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Post-transcriptional RNA modification occurs on all types of RNA and plays a vital role in regulating every
aspect of RNA function. Thanks to the development of high-throughput sequencing technologies,
transcriptome-wide profiling of RNA modifications has been made possible. With the accumulation of
a large number of high-throughput datasets, bioinformatics approaches have become increasing critical
for unraveling the epitranscriptome. We review here the recent progress in bioinformatics approaches for
deciphering the epitranscriptomes, including epitranscriptome data analysis techniques, RNA modifica-
tion databases, disease-association inference, general functional annotation, and studies on RNA modifi-
cation site prediction. We also discuss the limitations of existing approaches and offer some future
perspectives.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Background

Post transcriptional RNA modification occurs on all types of
RNA and plays a vital role in regulating every stage of RNA life.
More than 170 different types of RNA modifications have been
identified, and the majority of them are methylation modification.
Ribonucleoside modification contains many chemical components
that are added to A, G, C or U. Some modifications come from non-
enzymatic processes or oxidative damage. Others are RNA editing,
which was originally described as a process of adding polyuridine
residues to selected RNAs coding regions. Since then, editing has
expanded to include the removal or addition of RNA bases,
although further differences remain somewhat inconsistent. There
are 111 modifications that can be found in tRNAs, 33 in rRNAs, 17
in mRNA, 11 in lncRNAs and other noncoding RNAs [1,2].

However, due to the lack of effective means to detect RNA
methylation, the research on RNA methylation had long been stag-
nant. For a long time, researchers had considered RNAmodification
as a mechanism of fine-tuning gene expression regulation, and
mostly limited to noncoding tRNA and rRNA. The importance of
RNA modifications was not fully aware of until the discovery of
human fat mass gene FTO as a RNA m6A demethylase [3] and the
invention of a transcriptome-wide m6A profiling approach
MeRIP-seq (or m6A-seq) [4,5]. These techniques give us a global
view of mRNA modification by providing detailed maps of 12 mod-
ifications that can be incorporated into the transcriptome, includ-
ing N6-methyladenosine (m6A), pseudouridine (w), N4-
acetylcytidine (ac4C), N1-methyladenosine (m1A), N7-
methylguanosine (m7G), 20O-methylations (Cm, Am, Gm, Um), 5-
methylcytidine (m5C), 5-hydroxymethylcytidine Cytidine (hm5c)
and inosine (I). Please refer to two recent reviews in this perspec-
tive [1,2].

N6-methyladenosine (m6A) is the most abundant and the most
well studied chemical modification on eukaryotic mRNA [6], whose
changes in level (and the consequent biological effects) are medi-
ated by methyltransferase (writer), demethylases (eraser) and
recognition proteins (reader) [7]. The methylation is catalyzed by
the protein complexes of writer (including mainly METTL3,
METTL14 and WTAP as well as KIAA1429, RBM15 and RBM15B)
and is de-methylated by the demethylases such as ALKBH5 [8]
and FTO [9]. Quite a few proteins involved in the formation of
the reader complexes that specifically recognized m6A sites have
been discovered. These include YTH family proteins (YTHDF1-3,
YTHDC1) [10–13], transcription initiation complex eIF3 [14],
ribonucleoprotein HNRNPA2B1 [15] and HNRNPC [16]. Tens of
thousands of m6A sites have been identified in the transcriptome,
suggesting that this modification may have a wide-ranging effect
on gene expression regulation [17]. For example, mediated gene
silencing on the X chromosome by the long non-coding RNA X inac-
tive specific transcripts (XIST) through YTHDC1 is due to the recog-
nition of the m6A sites [18]. In addition, m6A can also affect
translation extension by influencing the anticodon pairing rate
and fidelity of both mRNA and tRNA [19]. Furthermore, m6A mod-
ification is also involved in the gene regulation of histone modifica-
tions [20] by recruiting CCR4-NOT complex which promoted
degradation of targeted RNA after YTHDF2 binding to m6A site
[11,21]. The latter increases cap-independent translation under
UV radiation or heat shock through the binding of the transcription
initiation complex eIF3 binding to m6A sites in the 50UTR region
[22]. There are many reported functions of m6A modifications,
including but not limited to, promoting the learning and memory
capability of mice by m6A-mediated binding of the protein YTHDF1
to mRNA [23] and regulating the clearance of the mRNAs that
affect embryonic development in zebrafish through YTHDC2 pro-
tein recognition of m6A sites on mRNAs [24]. In living organisms,
enhancement of microRNA maturity can be achieved by m6A
methylation of pri-miRNA [25]. Meanwhile, this kind of modifica-
tion is also important for maintaining methyl-donor-S-adenosylme
thionine (SAM) levels [26]. Inhibition of RNA methylation by
reducing m6A demethylase can disrupt the circadian clock and
extend the circadian clock cycle, while overexpression of demethy-
lase shortens the cycle [27]. This is also supported by other studies
that extensive mRNA stabilization occurs in cells, especially those
mRNAs that encode proteins related to the circadian clock [28].
The m6A-mediated regulation of mRNA stability also plays impor-
tant roles in stem cell differentiation [29–31]. Importantly, various
changes in m6A methylation are presented in a large number of
mRNAs encoded by genes associated with human diseases, espe-
cially cancers [32], suggesting that this modification could be tar-
geted as the biomarkers for disease diagnosis or interference, for
instance, in viral infection [33], cancer [34–36], acute myeloid leu-
kemia [37], T Cell-related diseases [38] and certain brain disorders,
such as autism, Alzheimer’s disease and schizophrenia [39]. Inhibi-
tion of the activity of fat and obesity-related protein (FTO) by R-2-
hydroxyglutaric acid (R-2HG) increases the overall m6A level in R-
2HG sensitive leukemia cells which in turn decreases the stability
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of MYC/CEBPA transcripts, leading to suppression of MYC/CEBPA-
related signaling pathways and thus inhibition of the proliferation
of FTO-highly expressed cancer cells [40].

5-methylcytosine (m5C) is a wild-spread post-transcriptional
RNA modification that has been detected in rRNA, tRNA, mRNA,
lncRNA, viral RNA and etc. [41–43]. In mammals, m5C was primar-
ily catalyzed by RNA methyltransferase DNMT2 and NSUN2 along
with its homologs [44–46]. Likewise, the m5C marks on RNAs
formed by NSUNs can contribute to promoting the overall protein
synthetic level in cells in terms of protecting tRNA from shearing or
promoting the formation of ribosomes [47,48]. Another study indi-
cated that the deficiency of NSUN2 in T cells may result in the loss
of the m5C addition on the HIV-1 mRNA and perturb the translation
of HIV-1 mRNA by inhibiting the recruitment of ribosomes and alter-
native splicing of viral RNA [49]. In human, YBX1 has been identified
as a novel ‘‘reader” of m5C modification, preferentially recognizing
methylation C by its cold shock domain (CSD) [50] and contributing
to promote the maintenance, proliferation and differentiation of
adult stem cells [51]. m5C deposition on RNAs will vary their stability
among different RNA species. It may prevent mRNA decay though the
binding of YBX1 with mRNA stabilizer PABPC1A [50] and another
example proposed mRNA stability could be ensured by NSUN2 and
YBX1, driving the pathogenesis of human bladder urothelial carci-
noma [52]. While recently it has been reported that viral ncRNA level
increased followed by the loss of m5C modification, which was medi-
ated by the ablation of NSUN2 [53]. Latest studies in this year have
related m5C modification with the regulation of the thermal adapt-
ability in animal and plant cells by regulating the functions of tRNA
and mRNA [54,55]. A well-described hydroxymethylcytosine (hm5C)
modification in DNAs was also observed in RNAs, which is oxidized
form of m5C exhibiting important physiological roles in drosophila
[56].

Adenosine-inosine (A-to-I) RNA editing is the main form of RNA
editing in mammals [57], mediated by the members of the adeno-
sine deaminase acting on RNA (ADAR) enzyme family, which will
hydrolyze adenosine to inosine, first discovered in 1987 [58]. Guar-
anteed by the development of deep sequencing and advances in
bioinformatics, 4.5 million A-to-I RNA editing sites have been con-
firmed by high throughput screening, either in the coding or non-
coding region [59]. Due to the chemical properties of inosine are
similar to guanosine, it will complement with cytidine to form base
pairs [60]. This nucleotide conversion may affect gene expression,
regulation and functions, in terms of the changes of amino-acid
sequence, the process of miRNA expression and maturation,
depending on the areas where the RNA editing events occur
[61,62]. Studies have showed that the dysregulation of A-to-I
RNA editing in transcriptome or abnormal expression of ADAR is
associated with various diseases, including neurological diseases,
immune disease, cancer, viral infections and etc. For example, A-
to-I RNA editing in a subunit of glutamate receptor 2 (GluR2) is
essential for the survival of motor neurons, hence the inhibitors
targeting non-A-to-I RNA editing receptors may serve as an addi-
tional tool for the treatment of amyotrophic lateral sclerosis
(ALS) [63]. A-to-I RNA editing on some non-coding sites is believed
to have some key roles for innate immunity [64,65]. For instance,
A-to-I RNA editing activities have a significant diversity in
response to different subtypes of influenza A virus in human
epithelial cells [66]. A latest example found the regulatory role of
the A-to-I RNA editing in the post-transcriptional control of
rheumatoid arthritis (RA), which could be used in clinical treat-
ment as a therapeutic target [67]. During the occurrence and devel-
opment of human tumors, the A-to-I RNA editing level on some
oncogenes and tumor suppressor genes also been found in disor-
der, but either high or low is contingent on the specific cancer type
[58,68,69]. A study indicated that inhibition of ADAR1 significantly
inhibited proliferation, invasion and migration in a thyroid tumor
cell model [70]. Another research proved that A-to-I RNA editing
can contribute to the proteome diversity of breast cancer by the
changes of amino acid sequence [71].

Our knowledge of RNA modification is continuing to expand
rapidly. In addition to the widely studied m6A methylation, pseu-
douridine (w) is one of the most abundant [2] and extensively
studied types of transcriptome modification of RNAs in living
organisms. It is formed by isomerization of uracil nucleoside (U).
The isomerization of uracil and pseudouracil is catalyzed by PUS
enzymes alone or together with H/ACA ribonucleoproteins [72].
W has a key function in guiding the process of protein translation
in stem cells. It is of great potentials for the treatment of stem cell
related diseases, such as human myelodysplastic syndrome [73].
Pseudouracil also reduces RNA conformational variability,
enhances base pairing stability and polar interactions with pro-
teins, and thereby regulating mRNA stability and gene expression
[74]. It has been reported that pseudouracil nucleoside (w) is
involved in heat shock response from yeast, but its molecular
mechanisms remains unclear [75]. Several new types of RNA mod-
ifications have also been reported recently. For example, a well-
described hydroxymethylcytosine (hm5C) modification in DNAs
was also observed in RNAs, exhibiting important physiological
roles in drosophila [56]. N4-acetylcytidine (ac4C) is revealed as a
mRNA modification catalyzed by the acetyltransferase NAT10
[76]. N6,20-O-dimethyladenosine (m6Am) in mRNA is another type
of reversible methylation, and its modification status in the 50

cap influences stability of cellular mRNAs [77,78]. N1-
methyladenosine (m1A) methylation is a newly discovered reversi-
ble epigenetic modification that can be de-methylated by RNA
repair enzyme ALKBH1 [79], but there not have been identified
yet about m1A methylation enzymes and its recognition proteins.
Unlike m6A, m1A has even lower abundance, predominantly dis-
tributed in the 50UTR region of mRNA which may be involved in
regulating translation initiation process [80]. At last, 20-O-
methylation (Nm) of viral own genomes, such as HIV-1 and WNV
RNA viruses, may help their escape from host innate immune
responses [81,82]. The above reviewing has that RNAs undergo a
number of chemical modifications, which play various critical roles
in physiological and pathological processes in nearly all organisms.

