelmeyer et al., 2000), while inhibition therapy of TNF may re-
duce the risk of myocardial infarction in patients with rheumatoid
arthritis, a typically high risk group (Low et al., 2017). Interestingly,
due to the differences in methodology, neither of these genes were
identified by our analysis in the previous section.

4 Discussion

Overall, in terms of predictive performance, the Modular DNN ap-
proach performed better than using individual feature types and
using all features at the same time without the modular architecture
(the ‘Concat. all feats.’ approach). Also, the Modular DNN outper-
formed the Gradient BT approach and the Linear Regression classi-
fier in both the individual, ‘Concat. all feats.’ and ‘stacking’ feature
settings.

Also, we presented two ways of extracting useful information
from DNN models. First, for each negative instance (human gene),
we extracted the neighbouring genes by treating the output of the
last hidden layer of the DNN as a mapping to a 16-dimension space.
Next, the negative human genes in a neighbourhood with at least 9
out of 10 genes were considered good candidates for further ana-
lysis. The second approach identified the negative genes with high
positive probability for the disease class labels according to the
DNN model, which are also candidates for further analysis.

We conclude that both approaches uncovered genes with bio-
logical plausibility of being associated with some age-related dis-
eases. However, both approaches result in different candidate genes,
which suggests the complementarity of both approaches and that
they should be used in concert while looking for candidate genes for
further analysis. As future work, we plan to use these genes in con-
junction with the human diseasome (Goh and Choi, 2012) to sug-
gest drugs that target highly ranked candidate genes and also try to
identify functional modules in the candidate gene list. We also plan
to break down the analysis of the results by gene category, for in-
stance, genes associated with certain biological pathways in all four
individual feature types. This may help identify larger groups of
genes that are clearly associated with the diseases.

Note that the genes identified in our analysis are highly studied.
This is expected, as popular genes tend to have more annotations,
and consequently, more opportunity to possess a property that is
strongly linked to ageing-related diseases. To attenuate this, we plan
as future work to use only feature types (such as levels of gene ex-
pression) that are not influenced by the ‘study popularity’ of the
gene.

In particular, according to our projection approach, genes
TGFB1 and IL1B are good candidates for association with type 2
diabetes. Furthermore, according to the approach that investigates
negative genes with high positive probability as output by the DNN,
the gene AGT is associated with brain diseases and neoplasms; and
the gene TNF is associated with myocardial infarction. We found
supporting literature for all these associations, which suggests that
although genes are not annotated with the aforementioned diseases
in our dataset, there may be evidence on the contrary.

Table 4. List of negatively labelled candidate genes with at least

nine positive neighbours annotated with the label ‘Associated with

Type 2 Diabetes’ appearing in all 30 runs of the Modular DNN

Candidate gene: TGFB1 (transforming growth factor beta 1).

Found in 30 out of 30 randomized runs.

Avg. prob.: 0.4211/min. prob.: 0.1257/max. prob.: 0.7044

Times in NN list Positive neighbouring genes

30 APOA1 (apolipoprotein A1)

30 LEP (leptin)

30 IFNG (interferon gamma)

30 PTGS2 (prostaglandin-endoperoxide

synthase 2)

30 VEGFA (vascular endothelial growth

factor A)

30 ADIPOQ (adiponectin, C1Q and

collagen domain containing)

30 PPARG (peroxisome proliferator-

activated receptor gamma)

30 APOA4 (apolipoprotein A4)

28 PPARGC1A (PPARG coactivator 1

alpha)

2 CYP1A1 (cytochrome P450 family 1

subfamily A member 1)

Times in NN list Negative neighbouring genes

30 IL1B (interleukin 1 beta)

Candidate gene: IL1B (interleukin 1 beta).

Found in 30 out of 30 randomized runs.

Avg. prob.: 0.4954/min. prob.: 0.1451/max. prob.: 0.8449

Times in NN list Positive neighbouring genes

30 APOA1 (apolipoprotein A1)

30 LEP (leptin)

30 APOA4 (apolipoprotein A4)

30 AGT (angiotensinogen)

30 PTGS2 (prostaglandin-endoperoxide

synthase 2)

30 VEGFA (vascular endothelial growth

factor A)

29 IFNG (interferon gamma)

27 TNF (tumour necrosis factor)

26 APOE (apolipoprotein E)

8 ADIPOQ (adiponectin, C1Q and

collagen domain containing)

Times in NN list Negative neighbouring genes

30 TGFB1 (transforming growth factor

beta 1)

Note: Each sub-table shows in its heading the name of the candidate gene

and the average, minimum and maximum positive class label probabilities

across the 30 randomized runs. Next, we show the list of positive neighbours

and the list of its negative neighbours (if any) of the candidate gene. The sub-

tables also show the number of times the gene was in the NN list of the candi-

date gene.
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Table 5. List of the top five negative genes in terms of average positive class label probability across 30 randomized runs of the modular

DNN and three disease types

Candidate gene Avg. prob. Min. prob. Max. prob.

Brain disease (99% percentile of avg. prob.: 0.0942)

AGT (angiotensinogen) 0.5764 0.2659 0.8631

LEP (leptin) 0.4762 0.2315 0.7186

APOA4 (apolipoprotein A4) 0.4737 0.2214 0.7014

PTGS2 (prostaglandin-endoperoxide synthase 2) 0.4393 0.2052 0.6542

TGFB1 (transforming growth factor beta 1) 0.4306 0.1977 0.6367

Neoplasm (99% percentile of avg. prob.: 0.0784)

AGT (angiotensinogen) 0.5128 0.1728 0.8357

APOA4 (apolipoprotein A4) 0.4228 0.1439 0.6891

APOA1 (apolipoprotein A1) 0.3610 0.1338 0.5780

ADIPOQ (adiponectin, C1Q and collagen domain containing) 0.3507 0.1243 0.5686

APOB (apolipoprotein B) 0.2856 0.1036 0.4588

Myocardial infarction (99% percentile of avg. prob.: 0.0808)

TNF (tumour necrosis factor) 0.5283 0.1279 0.8312

LEP (leptin) 0.4138 0.1050 0.6374

IFNG (interferon gamma) 0.3532 0.0888 0.5545

PPARGC1A (PPARG coactivator 1 alpha) 0.3050 0.0734 0.4603

CYP1A1 (cytochrome P450 family 1 subfamily A member 1) 0.2844 0.0736 0.4284

Note: The table shows the class label associated with the gene, the average, minimum and maximum probabilities across the 30 runs.
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