Thanks to the development of sequencing technologies,
transcriptome-wide profiling of RNA modifications has been made
possible by a number of different techniques such as MeRIP-seq
and RNA BS-seq. With the accumulation of large amount of high-
throughput datasets, bioinformatics approaches have been increas-
ingly needed for unraveling the epitranscriptome as a cost effective
avenue. We systematically reviewed in the following the emerging
topics and recent progress in bioinformatics approaches for decipher-
ing the epitranscriptomes, including epitranscriptome data analysis
techniques, RNA modification databases, disease-association infer-
ence, general functional prediction, and RNA modification site pre-
diction methods (especially deep learning approaches). The review
is divided into the following sections. We firstly introduced the tools
for epitranscriptome data analysis as well as some epitranscriptome
profiling technologies. Then we summarized the algorithms for
methylation sites prediction and the existing databases dedicated
for RNA modifications. We in the next analyzed the disease marker
and association prediction related to RNA modifications. In the end,
we briefly discussed the limitations of existing epitranscriptiome
bioinformatics approaches and offered some possible future perspec-
tives (see Fig. 1).
2. Tools for epitranscriptome data analysis

With the advances in next-generation sequencing approaches,
many experimental methods have been designed to profile various



Fig. 1. The emerging topics in epitranscriptome bioinformatics.

Fig. 2. Illustration of MeRIP-Seq Protocol. In MeRIP-Seq, two types of samples (IP and control samples) are generated. In the beginning of the protocol, RNA molecules are
firstly sheared into fragments of around 100 nt. Through anti-m6A antibody, the IP sample provides unbiased measurement of the methylated RNA fragments; the control
sample reflects the basal RNA abundance and is used as a negative control, by comparing to which, the peaks (or methylated sites) can be identified. The exomePeak approach
seeks to identify enriched regions on pooled exons so that a single peak may not be split into multiple enriched regions on the genome.
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types of RNA modified nucleotides. Meanwhile, a number of com-
putational programs were developed for the analysis of the mas-
sive high-throughput sequencing data generated. We briefly
reviewed here a few software tools developed for epitranscriptome
profiling data generated from MeRIP-Seq, RNA BS-Seq, etc.

2.1. MeRIP-Seq (or m6A-Seq)

Methylated RNA Immunoprecipitation sequencing (MeRIP-Seq
or m6A-Seq) [4,5] is so far the most widely adopted experimental
approach for profiling the transcriptome-wide distribution of
RNA modification (see Fig. 2). Considered as a marriage of ChIP-
Seq and RNA-Seq, it is possible to infer from the data generated
from this antibody-based approach the location of RNA modifica-
tion (peak calling) as well as the changes in methylation status
between two different biological conditions (differential methyla-
tion analysis). Additionally, site clustering analysis of epitranscrip-
tome data from multiple biological conditions may reveal co-
methylation patterns, which may provide insights into the regula-
tory mechanisms of the epitranscriptome by relevant protein reg-
ulators (Writers, Erasers, and Readers). These perspectives are
reviewed as follows:

2.1.1. Peak Calling (or Site Detection)
MeRIP-Seq immunoprecipitates the RNA fragments containing

the modification with anti-m6A polyclonal (SYSY, RN131P) or mon-



Table 1
Site prediction tools from MeRIP-seq data.

Tool Input
format

Description URL/stand-alone package Reference

MeRIP-PF FASTQ MeRIP-PF segments the reference genome by a fixed window, then compares reads count
between control sample and IP sample to obtain p-value and adjusted p-value by Fisher’s exact
test and Benjamini-Hochberg method. In order to form real peaks, the significant and adjacent
windows are concatenated.

http://software.big.ac.cn/
MeRIP-PF.html

[177]

BaySeqPeak Reads
count
matrix

A Bayesian hierarchical model is proposed to detect methylation sites from MeRIP-Seq data in
BaySeqPeak. By using zero expansion negative binomial model combined with hidden Markov
model, the spatial dependence of enrichment of adjacent reading segments is explained, which
has better stability under the condition of small samples.

https://github.com/
liqiwei2000/BaySeqPeak

[178]

MACS2 BAM Use a Poisson model to detect peaks. It was originally developed for ChIP-seq data analysis, but
has also been quite popular in MeRIP-seq data analysis for its reliability, speed and convenience.

https://github.com/taoliu/
MACS/

[83]

exomePeak BAM Exomepeak uses przyborowski and wilenski methods to compare the mean value (or C-test) of
two Poisson distributions. It can detect the peak across the exon connection region of a specific
gene exon set. The version 2 (exomePeak2) was released very recently.

https://rdrr.io/github/
ZhenWei10/exomePeak2/

[85]

m6AViewer BAM m6AViewer constrains the number of read segments and the width of the peak, and uses EM
algorithm to find the most possible m6A methylation peak.

http://dna2.leeds.ac.uk/
m6a

[179]

MeTPeak BAM MeTPeak models reads count, introduces the layer with beta variable to obtain the variance, and
uses the hidden Markov model to describe the reading dependency near the site.

https://
github.com/compgenomics/
MeTPeak

[180]

Fig. 3. RNAmethylation and DNA methylation. Compared with the control group, both the absolute and relative amount of methylated DNA in the treatment group increased
under the treated condition; however, for the two may not be consistent for RNA methylation. In the above example, the total amount of methylated RNA increased in the
treatment group; however, due to the increased expression level (over-expression), the relative amount of methylated RNA decreased (hypo-methylation).

Table 2
Differential methylation analysis tools from MeRIP-seq data.

Tool Input
format

Description URL/stand-alone package Reference

exomePeak BAM The original exomePeak uses a rescaled version of Fisher’s exact test to detect differential
methylation sites. The latest version of exomePeak2 uses a generalized linear model which
considers the over-dispersion of reads count and GC content bias in sequencing data.

https://rdrr.io/github/
ZhenWei10/exomePeak2/

[87]

FET-HMM BAM FET-HMM divides the detected RNA methylation site into small bins and uses a hidden Markov
model to detect differential methylation sites.

https://github.com/lzcyzm/
RHHMM

[181]

MeTDiff BAM MeTDiff for differential methylation sites models reads variations with beta-binomial model.
Then a likelihood ratio test based on the beta-binomial is developed to test the significance of
differential methylation sites.

https://
github.com/compgenomics/
MeTDiff

[182]

RADAR Reads
count
matrix

RADAR enables accurate identification of altered methylation sites by accommodating
variability of pre-immunoprecipitation expression level and post-immunoprecipitation count
using different strategies.

https://github.com/
scottzijiezhang/RADAR

[88]

DRME Reads
count
matrix

DRME aims at RNA differential methylation in small samples. It uses two independent negative
binomial distributions to model the reads count in the methylation region, and uses two-
dimensional local regression to estimate variance for solving the effect of transcription
regulation, and carrying out RNA differential methylation analysis combined within-group
biological variability difference of biological replication samples.

https://github.com/lzcyzm/
DRME

[183]

QNB Reads
count
matrix

QNB is based on four independent negative binomial distributions with the variances and means
for reads count of the input control samples and IP samples, and linked by local regressions. QNB
combined information from both input and IP samples to estimate gene expression, which could
improve the testing performance for lowly expressed genes.

https://cran.rstudio.com/
web/packages/QNB/

[89]
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oclonal (17-3-4-1) antibodies in randomly interrupted RNA frag-
ment library to construct the IP sample, so the segments carrying
the methylation mark are over-represented in the IP samples com-
pared with the input control sample, which can be viewed as the
standard RNA-Seq library. Mapping the reads of IP sample to the
reference genome will form a peak of reads coverage near the mod-

http://software.big.ac.cn/MeRIP-PF.html
http://software.big.ac.cn/MeRIP-PF.html
https://github.com/liqiwei2000/BaySeqPeak
https://github.com/liqiwei2000/BaySeqPeak
https://github.com/taoliu/MACS/
https://github.com/taoliu/MACS/
https://rdrr.io/github/ZhenWei10/exomePeak2/
https://rdrr.io/github/ZhenWei10/exomePeak2/
http://dna2.leeds.ac.uk/m6a
http://dna2.leeds.ac.uk/m6a
https://github.com/compgenomics/MeTPeak
https://github.com/compgenomics/MeTPeak
https://github.com/compgenomics/MeTPeak
https://rdrr.io/github/ZhenWei10/exomePeak2/
https://rdrr.io/github/ZhenWei10/exomePeak2/
https://github.com/lzcyzm/RHHMM
https://github.com/lzcyzm/RHHMM
https://github.com/compgenomics/MeTDiff
https://github.com/compgenomics/MeTDiff
https://github.com/compgenomics/MeTDiff
https://github.com/scottzijiezhang/RADAR
https://github.com/scottzijiezhang/RADAR
https://github.com/lzcyzm/DRME
https://github.com/lzcyzm/DRME
https://cran.rstudio.com/web/packages/QNB/
https://cran.rstudio.com/web/packages/QNB/


Fig. 4. The regulation of RNA methylome. The dynamics in epitranscriptome are a result of a joint effect of both transcriptional and enzymatic regulations. On the one hand,
transcriptional regulation directly changes the amount of RNA molecules and leads to coordinated changes in the absolute amount of methylated molecules, leaving the
relative amount unchanged. On the other hand, enzymatic regulation of the RNA methylome by ‘methylation potential’ changes directly the percentage of methylated
molecules. For the above illustration, under the joint effects of transcriptional down-regulation and enzymatic hypermethylation, the absolute amount of methylated RNA
stays unchanged.

Table 3
Summary of the studies for m6A methylation clustering.

Method Input
format

Description URL/stand-alone
package

Reference

MeTCluster BAM MeTCluster, a novel algorithm and an open source R package, models the reads count
variance and the underlying clusters of the methylation peaks by a hierarchical graphical
model. It is evaluated on both simulated and real MeRIP-Seq datasets.

http://compgenomics.
utsa.edu/metcluster

[87]

Binary Clustering M-value Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal
and 50 sites

[184]

Four clustering
methods

M-value Four different clustering approaches are used, including K-means, hierarchical clustering
(HC), Bayesian factor regression model (BFRM) and nonnegative matrix factorization
(NMF) to unveil the co-methylation patterns in epitranscriptome.

[185]

Threshold-Based
Measurement
Weighting

Reads
count
matrix

A convenient measurement weighting strategy that can largely tolerate the artifacts of
high-throughput sequencing data.

[186]

DPBBM Reads
count
matrix

DPBBM implements a beta-binomial model, which uses the original measurement value
based on count instead of the estimation value to capture the clustering effect on the
methylation level. In addition, the nonparametric Dirichlet process is used to
automatically determine the optimal number of clusters, which avoids the common
problem of model selection in cluster analysis.

https://cran.r-project.
org/web/packages/
DPBBM/

[187]
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ification sites. Through the statistical analysis of IP over input
enrichment on the genomic sliding windows, we can infer the loca-
tions of m6A modification sites across the genome or exome. Sev-
eral computational tools have been developed for site detection
(peak calling) fromMeRIP-seq data (see Table 1), and among them,
MACS [83] has been a popular peak calling tool originally devel-
oped for analyzing ChIP-Seq data, but it is also frequently used to
process MeRIP-Seq data by many published studies [84]. Another
widely applied software tool is exomePeak, which was specifically
designed for epitranscriptome peak calling of MeRIP-Seq data [85],
with a major update released recently (exomePeak2). The major
advancement of exomePeak2 compared with MACS is its ability
to account for the technical and biological variabilities that are pre-
dominant in RNA-Seq compared with DNA-Seq [86]. For example,
exomePeak2 implements the functionality of sequence content
bias correction. Consequently, it could dramatically reduce the sys-
tematic errors generated by PCR amplification during the library
preparation of IP and input samples.
2.1.2. Differential methylation analysis
Differential methylation analysis focuses on the changes of

modification status between two different biological conditions.
Although changes in absolute abundance of methylation may be
equally important, current formulation overwhelmingly focused
on the relative abundance or methylation proportion, specifically,
the ratio of methylated to total RNAs, as previously modeled by
[87]. Different from DNA differential methylation, for differential
RNA methylation analysis, it is important to account the changes
in basal expression levels of the RNA transcripts, especially for
the relative abundance comparison (See Fig. 3). We summarized
the existing methods for RNA differential methylation in Table 2.
Although classic approaches based on Fisher’s exact test (realized
in the exomePeak R package) [87] has been quite popular in differ-
ential methylation analysis for its modeling robustness and imple-
mentation easiness, recent published methods such as RADAR [88]
and QNB [89] have achieved higher accuracy through specifying
refined statistical models.

http://compgenomics.utsa.edu/metcluster
http://compgenomics.utsa.edu/metcluster
https://cran.r-project.org/web/packages/DPBBM/
https://cran.r-project.org/web/packages/DPBBM/
https://cran.r-project.org/web/packages/DPBBM/


L. Liu et al. / Computational and Structural Biotechnology Journal 18 (2020) 1587–1604 1593
2.1.3. Clustering analysis of m6A sites (peaks)
Epitranscriptome serve as an important layer of post-

transcriptional regulation, and the count-based quantification in
MeRIP-Seq data could potentially shed light on the mechanics of
conditional specific regulation through RNA modification.
Although the transcript specific regulatory mechanism of the epi-
transcriptome is still unclear, the clustering partition of the methy-
lation sites on distance metric evaluated through the conditional
specific methylation profiles may associate with the targeting of
RNA modification regulators (Writers, Readers, Erasers) (See
Fig. 4). Some relevant works in the field were summarized in
Table 3. Although classical clustering algorithm such as hierarchi-
cal clustering and K-means clustering can be reasonably efficient
under homogenous laboratory conditions [90], recent develop-
ments on technical independent quantification method could fun-
damentally improve the quality of the clustering partition after the
stratification of the major technical variables from the methylation
level estimates.

2.1.4. Quality assessment
The quality of MeRIP-seq data can be evaluated by the conven-

tional 2nd generation sequencing quality control pipeline such as
FASTQC. Recently, trumpet R package is developed for MeRIP-Seq
specific quality examination [91]. The trumpet package takes the
aligned BAM files as the inputs and returns an assessment report
with a single line of R command concerning the quality statistics
of sequencing reads distribution, the strength of the immunopre-
cipitation signal, and the comparison between different biological
replicates. After the systematic examination of the published
MeRIP-seq experiments, we observed substantial amount of tech-
nical biases in a significant proportion of the published MeRIP-
seq samples. The technically effected samples should be handled
carefully through the quantification methods independent of the
source of errors while performing any downstream data analysis
tasks.

2.2. Reverse transcription signature in sequencing

The combination of Reverse Transcription (RT) and high-
throughput sequencing has emerged as an effective approach for
identification of RNA modification through the analysis of the mis-
incorporation during complementary DNA (cDNA) synthesis or
abortive RT-products [92]. Before the advent of direct RNA
sequencing technique nanopore [93], the modified RNA templates
were reversed transcribed into cDNA to generate RNA-seq data. As
the newly synthesized cDNA contains only four types of canonical
deoxynucleotides, this process may lead to the partially or com-
pletely loss of information about RNA modifications stored on
the original RNA templates [94]. To solve this problem, some
chemical reagents were used to specifically react with a target
modification, which in return alter the cDNA synthesis at modified
RNA sites, i.e., the use of N-cyclohexyl-N0-(2-morpholinoethyl)-car
bodiimide-metho-p-toluenesulfonate (CMC) to leave a bulky group
on pseudouridine modification and stop reverse transcription [74].
Besides, other RNA modifications with chemical groups added on
their Watson-Crick face do not need chemical derivatization to
alter cDNA synthesis. For example, the m1A RNA modification
has a methyl group on the Watson-Crick face of adenosine, which
resulted in cDNA synthesis differing from that of an unmodified
adenosine on the RNA template. For the RNA templates containing
m1A modification, the products of transcription arrest were pre-
sented in the synthesized cDNA, i.e., incorporation of mismatched
dNTPs at modification position and abortive cDNA fragments, and
this erroneous information generated during cDNA synthesis was
termed as reverse transcription signatures. The signals of RT arrest
were traditionally detected by either capillary electrophoresis or
polyacrylamide gelelectrophoresis (PAGE) [95] before the develop-
ment of deep sequencing methods. As the product of an A-to-I
deamination, inosine is reversed transcribed for a cytidine rather
than a thymidine during cDNA synthesis. And the first
transcriptome-wide mapping of a RNA modification was benefited
from this model misincorporation [96]. Also, combined analyses of
both mismatch patterns plus defined RT arrest rate were per-
formed to efficient identify 1-methyladenosine (m1A) modification
[92]. The bioinformatics tools used for reverse transcription signa-
ture analysis were listed in Table 4.

2.3. RNA bisulfite sequencing

5-Methylcytosine (m5C) is a type of chemical modification on
the carbon 5 atom of cytosine, which can be detected by high-
throughput sequencing of RNA treated by bisulfite (RNA Bisulfite
sequencing) that converts all unmodified cytosine into uracil leav-
ing modified cytosine (m5C) unaffected [97]. Although with some
intrinsic bias, it has been considered as the gold standard for pro-
filing m5C epitranscriptome [98,99]. One of the primary advan-
tages of RNA Bisulfite sequencing in detection of modified
cytosine (m5C) is that a transcriptome-wide view of m5C modifica-
tion at single-based resolution can be provided. It is worth noting
that, although both 5-methylcytosine and 5-
hydroxymethylcytosine are resistant to deamination and thus
can not be differentiated by bisulfite sequencing, the extremely
low level of 5-hydroxymethylcytosine in human and mouse
mRNAs [100] still makes RNA Bisulfite sequencing to become a
robust and attractive technique for profiling m5C epitranscriptome.
Several toolkits support the analysis of data generated from RNA
Bisulfite sequencing (Table 5). It is important to note that a number
of remedies have been taken to eliminate false positive sites
reported from RNA Bisulfite sequencing technique, including sta-
tistical methods, excluding low quality reads, filtering of bisulfite
conversion-resistant sites and SNPs, etc. [68], which are often
necessary.

2.3.1. Quality control of raw RNA Bisulfite sequencing data
In the process of sodium bisulfite interaction and cDNA conver-

sion, unmodified cytosine in mRNAwill end up as thymine, and the
GC contend is extremely low in mRNA Bisulfite sequencing data.
Therefore, quality control of bisulfite sequencing reads should be
implemented, low quality bases and adaptor sequences should be
trimmed off from the raw data. Software tool such as Trimmomatic
[101] can be used in this regard.

2.3.2. Alignment of RNA bisulfite sequencing reads
Reads generated from bisulfite sequencing can be mapped to

either a reference transcriptome or an annotated genome, using
aligners such as Bowtie2 [102] and HISAT2 [103]. For the align-
ment of bisulfite sequencing reads to a reference transcriptome,
the longest transcript with the highest aligned score were consid-
ered, when it comes to issue that reads may be mapped to multiple
transcripts of the same gene [104]. To increase the overall mapping
rates of bisulfite sequencing data, sequencing reads may be aligned
to an annotated genome first, and then a reference transcriptome
can be used for further alignment against unmapped reads [105].

2.3.3. Methylation calling and elimination of false positive sites
To avoid the detection of false positive sites, strict filters and

statistical methods were applied during methylation calling pro-
cess [105–108], along with the selection of bisulfite conversion-
resistant bases using RNA secondary structure prediction tools
[107]. Besides, the m5C methylation candidates were further fil-
tered to remove those sites that overlapped with known genetic
variants and RNA editing sites [109], using databases such as



Table 4
Summary of the reviewed tools for RT signature analysis.

Tool Input
format

Description URL/stand-alone package Reference

Coverage Analyzer
(CAn)

SAM CAn is a tool that offers the functions of inspection and
visualization of deep sequencing data to identify RNA
modification, which combines a pipeline to process data with
flexible controls for differential or independent visualization and
systemically screening for modification candidates using RT
signatures.

https://zenodo.org/record/164811 (doi:https://doi.
org//10.5281/zenodo.164811) or
https://sourceforge.net/
projects/coverageanalyzer/

[188]

HAMR BAM HAMR is a tool that allows fast identification of RNAmodification
at single-nucleotide resolution using the nucleotide substitutions
identified from RNA-seq datasets, which scans modification
candidates either transcriptome-wide or specific locations by
interested genomic coordinates.

http://wanglab.pcbi.upenn.edu/hamr [189]

Galaxy modification
calling pipeline

FASTQ A modification calling pipeline based on Galaxy, which provides
a versatile graphical workflow system for modification sites
calling based on machine learning. The machine learning module
in downstream analysis offers quality assessment parameters to
help to improve the experimental parameters for both library
preparation and sequencing.

https://github.com/HelmGroup [94]

Table 5
Summary of the reviewed tool kits to process data generated from RNA-BisSeq technique.

Tool Aligner Description Programlanguage URL/stand-alone
package

Reference

meRanTK meRanT:
Bowtie2
meRanG:
STAR or
TopHat2

meRanTk contains five multithreaded programs including meRanT, meRanG,
meRanCall, meRanCompare, and meRanAnnotate, which is the first publicly
available tool for high-throughput RNA cytosine methylation data analysis.

Perl http://icbi.
at/software/meRanTK

[104]

BS-RNA HISAT2 BS-RNA features in its ability to map ‘dovetailing’ reads using BEERS, compared
with pervious published tool meRanTK.

Perl http://bs-rna.big.ac.cn [190]

BisRNA BSMAP BisRNA provides a computational tool that features in combining data-driven
statistics modeling and tailored filtering together to reduce possible artifact
introduced by bisulfite sequencing.

R https://cran.r-project.
org/web/packages/
BisRNA

[191]

Episo Bowtie Episo is the only computational tool available to quantify the RNA m5C
modification at the transcript isoform level, which distinguish m5C level between
isoforms of the same gene.

GNU
GPLv3 + license

https://github.com/
liujunfengtop/Episo

[192]
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dbSNP [110] and REDIdb [111]. Several mRNA methylation studies
have applied strict filtering pipelines to reduce false positive detec-
tion. Reads filters with strict criteria were set for the first step, this
helps to remove PCR duplicates [107,108] and reads with high level
of unconverted cytosine rate [105,106]. Sites filters were then
applied for coverage depth, methylation level, base quality, and
false discover rate (FDR). Furthermore, other filtering criteria were
also implemented by different methylation studies to further eval-
uate candidate methylation sites, e.g., the candidate methylation
sites should be detected in at least two biological replicates, or
excluding 10 and 7 bases on the 50 end of forward and reverse
reads from methylation calling, respectively [107].

2.4. Other tools for RNA modification analysis

Besides the toolkits used for processing high-throughput
sequencing data mentioned above, a number of downstream com-
putational methods have been developed to effectively facilitate
the analysis, annotation and exploration of RNA methylation data.

An open R/Bioconductor package Guitar [112] was developed to
profile the transcriptomic view of RNA-related biological features
represented by genome-based coordinates, which extracts the
RNA coordinates relating to the landmarks of RNA transcripts
and contributes to the efficiently analysis of massive amount of
RNA-related biological features. RNAModR and MetaPlotR [113]
were designed with similar purpose. RNAModR serves as an R-
based package for the transcriptome-wide analysis and visualiza-
tion of distribution of mRNA modifications, revealing the potential
insights into the biological functions of these modified nucleotides.
MetaPlotR was developed as a simple pipeline to help biologists
with little bioinformatics knowledge to generate metagene plots
of RNA modifications, protein binding sites, etc. A web application
txCoords [114] can be used for peak re-mapping, therefore corrects
the wrong labeled peaks and retrieves the true sequences.

RNAmod (https://bioinformatics.sc.cn/RNAmod) [115] is an
interactive, one-stop, web-based platform for the automated anal-
ysis, annotation, and visualization of mRNA modifications in 21
species with 7 kinds of RNA modifications. RNAmod firstly extracts
gene features (sequence length, GC content et.al) from the refer-
ence genome annotation, and then maps the submitted modifica-
tion sites onto different RNA features. It then performs various
coverage calculations, metagene analysis, and annotations focusing
on mRNAs. The annotations include: (1) site distribution among
different gene features and gene biotypes; (2) coverage analysis
among RNA features; (3) site distribution around transcription
start/end sites; (4) site distribution around translation start/end
sites; (5) site distribution around splicing junction sites; (6) com-
parison of gene characteristics between modified genes and other
genes; (7) modified site heatmap around translation start/end sites
and transcription start/end sites; (8) mRNA metagene analysis; (9)
motif enrichment analysis; (10) functional enrichments for modi-
fied genes. Three functional modules are separately provided by
RNAmod, single case, group case and gene case to facilitate users
who have different analysis requirements. The single case module

https://bioinformatics.sc.cn/RNAmod
https://zenodo.org/record/164811
https://sourceforge.net/projects/coverageanalyzer/
https://sourceforge.net/projects/coverageanalyzer/
http://wanglab.pcbi.upenn.edu/hamr
https://github.com/HelmGroup
http://icbi.at/software/meRanTK
http://icbi.at/software/meRanTK
http://bs-rna.big.ac.cn
https://cran.r-project.org/web/packages/BisRNA
https://cran.r-project.org/web/packages/BisRNA
https://cran.r-project.org/web/packages/BisRNA
https://github.com/liujunfengtop/Episo
https://github.com/liujunfengtop/Episo
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allows users to annotate RNA modifications for a single sample.
The group case modules allow users to annotate and compare
the distribution of modifications between two samples or even
more groups. The gene case analysis module can be used to analyze
the modification distribution in the context of specific gene.

The nucleotide enrichment scores can be calculated by ToNER
[116] (Transformation of Nucleotide Enrichment Ratio) through
analyzing RNA-seq data generated from enriched and unenriched
control libraries, in particular when obtaining data from experi-
mental replicates, which may be used to analyze epitranscriptome
data generated from enrichment-based approaches.

Furthermore, to explore the effect of genetic variants on RNA
modifications, m6ASNP [117] was designed for the identification
of m6A-associated variants that target m6A modification sites. A
variant was defined as m6A-associated variants if it can cause the
alteration of methylation status of a m6A site (gain or loss), and
the potential impact of m6A modification on diseases was revealed
by incorporating the information of disease-associated SNPs
derived from different databases, including GWAS catalog [118],
Johnson and O’Donnel [119] and ClinVar [120]. Lastly, an all-in-
one toolkit RNA Framework [121] was recently developed, which
is characterized by comprehensive analysis of most HGS-based
RNA structure probing and post-transcriptional modification map-
ping experiments. To sum up, with the advances in high-
throughput sequencing techniques and the increasing interest in
RNA epitranscriptome, a variety types of upstream and down-
stream computational tools have been developed, to best share,
annotate, analyze, and take advantage of the massive amount of
NGS data generated.
3. RNA modification site prediction

Although is being reviewed lastly in this manuscript, computa-
tional prediction of RNA modification sites actually embodied the
largest number of bioinformatics studies concerning epitranscrip-
tome bioinformatics. At present, most of the computational predic-
tion methods relied on gold standard datasets obtained from base-
resolution epitranscriptome profiling approaches, extracted pre-
dictive features and utilized machine learning or deep learning
classifiers to predict putative RNA modification sites. Among all
the RNA modification types, m6A RNA methylation is the most
widely studied, and it is also the predictive target of the earliest
as well as the most sophisticated predictive approaches. We sum-
marized in Tables 6 and 7 the prediction tools for m6A and other
types of RNA modifications, respectively. These works together
greatly improved our understanding of the distribution of multiple
types of RNA modifications in different species (Please see a com-
prehensive review [122]). It may be worth noting that, according to
a recent review [122], the WHISTLE approach, which was based on
SVM algorithm and 35 additional genomic features as well conven-
tional sequence features [123], achieved so far the best perfor-
mance in m6A sites prediction, suggesting the value and
importance of increased volume of high quality training data.
When restricted to methods based on DNA/RNA sequences only,
the deep learning-based method DeepPromise [122] achieved so
far the best prediction performance.
3.1. Deep learning in RNA modification sites prediction

One prominent trend is that, deep learning-based predictive
approaches seem to be able to offer better overall prediction per-
formance compared with classic machine learning methods. In
contrast of traditional machine learning methods, deep learning
(DL) model can automatically extract the non-linear features. Sev-
eral deep learning-based methods have been developed. These
methods firstly extracted the positive modification sites from
existing studies and database like Met-DB and RMBase, and then
selected negative samples to build a standard data set to train
and test the proposed approach.

The most widely used deep learning models are convolutional
neural network (CNN), which can effectively learn the motif
related features from RNA sequence, and recurrent neural network
(RNN), which can learn the non-linear sequential features from
RNA sequence, including long short-term memory unit (LSTM)
and gated recurrent unit (GRU). Gene2vec [124], DeepPromise
[122], iN6-Methyl (5-step) [125] and Deep-m6A [126] built CNN
models to predict m6A or m1A modifications; BERMP [127]
employed a bidirectional Gated Recurrent Unit (BGRU) model to
predict m6A; DeepMRMP [128] adopted bidirectional Gated Recur-
rent Unit (BGRU) and transfer learning to predict m6A, m1A, pseu-
douridine and m5C; the DL models of DeepM6ASeq [129] consists
of two layers of CNN, one bidirectional long short-term memory
(BLSTM) layer and one fully connected (FC) layer.

Although most of these approaches focused on m6A RNA
methylation prediction, it is worth noting that deep learning has
also been applied to other modifications as well. For example,
CNNPSP [130] and iRNA-PseKNC [131] employed convolutional
neural network (CNN) to predict pseudouridine and 20-O-
methylation, respectively. And DeepPromise [122] is also able to
predict m1A sites. Please refer to Table 7 for a summary of predic-
tion approaches for non-m6A modifications.

The input features of most DL-based methods are RNA or DNA
sequence except Deep-m6A which embedded the MeRIP-Seq reads
count with RNA sequence to predict condition-specific (e.g. disease
or normal) m6A sites. There are diverse strategies to encode the
input features. We summarize in the following 4 major kinds of
encoding strategies, including:

(1) one-hot embedding;
(2) RNA/DNA nucleotides to vector embedding;
(3) RNA sequence and MeRIP-Seq reads count embedding;
(4) neighboring methylation state embedding.

One-hot encoding is widely used for sequence analysis
[132,133], which encodes the ‘A’, ‘U’ (or ‘T’), ‘C’ and ‘G’ to 4-
dimensional binary vectors. DeepM6ASeq, Gene2vec, DeepPro-
mise, DeepMRMP and Deep-m6A employed one-hot encoding as
part of their feature encoding strategies. RNA/DNA nucleotides to
vector embedding treated one or several nucleotides as words
and the whole sequence as a sentence, then transfer nucleotides
to numeric vectors based on semantic analysis. BERMP treated
each nucleotide as a word and trained an embedding layer together
with the BGRU model to convert the input nucleotide to vector;
Gene2vec regarded 3 RNA nucleotides as an RNA word and devel-
oped a neural-network-based model to generate a 100-
dimensional feature vector for each ‘word’ and also employed
RNA word embedding which treated 3 RNA nucleotides as a word,
then built a dictionary to embed the whole sentence and finally
trained an embedding layer to transform each integral sequence
into a data table; DeepPromise adopted the enhanced nucleic acid
composition (ENAC) embedding, which can simultaneously depict
the nucleotides’ composition and position information based on a
length-fixed window slide on RNA sequence from 50 to 30 termini
and also RNA-embedding which took 5 nucleotides as a word
and adopted similar scheme with RNA word embedding adopted
by Gene2vec to transform each integral sequence into a data table;
iN6-Methyl (5-step) treated 3 nucleotides as a word and employed
word2vec [134] to convert the ‘word’ to a 100-dimensional vector,
similar with Gene2vec. Neighboring methylation state embedding
is only adopted by Gene2vec, which embedded the 250 upstream
and 250 downstream candidate m6A sites around the predicted



Table 6
Summary of m6A site prediction tools.

Tool Method Encoding scheme Species URL/stand-alone package Reference

iRNA-PseColl SVM NCP; ANF Human http://lin.uestc.edu.cn/server/
iRNA-PseColl

[193]

WHISTLE SVM NCP; ANF; Genome features Human http://whistle-
epitranscriptome.com

[123]

HMpre XGBoost Binary; CPD; k-mer; Site Location Related Features;
Features Related to Entropy; SNP Features

Human https://github.com/Zhixun-
Zhao/HMpre

[194]

iRNA-Methyl SVM PseDNC Yeast http://lin.uestc.edu.cn/server/
iRNA- Methyl

[195]

pRNAm-PC SVM PseDNC Yeast http://www.jcibioinfo.cn/
pRNAm-PC

[196]

RAM-ESVM SVM PseDNC Yeast http://server.malab.cn/RAM-
ESVM/

[197]

m6Apred SVM NCP; ANF Yeast http://lin.uestc.edu.cn/server/
m6Apred.php

[198]

RNAMethylPred SVM BPB; DNC; KNN score Yeast MATLAB package [199]
TargetM6A SVM PSNP; PSDP; NC Yeast http://csbio.njust.edu.cn/bioinf/

TargetM6A
[200]

iRNA(m6A)-
PseDNC

SVM PseDNC Yeast http://lin-group.cn/server/iRNA
(m6A)-PseDNC.php

[201]

M6APred-EL Ensemble PS(k-mer)NP; PCPs; RFHC-GACs Yeast http://server.malab.cn/
M6APred-EL/

[202]

DeepM6APred SVM Deep features; NPPS Yeast http://server.malab.cn/
DeepM6APred

[203]

iMethyl-STTNC SVM PseDNC; PseTNC; STNC; STTNC Yeast No [204]
PXGB XGBoost + PSO PSNP; PSDP; NC Yeast No [205]
M6APred-EL Ensemble PS(k-mer)NP; PCPs; RFHC-GACs Yeast http://server.malab.cn/

M6APred-EL/
[202]

Zhuang, Y.,
et al.

SVM + RF + LR Compositional features; Position-specific features; Motif;
Physiochemical features

Yeast No [206]

M6ATH SVM NCP; ANF Arabidopsis http://lin.uestc.edu.cn/server/
M6ATH

[207]

AthMethPre SVM k-mer Arabidopsis http://bioinfo.tsinghua.edu.cn/
AthMethPre/index.html

[208]

RFAthM6A RF PSNPF; PSDPF; KSNPF; KNF Arabidopsis https://github.com/
nongdaxiaofeng/RFAthM6A

[209]

Zhang, J., et al. SVM NCP; ANF E. coli No [210]
MethyRNA SVM NCP; ANF Human; Mouse http://lin.uestc.edu.cn/server/

methyrna.
[211]

RNAMethPre SVM Binary; k-mer; MFE Human; Mouse http://bioinfo.tsinghua.edu.cn/
RNAMethPre/index.html

[212]

SRAMP RF Binary; KNN; spectrum Human; Mouse http://www.cuilab.cn/sramp/ [213]
Gene2vec CNN One-hot; Neighboring state; Word embedding; Gene2vec Human; Mouse http://server.malab.cn/

Gene2vec/
[124]

DeepM6ASeq CNN + BLSTM Binary Human; Mouse https://github.com/rreybeyb/
DeepM6ASeq

[129]

iRNA-3typeA SVM NCP; ANF Human; Mouse http://lin-group.cn/server/iRNA-
3typeA/

[214]

Gene2vec CNN One-hot; Neighboring state; Word embedding; Gene2vec Human; Mouse http://server.malab.cn/
Gene2vec/

[124]

iRNA-3typeA SVM NCP; ANF Human; Mouse http://lin-group.cn/server/iRNA-
3typeA/

[214]

Dao, F.-Y., et al. SVM physical–chemical property matrix; Binary;NCP Human; Mouse http://lin-group.cn/server/
iRNAm6A/service.html

[215]

iN6-Methyl CNN Word2vec Human; Mouse;
Yeast

https://home.jbnu.ac.kr/NSCL/
iN6-Methyl.htm

[125]

RAM-NPPS SVM NPPS Human; Yeast;
Arabidopsis

http://server.malab.cn/RAM-
NPPS/

[216]

SICM6A GRU 3-mer Mouse; Yeast;
Arabidopsis

https://github.com/lwzyb/
SICM6A

[217]

M6AMRFS XGBoost Dinucleotide Binary; Local Position-Specific Dinucleotide
Frequency

Human; Mouse;
Yeast; Arabidopsis

http://server.malab.cn/
M6AMRFS/

[218]

BERMP RF + BGRU ENAC; Word embedding Human; Mouse;
Yeast; Arabidopsis

http://www.bioinfogo.org/
bermp

[127]

Note: PseDNC (pseudo dinucleotide composition), ANF (accumulated nucleotide frequency), NCP (nucleotide chemical property), BPB (bi-profile bayes), DNC (dinucleotide
composition), NC (nucleotide composition), PSNP (positionspecific nucleotide propensity), PSDP (position-specific dinucleotide propensity), NPPS (nucleotide pair position
specificity), STTNC (split-tetra-nucleotide composition), PSNSP (position-specific nucleotide sequence profile), PSDSP (position-specific dinucleotide sequence profile), MFE
(minimum free energy), PCPs (physical–chemical properties), KSNPF (K-spaced nucleotide pair frequencies), KNF(K-nucleotide frequencies), CPD (chemical property with
density), ENAC (Enhanced nucleic acid composition), HPCR (heuristic nucleotide physicochemical property reduction), TNC (tri-nucleotide composition), TetraNC (tetra-
nucleotide composition), mRMR (Minimum-redundancy and maximum-relevance).
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m6A site to 501-dimensional binary vectors. RNA sequence and
MeRIP-Seq reads count embedding is only adopted by Deep-m6A,
which firstly encoded the RNA sequence using one-hot encoding
and then embedded the normalized MeRIP-Seq IP sample reads
count mapped to the corresponding nucleotide’s genome position
to the binary vector of each nucleotide. The embedded MeRIP-
Seq IP reads count can represent the m6A methylation level under
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Table 7
Summary of prediction tools for non-m6A RNA modifications.

Type Tool Method Encoding scheme Species URL/stand-alone package Ref

m5C Feng, P., et al. SVM PseDNC Human No [219]
iRNAm5C-
PseDNC

RF PseDNC Human http://www.jci-bioinfo.cn/iRNAm5C-
PseDNC

[220]

iRNA-PseColl SVM NCP; ANF Human http://lin.uestc.edu.cn/server/iRNA-
PseColl

[193]

M5C-HPCR SVM HPCR Human http://cslab.just.edu.cn:8080/M5C-
HPCR/

[221]

pM 5 CS-Comp-
mRMR

SVM DNC; TNC; TetraNC; mRMR Human No [222]

RNAm5CPred SVM KNFs; KSNPFs; PseDNC Human http://zhulab.ahu.edu.cn/
RNAm5CPred/

[223]

iRNA-PseTNC SVM PseDNC; seTNC; PseTetraNC Human No [224]
iRNA-m5C_NB NB;RF;SVM;AdaBoost BPB;k-mer;ENAC;XXKGAP;EIIP;PseEIIP Human No [225]
PEA-m5C RF Binary; k-mer; PseDNC Arabidopsis https://github.com/cma2015/PEA-

m5C
[226]

RNAm5Cfinder RF One-hot; NCP; ANF Human; Mouse http://www.rnanut.net/rnam5cfinder [227]
RNAm5Cfinder RF One-hot; NCP; ANF Human; Mouse http://www.rnanut.net/rnam5cfinder [227]

w PPUS SVM binary Human http://lyh.pkmu.cn/ppus/ [228]
PIANO SVM NCP; ANF; Genome features Human http://piano.rnamd.com [229]
iPseU-NCP RF NCP Human; Yeast https://github.com/ngphubinh/iPseU-

NCP
[132]

iRNA-PseU SVM NCP; ANF; PseKNC Human; Mouse;
Yeast

http://lin.uestc.edu.cn/server/iRNA-
PseU

[230]

PseUI SVM NC; DC; PseDNC; PSNP; PSDP Human; Mouse;
Yeast

http://zhulab.ahu.edu.cn/PseUI [231]

XG-PseU XGBoost NC; DNC; TNC; NCP; One-hot Human; Mouse;
Yeast

http://www.bioml.cn/ [232]

DeepMRMP BGRU One-hot Human; Mouse;
Yeast

No [128]

CNNPSP CNN DNC; NCP; ANF Human; Mouse;
Yeast

No [130]

iPseU-CNN CNN n-gram and multivariate mutual
information (MMI)

Human; Mouse;
Yeast

No [233]

EnsemPseU SVM; XGBoost; NB;
KNN; RF

k-mer; Binary; ENAC; NCP; ND Human; Mouse;
Yeast

https://github.com/biyue1026/
EnsemPseU

[234]

Nm iRNA-2methyl Ensemble; RF Pse-in-One Human http://www.jci-bioinfo.cn/iRNA-
2methyl

[235]

iRNA-PseKNC CNN One-hot Human No [131]
iRNA-2OM SVM NCP; ANF; Type 2 PseKNC Human http://lin-group.cn/server/iRNA-2OM [236]
Chen, W., et al. SVM NCP; ANF Human; Mouse;

Yeast
No [237]

m1A iRNA-PseColl SVM NCP; ANF Human http://lin.uestc.edu.cn/server/iRNA-
PseColl

[193]

ISGm1A RF NCP; ANF; Genome features Human https://github.com/lianliu09/m1a_
prediction.git.

[238]

iRNA-3typeA SVM NCP; ANF Human; Mouse http://lin-group.cn/server/iRNA-
3typeA/

[214]

RAMPred SVM NCP; ANF Human; Mouse;
Yeast

http://lin.uestc.edu.cn/server/
RAMPred

[239]

A to I iRNA-AI SVM NCP; ANF Human http://lin.uestc.edu.cn/server/iRNA-
AI/

[240]

EPAI-NC LD-SVM l-mers; n-gapped l-mers Fly http://epai-nc.info/ [241]
PAI SVM PseDNC Fly http://lin.uestc.edu.cn/server/PAI [242]
iRNA-3typeA SVM NCP; ANF Human; Mouse http://lin-group.cn/server/iRNA-

3typeA/
[214]

m2G iRNA-m2G SVM NCP; ANF Human; Mouse;
Yeast

No [243]

m7G iRNA-m7G SVM NCP; ANF; PseDNC; SSC Human http://lin-group.cn/server/iRNA-m7G/ [244]
m7GFinder SVM NCP; ANF Human www.xjtlu.edu.cn/biologicalsciences/

m7ghub
[245]

D iRNAD SVM NCP; ANF Human; Mouse;
Yeast

http://lin-group.cn/server/iRNAD [246]

5hmC iRNA5hmC SVM k-mer; Binary Fly http://server.malab.cn/iRNA5hmC [247]
ac4C PACES RF One-hot;PSNSP;PSDSP;KNF;KSNPF;

PseKNC
Human http://www.rnanut.net/paces/ [248]
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specific condition like cancer, which provides the power to predict
condition-specific m6A sites.

4. RNA modification databases

Knowledge bases with the comprehensive collection and cura-
tion of various information related to transcriptome-wide RNA
modifications are often critical for elucidating their biological func-
tions as well as for developing bioinformatics tools. A number of
works have been accomplished addressing various aspects of
RNA modifications including basic properties, pathway, distribu-
tion, disease association, visualization and GO functions. We
review in the following a few databases related to RNA
modifications.
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4.1. RNAMDB

RNAMDB [135,136] contains 109 RNA modifications with basic
description of the RNA modification (chemical structure of the
nucleoside, common chemical name, symbol, elemental composi-
tion and mass), type(s) of RNA in which the nucleoside occurs
(tRNA, rRNA, mRNA, snRNA etc.), phylogenetic occurrence of the
nucleoside (archaea, bacteria, eukarya and the corresponding liter-
ature citations for each, chemical abstracts registry numbers and
chemical abstracts index name), literature citation to structure
assignment of the nucleoside and literature citation to the first
reported chemical synthesis of the nucleoside. Moreover, other
informatics resources for RNA science are available in RNAMDB
including different repositories of experimental protocols which
comprise established procedures that are common practices in a
typical RNA lab, related link database and sister database. The lat-
est version was updated in 2011 which is freely accessible at
https://mods.rna.albany.edu/.
4.2. MODOMICS

The MODOMICS database [137,138] is currently the most com-
prehensive RNA modification pathway source. It displays the reac-
tions linking a modified nucleoside to its precursor(s) and to
hypermodificatons. Additionally, a typical entry of a modified
ribonucleoside contains information about its fundamental chem-
ical properties, chemical structure including the standard bases (A,
U, C and G) they come from and the chemical groups they contain.
MODOMICS also provides many other aspects to interpret and dis-
play the information above. From the aspect of RNA sequence,
MODOMICS provides a collection of modified RNA sequences of
different types. Sequences are visualized with all modifications
highlighted and linked to the corresponding modification records.
From the aspect of proteins, the MODOMICS database currently
contains information above 340 functionally characterized pro-
teins involved in RNA modification, both functional enzymes and
protein co-factors necessary for multi-protein enzymes activities.
MODOMICS also adds a catalogue of ‘building blocks’ for the chem-
ical synthesis of naturally occurring modified nucleosides. The
compilation is intended to facilitate solid phase synthesis of mod-
ified RNA, and thus to foster biophysical and biochemical studies.
The database is freely accessible from: https://iimcb.genesilico.
pl/modomics/.
4.3. MeT-DB

MeT-DB (MethyTranscriptome DataBase) [139] is the first com-
prehensive resource for m6A transcriptome methylation. The MeT-
DB database includes three parts, Core DB, TREW DB and Func-
tional DB. The Core database contains context-specific m6A peaks
and single-base sites. For each predicted m6A peak, its chromoso-
mal location, including start/end position, strand information, p-
value, fold enrichment and q-value were reported. Moreover,
m6A peaks, single-based m6A sites, motif, peak distribution plot,
gene expression profiles were available and can be downloaded
from the web page. The TREW database annotates target sites of
m6A readers, writers and erasers, then the target site was further
annotated with transcript regions (50 UTR, CDS, 30UTR, stop codon,
transcription start sites and miRNA target site) and RNA type. In
addition, some useful tools are provided in the MeT-DB web inter-
face: the table view to facilitate researchers to explore and search
the data in details, the genome browser to help the user visualize
and compare m6A peaks and functions data, and the tool module
that includes Guitar Plot and m6A-Driver for investigating the
functions of m6A methyl transcriptome. It has undergone two ver-
sions [139,140] and is currently available at http://compgenomics.
utsa.edu/MeTDB/.

4.4. RMBase

RMBase [141,142] currently has the most comprehensive col-
lection of RNA modification sites, and is aimed to decode the
map of RNA modifications from epitranscriptome sequencing data.
RMBase v2.0 was expanded with 566 datasets and 1,397,244 mod-
ification sites from 47 studies among 13 species. To study the dis-
tribution of RNA modifications on the transcript products, RMBase
mapped their sites onto the genomic coordinates of the genes with
annotation including gene types and regions. RMBase also studied
the relationships between RNA modification and post-
transcriptome regulation, such as, miRNA binding sites, SNPs and
RBPs. Besides, RMBase also annotated the RBPs as readers, writers
and erasers. All SNPs and SNVs were intersected with the RNA
modification regions to identify the SNPs and SNVs that might
interact with the RNA modifications. Visualized logos of modifica-
tion motifs and metagenes of RNA modification plotting along a
transcript model are also available. The RMBase database is freely
accessible at: http://rna.sysu.edu.cn/rmbase/.

4.5. m6AVar

m6AVar [143] is dedicated to the investigation of the functional
association between genetic variants and m6A modification. Raw
data resource of m6Avar can be mainly categorized into two parts,
SNPs and m6A sites. In terms of SNPs, germline and somatic vari-
ants were obtained from dbSNP and TCGA database. A large num-
ber of disease-associated SNPs were obtained from GWAS, ClinVar
etc. Furthermore, all of the SNPs were annotated by gene conserva-
tion scores and deleterious levels scoring from 0 to 5. In terms of
m6A sites, they were acquired according to different confidence
levels from high to low by using various strategies. The m6A sites
with a high confidence level were derived from 7 miCLIP experi-
ments and 2 PA-m6A-seq experiments. The m6A sites that have a
medium confidence level were derived from 244 MeRIP-seq exper-
iments and m6A sites that have a low confidence level were
derived from a transcriptome-wide prediction based on Random
Forest algorithm. Furthermore, the location of each m6A site was
annotated by the transcript structure, including the CDS, 30UTR,
50UTR, start codon and stop codon. Combined with SNPs and m6A
sites, m6AVar explored m6A-associated variants which were
defined by evaluating whether it has the potential to alter the
DRACH motif or other sequence features essential for m6A modifi-
cation. Particularly, more than 2000 disease-related variants have
been identified by linking the m6A-associated variants with GWAS
and ClinVar data. m6AVar also provided an user-friendly web inter-
face with multiple statistical diagrams and genome browser
through which users can browse all of the m6A-associated variants
and search data by various criteria. The m6AVar database is freely
accessible at: http://m6avar.renlab.org/.

4.6. REPIC

REPIC [144] is a newly developed database dedicated to provide
a new resource to investigate potential functions and mechanisms
of m6A modifications across 11 species. To offer insights into the
cell line- or tissue-specificity of m6A modification, REPIC supports
query of m6A modifications by cell lines and tissue types. Peak
annotation and sample annotation are available. Peak annotation
includes genomic position, fold enrichment and genomic feature.
Sample annotation includes the data source, read mapping statis-
tics, metagene profiles and results from motif analysis. To better
display multiple dimensional m6A modification information across
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the entire genome, REPIC provides a genome browser to visualize
m6A peaks, fold enrichment and gene expression. REPIC is accessi-
ble at https://epicmod.uchicago.edu/repic/index.php.
4.7. RADAR

RADAR [145] is a rigorously annotated database of A-to-I RNA
editing. It includes a comprehensive collection of A-to-I RNA edit-
ing sites identified in humans (Homo sapiens), mice (Mus muscu-
lus) and flies (Drosophila melanogaster), which contains 1 379 403
human, 8108 mouse and 2698 fly A-to-I RNA editing sites sepa-
rately. Specifically, for each editing site, annotations are curated
manually, which consist of the genome, strand, associated gene,
functional region within the gene (coding sequence, untranslated
region, intron), associated repetitive element (Alu, repetitive non-
Alu, nonrepetitive), conservation of editing to other species and
the reference study in which the site was first identified. In addi-
tion, for each editing site, RADAR also includes a catalog of
tissue-specific editing levels from published RNA-seq datasets.
RADAR allows the search for A-to-I RNA editing sites by using
any combination of the abovementioned annotations. To facilitate
more detailed searches, the UCSC genome browser is used to dis-
play the overlapping gene annotations, genomic nucleotide conser-
vation, overlapping SNP database entries and overlapping
repetitive elements. The RADAR is freely accessible at http://
RNAedit.com.
5. Disease marker and association prediction

Recent studies demonstrated that aberrant m6A modifications
is linked to a number of pathophysiological disorders, including
obesity related traits [146–149], diabetes [150], aberrant germ cell
formation [151], circadian period elongation [27], developmental
retardation [152]. Emerging evidence suggests that m6A modifica-
tion is involved in multiple forms of human cancer and plays a cru-
cial role in different cancer contexts, such as in breast cancer
[153,154], acute myeloid leukemia (AML) [155–159], glioblastoma
[160–162], lung cancer [163] and liver cancer [164]. Precise iden-
tification of disease-associated m6A modification can be critical
for understanding the disease pathogenesis. While wet lab experi-
ments were often restricted by their costs in time and labor, com-
putational approaches offered a viable avenue. We briefly
summarized in the following some recent works related to in silico
identification and prediction of disease association of RNA modifi-
cations including the relevant enzymes and the sites.

RNAMethyPro [165] used a biologically conserved signature of
m6A regulators for prediction of survivals at pan-cancer level,
which was based on 25 publically available datasets encompassing
13 cancer types. However, the construction of RNAMethyPro is
based on silico analysis, which is controversial for obtaining the
biological and clinical characteristics related to m6A, as well as
for determining the specific functional modules of patients at high
risk. Therefore, further mechanism and independent clinical verifi-
cation are still appreciated to further validate that RNAMethyPro as
a robust predictive signal in a variety of human cancers.

In a study led by Li et al. [166], the molecular alterations and
clinical relevance of m6A regulators were analyzed across more
than 10,000 subjects representing 33 cancer types, and revealed
significant correlation between activities of cancer hallmark-
related pathways and expression levels of m6A regulators. Besides,
the authors revealed that m6A reader IGF2BP3 maybe a potential
oncogene for Clear cell renal cell carcinoma (ccRCC), even though
they cannot reliably predict the prognosis of ccRCC patients based
on the risk score according to the mRNA expression of m6A regula-
tory genes.
The m6AVar database [167] established the association between
individual m6A site and various diseases via disease-associated
genetic mutations that may also lead to changes of RNA methyla-
tion status. To our knowledge, this is the first large-scale prediction
study that linked individual RNA methylation sites to various dis-
eases. In addition, it is a comprehensive database, which contains
m6A related variables that may affect the m6A modification, which
will help to interpret variables through the m6A function.

In the CVm6A database [168], 190,050 and 150,900 m6A sites
were identified in cancer and non-cancer cells, which may demon-
strate putative associations to cancer pathology. But due to the
limitation of m6A sequence dataset, CVm6A, as well as most other
databases, cannot fully determine the distribution of m6A on
lncRNAs and other non-polyA RNAs.

Based on a random walk with restart approach, DRUM [169]
successfully associated individual m6A sites to various diseases
via a multi-layered heterogeneous network consisting of m6Asites,
genes and diseases. The genes and sites were linked by association
of expression levels and methylation levels, while genes and dis-
eases are associated according to existing gene-disease association
database.

By taking advantage of the guilt-by-association principle, m6A-
comet [170] can infer putative GO functions of individual m6A sites
from a RNA co-methylation network derived epitranscriptome pro-
filing data using hub-based or module-based methods. This is the
first study for large-scale prediction of GO functions for individual
m6A sites. However, the two methods used in m6Acomet achieved
only marginal improvement compared with random guesses. Fur-
thermore, there are more data sources, which can be integrated
with RNA comethylation network to obtain more accurate func-
tional labeling.

Very recently, An et al developed a computational approach to
systematically identify cell-specific trans regulators of m6A
through integrating gene expressions, binding targets and binding
motifs of large number of RNA binding proteins (RBPs) with a co-
methylation network constructed using large-scale m6A methy-
lomes across diverse cell states [171]. This study provides a new
perspective for the regulation of m6A epitranscriptome.
6. Summary and outlook

With an increasing number of studies revealing the essence and
importance of RNA modifications in general gene expression regu-
lation and disease pathogenesis, RNA epigenetics [172] (or epitran-
scriptomics [173]) has captured growing attention. Bioinformatics
capacity to analyze, digest, collect and share the rapidly growing
epitranscriptome profiling data is sorely needed. We reviewed
recent progress and emerging bioinformatics topics concerning
RNA modifications, including epitranscriptome data analysis tech-
niques, RNA modification databases, disease-association inference,
functional annotation and RNA modification site prediction. Taken
together, bioinformatics developments have greatly facilitated
research in the area and have enhanced understanding of the bio-
logical meaning of RNA modifications.

Nevertheless, despite the rapid progress in epitranscriptome
bioinformatics, there are still a number of limitations or open
questions.

First, technological bias and limitations may not have received
sufficient attention during development of bioinformatics tools.
For example, most of the existing RNA bisulfite data interpretation
tools failed to consider the abundant RNA secondary structures
that may generate a large number of false positive errors [174].
Although it has been reported that there are major discrepancies
between the results of different RNA modification profiling tech-
niques (such as in m5C [98,99]), few existing site prediction
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approaches have carefully considered it. Furthermore, most exist-
ing site prediction tools overlooked the bias induced by polyA
selection during RNA-seq library preparation, which leads to
under-representation of intronic and lncRNA sites.

Secondly, although existing studies suggested that RNA modifi-
cation can affect the structure of RNA [175], it is not yet clear how
it affects the 3D structure of RNA molecules in general [176]. It
seems likely that many RNA modifications will exert at least some
of their myriad functions through affecting structures so that
methods considering and predicting this consequence of modifica-
tion would be highly valuable.

Thirdly, some bioinformatics pipelines have not been extended
to keep up with the emergence of novel modifications arising from
the development of new technologies. For example, the site predic-
tion and disease association frameworks developed for well-
studied modifications (such as the WHISTLE [123] and m6AVar
[167] frameworks for m6A modification site prediction and disease
association) have not been extended to other relatively less studied
RNA modifications (such as m1A and Nm), even though the exten-
sion should be fairly straightforward from a computational per-
spective. Such basic bioinformatics infrastructure is essential and
should be established for all types of RNA modifications that can
be profiled transcriptome-wide at base-resolution.

7. Author’s contribution

Jia Meng, Hui Liu and Xiujuan Lei initialized and coordinated
the project. Yi Song, Rong Rong and Zhiliang Lu reviewed the bio-
logical background of RNA modifications; Lian Liu, Song-Yao
Zhang, Kunqi Chen, Shao-Wu Zhang and Xiujuan Lei summarized
sites prediction approaches; Lian Liu, Zhen Wei and Shao-Wu
Zhang reviewed m6A-seq analysis approaches; Yujiao Tang, Xian-
gyu Wu, João Pedro de Magalhães and Daniel J. Rigden reviewed
disease association and functional prediction; Bowen Song
reviewed other bioinformatics tools for epitranscriptome data
analysis; Jiani Ma, Hui Liu and Lin Zhang reviewed existing bioin-
formatics databases. All authors read, critically revised and
approved the final manuscript.

Funding

This work has been supported by National Natural Science
Foundation of China [61902230, 61972451, 31671373]; China
Postdoctoral Science Foundation [2018 M640949]; Fundamental
Research Funds for the Central Universities [GK201903083,
GK201901010]; XJTLU Key Program Special Fund [KSF-T-01].

CRediT authorship contribution statement

Lian Liu: Writing - original draft, Methodology, Investigation.
Bowen Song: Writing - original draft, Methodology, Investigation.
Jiani Ma: Writing - original draft, Methodology, Investigation. Yi
Song: Writing - original draft, Methodology, Investigation. Song-
Yao Zhang: Writing - original draft, Methodology, Investigation.
Yujiao Tang: Writing - original draft, Methodology, Investigation.
Xiangyu Wu: Writing - original draft, Methodology, Investigation.
Zhen Wei: Writing - review & editing. Kunqi Chen: Writing -
review & editing. Jionglong Su: Writing - review & editing,
Resources, Supervision. Rong Rong: Writing - review & editing,
Resources, Supervision. Zhiliang Lu: Writing - review & editing,
Resources, Supervision. João Pedro de Magalhães: Writing -
review & editing, Resources, Supervision. Daniel J. Rigden:Writing
- review & editing, Resources, Supervision. Lin Zhang: Writing -
review & editing, Resources, Supervision. Shao-Wu Zhang:Writing
- review & editing, Resources, Supervision. Yufei Huang: Writing -
review & editing, Resources, Supervision. Xiujuan Lei: Writing -
review & editing, Resources, Supervision, Funding acquisition, Pro-
ject administration. Hui Liu: Writing - review & editing, Resources,
Supervision, Funding acquisition, Project administration. Jia Meng:
Writing - review & editing, Resources, Supervision, Funding acqui-
sition, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2020.06.010.

References

[1] McCown PJ et al. Naturally occurring modified ribonucleosides. WIREs RNA
2020:e1595.

[2] Jones JD, Monroe J, Koutmou KS. A molecular-level perspective on the
frequency, distribution, and consequences of messenger RNA modifications.
WIREs RNA 2020:e1586.

[3] Jia G et al. N6-methyladenosine in nuclear RNA is a major substrate of the
obesity-associated FTO. Nat. Chem. Biol. 2011;7(12):885–7.

[4] Dominissini D et al. Topology of the human and mouse m6A RNAmethylomes
revealed by m6A-seq. Nature 2012;485(7397):201–6.

[5] Meyer KD et al. Comprehensive analysis of mRNA methylation reveals
enrichment in 30 UTRs and near stop codons.. Cell 2012;149(7):1635–46.

[6] Schwartz S et al. High-resolution mapping reveals a conserved, widespread,
dynamic mRNA methylation program in yeast meiosis. Cell 2013;155
(6):1409–21.

[7] Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation.
Nat. Rev. Mol. Cell Biol. 2019;20(15):608–24.

[8] Zheng G et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA
metabolism and mouse fertility.. Mol. Cell. 2013;49(1):18–29.

[9] Zhang X et al. Structural insights into FTO’s catalytic mechanism for the
demethylation of multiple RNA substrates. Proceedings of the National
Academy of Sciences 2019;116(8):2919–24.

[10] Roundtree IA et al. Dynamic RNAmodifications in gene expression regulation.
Cell 2017;169(7):1187–200.

[11] X. Wang, et al. N6-methyladenosine-dependent regulation of messenger RNA
stability. Nature 2014, 505 (7481) : p. 117-138.

[12] Meyer KD et al. 50 UTR m6A promotes cap-independent translation. Cell
2015;163(4):999–1010.

[13] Xiao W et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell.
2016;61(4):507–19.

[14] Wang X et al. N6-methyladenosine modulates messenger RNA translation
efficiency. Cell 2015;161(6):1388–99.

[15] Alarcón CR et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA
processing events. Cell 2015;162(6):1299–308.

[16] Liu N et al. N6-methyladenosine-dependent RNA structural switches regulate
RNA–protein interactions. Nature 2015;518(7540):560.

[17] Dominissini D et al. Topology of the human and mouse m(6)A RNA
methylomes revealed by m(6)A-seq. Nature 2012;485(7397):201.

[18] Patil D P et al. m(6)A RNA methylation promotes XIST-mediated
transcriptional repression. Nature 2016;537(7620):369–94.

[19] Wang X et al. N(6)-methyladenosine Modulates Messenger RNA Translation
Efficiency. Cell 2015;161(6):1388–99.

[20] Huang H et al. Histone H3 trimethylation at lysine 36 guides m(6)A RNA
modification co-transcriptionally. Nature 2019;567(7748):414–41.

[21] Zhou J et al. Dynamic m6A mRNA methylation directs translational control of
heat shock response. Nature 2015;526(7574):591–4.

[22] Xiang Y et al. RNA m6A methylation regulates the ultraviolet-induced DNA
damage response. Nature 2017;543(7646):573–6.

[23] Shi H et al. m6A facilitates hippocampus-dependent learning and memory
through YTHDF1. Nature 2018;563(7730):249–53.

[24] Zhao BS et al. m6A-dependent maternal mRNA clearance facilitates zebrafish
maternal-to-zygotic transition. Nature 2017;542(7642):475–8.

[25] Alarcon CR et al. N6-methyladenosine marks primary microRNAs for
processing. Nature 2015;519(7544):482–5.

[26] Pendleton KE et al. The U6 snRNAm6AMethyltransferase METTL16 Regulates
SAM Synthetase Intron Retention. Cell 2017;165(9):824–35.

[27] Fustin JM et al. RNA-methylation-dependent RNA processing controls the
speed of the circadian clock. Cell 2013;155(4):793–806.

[28] Vollmers C et al. Circadian oscillations of protein-coding and regulatory RNAs
in a highly dynamic mammalian liver epigenome. Cell Met 2012;16
(6):833–45.

https://doi.org/10.1016/j.csbj.2020.06.010
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0005
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0005
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0010
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0010
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0010
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0015
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0015
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0020
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0020
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0025
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0025
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0025
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0030
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0030
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0030
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0035
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0035
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0040
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0040
http://refhub.elsevier.com/S2001-0370(20)30299-3/h9000
http://refhub.elsevier.com/S2001-0370(20)30299-3/h9000
http://refhub.elsevier.com/S2001-0370(20)30299-3/h9000
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0050
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0050
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0060
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0060
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0060
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0065
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0065
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0070
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0070
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0075
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0075
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0080
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0080
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0085
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0085
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0090
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0090
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0095
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0095
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0100
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0100
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0105
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0105
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0110
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0110
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0115
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0115
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0120
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0120
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0125
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0125
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0130
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0130
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0135
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0135
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0140
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0140
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0140


L. Liu et al. / Computational and Structural Biotechnology Journal 18 (2020) 1587–1604 1601
[29] Geula S et al. m6A mRNA methylation facilitates resolution of naïve
pluripotency toward differentiation. Science 2015;347(6225):1002–6.

[30] Zhang C et al. m6A modulates haematopoietic stem and progenitor cell
specification. Nature 2017;549(7671):273–6.

[31] Bertero A et al. The SMAD2/3 interactome reveals that TGFb controls m6A
mRNA methylation in pluripotency. Nature 2018;555(7695):256–9.

[32] Esteve-Puig R et al. Writers, readers and erasers of RNA modifications in
cancer. Cancer Lett. 2020;474:127–37.

[33] Liu Y et al. N6-methyladenosine RNA modification–mediated cellular
metabolism rewiring inhibits viral replication. Science 2019;365(6458):
eaax4468.

[34] Delaunay S, Frye M. RNA modifications regulating cell fate in cancer. Nat. Cell
Biol. 2019;21(5):552–9.

[35] Choe J et al. mRNA circularization by METTL3–eIF3h enhances translation and
promotes oncogenesis. Nature 2018;561(7724):556–60.

[36] Han D et al. Anti-tumour immunity controlled through mRNA m6A
methylation and YTHDF1 in dendritic cells. Nature 2019;566(7743):270–91.

[37] Barbieri I et al. Promoter-bound METTL3 maintains myeloid leukaemia by
m6A-dependent translation control. Nature 2017;552(7683):126–56.

[38] Li HB et al. m6A mRNA methylation controls T cell homeostasis by targeting
the IL-7/STAT5/SOCS pathways. Nature 2017;548(7667):338–42.

[39] Yoon KJ et al. Temporal Control of Mammalian Cortical Neurogenesis by m6A
Methylation. Cell 2017;171(4):877–89.

[40] Su R et al. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/
CEBPA Signaling. Cell 2018;172:90–105.

[41] McCown PJ et al. Secondary structural model of human MALAT1 reveals
multiple structure-function Relationships. INT. J. MOL. SCI. 2019;20
(22):5610.

[42] Motorin Y et al. 5-methylcytosine in RNA: detection, enzymatic formation
and biological functions. Nucleic Acids Res 2010;38(5):1415–30.

[43] Squires JE et al. Widespread occurrence of 5-methylcytosine in human coding
and non-coding RNA. Nucleic Acids Res. 2012;40(11):5023–33.

[44] Ehrenhofer-Murray et al. Cross-talk between Dnmt2-dependent tRNA
methylation and queuosine modification. Biomolecules 2017;7(1):14.

[45] Tuorto F et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes
tRNA stability and protein synthesis. Nat. Struct Mol. Biol. 2012;19(9):900–5.

[46] Yang X et al. 5-methylcytosine promotes mRNA export—NSUN2 as the
methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017;27
(5):606–25.

[47] Blanco S et al. Stem cell function and stress response are controlled by protein
synthesis. Nature 2016;534(7607):335–40.

[48] Heissenberger C et al. Loss of the ribosomal RNA methyltransferase NSUN5
impairs global protein synthesis and normal growth. Nucleic Acids Res
2019;47(22):11807–25.

[49] Courtney DG et al. Epitranscriptomic Addition of m5C to HIV-1 Transcripts
Regulates Viral Gene Expression. Cell Host & Microbe 2019;26(2):217–227.
e6.

[50] Yang YRNA et al. 5-methylcytosine facilitates the maternal-to-zygotic
transition by preventing maternal mRNA decay. Mol. Cell 2019;75
(6):1188–202.

[51] Zou F et al. Drosophila YBX1 homolog YPS promotes ovarian germ line stem
cell development by preferentially recognizing 5-methylcytosine RNAs. P.
Natl. Acad. Sci 2020;117(7):3603–9.

[52] Chen X et al. 5-methylcytosine promotes pathogenesis of bladder cancer
through stabilizing mRNAs. Nature Cell Bio 2019;21(8):978–90.

[53] Henry BA et al. 5-Methylcytosine Modification of an Epstein-Barr Virus
Noncoding RNA Decreases its Stability. RNA 2020.

[54] Navarro IC et al. Translational adaptation to heat stress is mediated by 5-
methylcytosine RNA modification in Caenorhabditis elegans. boiRxiv 2020.

[55] Tang Y et al. OsNSUN2-Mediated 5-Methylcytosine mRNA Modification
Enhances Rice Adaptation to High Temperature. Dev Cell 2020;53(3):272.

[56] Delatte B et al. RNA biochemistry. Transcriptome-wide distribution and
function of RNA hydroxymethylcytosine. Science 2016;351(6270):282–5.

[57] Nishikura et al. Functions and Regulation of RNA Editing by ADAR
Deaminases. Annu Rev Biochem 2010;79(1):321–49.

[58] Chan THM et al. A disrupted RNA editing balance mediated by ADARs
(Adenosine DeAminases that act on RNA) in human hepatocellular
carcinoma. Gut 2014;63(5):832–43.

[59] Picardi, E., et al., REDIportal: a comprehensive database of A-to-I RNA editing
events in humans. Nucleic Acids Res. 2017. 45(D1): p. D750-D757.

[60] Zipeto MA et al. RNA rewriting, recoding, and rewiring in human disease.
Trends. Mol. Med. 2015;21(9):549–59.

[61] Deffit SN, Hundley HA. To edit or not to edit: regulation of ADAR editing
specificity and efficiency. Comput. Mol. Sci. 2016;7(1):113–27.

[62] Ota H et al. ADAR1 forms a complex with Dicer to promote microRNA
processing and RNA-induced gene silencing. Cell 2013;153(3):575–89.

[63] Yamashita T et al. The molecular link between inefficient GluA2 Q/R site-RNA
editing and TDP-43 pathology in motor neurons of sporadic amyotrophic
lateral sclerosis patients. Brain Res 2014;1584:28–38.

[64] Han L et al. The genomic landscape and clinical relevance of A-to-I RNA
editing in human cancers. Cell 2015;28(4):515–28.

[65] Samuel CE et al. Adenosine deaminase acting on RNA (ADAR1), a suppressor
of double-stranded RNA–triggered innate immune responses. J. Biol. Chem.
2019;294(5):1710–20.
[66] Cao Y et al. A comprehensive study on cellular RNA editing activity in
response to infections with different subtypes of influenza a viruses. BMC
Genomics 2018;19(1):925.

[67] Vlachogiannis NI et al. Increased adenosine-to-inosine RNA editing in
rheumatoid arthritis. J Autoimmun 2020;106:102329.

[68] Shoshan E et al. Reduced adenosine-to-inosine miR-455-5p editing promotes
melanoma growth and metastasis. Nat. Cell Biol. 2015;17(3):311–21.

[69] Tomaselli S et al. Modulation of microRNA editing, expression and processing
by ADAR2 deaminase in glioblastoma. Genome Biol 2015;16(1):5.

[70] Ramírez-Moya J et al. ADAR1-mediated RNA editing is a novel oncogenic
process in thyroid cancer and regulates miR-200 activity. Oncogene
2020:1–16.

[71] X. Peng et al. A-to-I RNA editing contributes to proteomic diversity in cancer.
Cancer Cell 2018; 33(5): pp. 817–828. e7

[72] Schwartz S et al. Transcriptome-wide mapping reveals widespread dynamic-
regulated pseudouridylation of ncRNA and mRNA. Cell 2014;159(1):148–62.

[73] Guzzi, N., et al., Pseudouridylation of tRNA-Derived Fragments Steers
Translational Control in Stem Cells. Cell, 2018. 173(5): p. 1204-1216 e26.

[74] Carlile TM et al. Pseudouridine profiling reveals regulated mRNA
pseudouridylation in yeast and human cells. Nature 2014;515(7525):143–6.

[75] Jaffrey et al. An expanding universe of mRNA modifications. Nat. Struct Mol.
Biol. 2014;21(11):945.

[76] Dominissini D, Rechavi G. N4-acetylation of Cytidine in mRNA by NAT10
Regulates Stability and Translation. Cell 2018;175(7):1725–7.

[77] Mauer J et al. Reversible methylation of m6Am in the 50 cap controls mRNA
stability. Nature 2016;541(7637):371–94.

[78] Sun H et al. Cap-specific, terminal N6-methylation by a mammalian m6Am
methyltransferase. Cell Res 2019;29(1):80.

[79] Liu, F., et al., ALKBH1-Mediated tRNA Demethylation Regulates Translation.
Cell, 2016. 167(3): p. 816-828 e16.

[80] Dominissini D et al. The dynamic N1-methyladenosine methylome in
eukaryotic messenger RNA. Nature 2016;530(7591):441–6.

[81] Daffis, S., et al., 2Daffis, S., et of the viral mRNA cap evades host restriction by
IFIT family members. Nature, 2010. 468(7322): p. 452.

[82] Ringeard M et al. FTSJ3 is an RNA 20-O-methyltransferase recruited by HIV to
avoid innate immune sensing. Nature 2019;565(7740):500–19.

[83] Zhang Y et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008;9
(9):R137.

[84] Dominissini D et al. Transcriptome-wide mapping of N(6)-methyladenosine
by m(6)A-seq based on immunocapturing and massively parallel sequencing.
Nat Protoc 2013;8(1):176–89.

[85] Meng J et al. Exome-based analysis for RNA epigenome sequencing data.
Bioinformatics 2013;29(12):1565–7.

[86] Love MI, Hogenesch JB, Irizarry RA. Modeling of RNA-seq fragment sequence
bias reduces systematic errors in transcript abundance estimation. Nat.
Biotechnol. 2016;34(12):1287.

[87] Meng J et al. A protocol for RNAmethylation differential analysis with MeRIP-
Seq data and exomePeak R/Bioconductor package. Methods 2014;69
(3):274–81.

[88] Zhang Z et al. RADAR: differential analysis of MeRIP-seq data with a random
effect model. Genome Biol. 2019;20(1):294.

[89] Liu L et al. QNB: differential RNA methylation analysis for count-based small-
sample sequencing data with a quad-negative binomial model. BMC Bioinf.
2017;18(1):387.

[90] Schwartz S et al. Perturbation of m6A writers reveals two distinct classes of
mRNA methylation at internal and 5’ Sites. Cell Rep 2014;8(1):284–96.

[91] Zhang T et al. trumpet: transcriptome-guided quality assessment of m(6)A-
seq data. BMC Bioinf. 2018;19(1):260.

[92] Hauenschild R et al. The reverse transcription signature of N-1-
methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res
2015;43(20):9950–64.

[93] Byrne A et al. Nanopore long-read RNAseq reveals widespread transcriptional
variation among the surface receptors of individual B cells. Nat Commun
2017;8:16027.

[94] Schmidt L et al. Graphical workflow system for modification calling by
machine learning of reverse transcription signatures. Front Genet
2019;10:876.

[95] Lempereur L et al. Conformation of yeast 18S rRNA. Direct chemical probing
of the 5’ domain in ribosomal subunits and in deproteinized RNA by reverse
transcriptase mapping of dimethyl sulfate-accessible. Nucleic Acids Res
1985;13(23):8339–57.

[96] Levanon EY et al. Systematic identification of abundant A-to-I editing sites in
the human transcriptome. Nat Biotechnol 2004;22(8):1001–5.

[97] Schaefer M et al. RNA methylation by Dnmt2 protects transfer RNAs against
stress-induced cleavage. Genes Dev 2010;24(15):1590–5.

[98] Motorin Y, Helm M. Methods for RNA modification mapping using deep
sequencing: established and new emerging technologies. Genes 2019;10(1):35.

[99] Hussain S et al. Characterizing 5-methylcytosine in the mammalian
epitranscriptome. Genome Biol 2013;14(11):215.

[100] Huber SM et al. Formation and abundance of 5-hydroxymethylcytosine in
RNA. ChemBioChem 2015;16(5):752–5.

[101] Bolger AM et al. Trimmomatic: a flexible trimmer for Illumina sequence data.
Bioinformatics 2014;30(15):2114–20.

[102] Langmead B et al. Fast gapped-read alignment with Bowtie 2. Nat Methods
2012;9(4):357–9.

http://refhub.elsevier.com/S2001-0370(20)30299-3/h0145
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0145
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0150
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0150
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0155
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0155
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0160
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0160
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0165
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0165
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0165
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0165
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0170
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0170
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0175
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0175
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0180
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0180
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0185
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0185
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0190
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0190
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0195
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0195
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0200
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0200
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0205
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0205
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0205
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0210
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0210
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0215
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0215
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0220
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0220
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0225
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0225
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0230
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0230
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0230
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0235
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0235
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0240
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0240
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0240
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0245
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0245
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0245
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0250
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0250
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0250
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0255
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0255
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0255
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0260
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0260
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0265
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0265
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0270
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0270
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0275
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0275
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0280
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0280
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0285
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0285
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0290
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0290
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0290
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0300
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0300
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0305
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0305
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0310
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0310
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0315
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0315
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0315
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0320
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0320
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0325
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0325
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0325
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0330
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0330
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0330
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0335
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0335
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0340
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0340
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0345
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0345
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0350
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0350
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0350
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0360
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0360
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0370
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0370
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0375
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0375
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0380
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0380
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0385
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0385
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0385
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0390
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0390
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0400
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0400
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0410
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0410
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0410
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0415
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0415
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0420
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0420
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0420
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0425
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0425
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0430
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0430
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0430
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0435
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0435
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0435
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0440
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0440
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0445
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0445
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0445
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0450
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0450
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0455
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0455
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0460
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0460
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0460
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0465
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0465
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0465
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0470
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0470
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0470
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0475
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0475
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0475
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0475
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0480
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0480
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0485
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0485
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0490
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0490
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0495
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0495
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0500
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0500
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0505
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0505
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0510
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0510


1602 L. Liu et al. / Computational and Structural Biotechnology Journal 18 (2020) 1587–1604
[103] Kim D et al. HISAT: a fast spliced aligner with low memory requirements. Nat
Methods 2015;12(4):357–60.

[104] Rieder D et al. meRanTK: methylated RNA analysis ToolKit. Bioinformatics
2016;32(5):782–5.

[105] Yang X et al. 5-methylcytosine promotes mRNA export - NSUN2 as the
methyltransferase and ALYREF as an m(5)C reader. Cell Res 2017;27
(5):606–25.

[106] Huang T et al. Genome-wide identification of mRNA 5-methylcytosine in
mammals. Nat Struct Mol Biol 2019;26(5):380–8.

[107] Amort T et al. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse
embryonic stem cells and brain. Genome Biol 2017;18(1):1.

[108] Edelheit S et al. Transcriptome-wide mapping of 5-methylcytidine RNA
modifications in bacteria, archaea, and yeast reveals m5C within archaeal
mRNAs. PLoS Genet 2013;9(6):e1003602.

[109] Parker BJ. Statistical methods for transcriptome-wide analysis of RNA
methylation by bisulfite sequencing. Methods Mol Biol 2017;1562:155–67.

[110] Sherry ST et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids
Res. 2001;29(1):308–11.

[111] Picardi, E., et al., REDIdb: the RNA editing database. Nucleic Acids Res, 2007.
35(Database issue): p. D173-7.

[112] Cui X et al. Guitar: an R/bioconductor package for gene annotation guided
transcriptomic analysis of RNA-Related genomic features. Biomed Res Int
2016;2016:8367534.

[113] Olarerin-George AO et al. MetaPlotR: a Perl/R pipeline for plotting metagenes
of nucleotide modifications and other transcriptomic sites. Bioinformatics
2017;33(10):1563–4.

[114] Yan Z et al. txCoords: a novel web application for transcriptomic peak re-
mapping. IEEE/ACM Trans Comput Biol Bioinform 2017;14(3):746–8.

[115] Liu Q, Gregory RI. RNAmod: an integrated system for the annotation of mRNA
modifications. Nucleic Acids Res. 2019;47(W1):W548–55.

[116] Promworn Y et al. ToNER: A tool for identifying nucleotide enrichment
signals in feature-enriched RNA-seq data. PLoS ONE 2017;12(5):e0178483.

[117] Jiang S et al. m6ASNP: a tool for annotating genetic variants by m6A function.
Gigascience 2018;7(5).

[118] Buniello A et al. The NHGRI-EBI GWAS Catalog of published genome-wide
association studies, targeted arrays and summary statistics. Nucleic Acids
Res. 2018;47(D1):D1005–12.

[119] Johnson AD et al. An open access database of genome-wide association
results. BMC Med Genet 2009;10:6.

[120] Landrum MJ et al. ClinVar: public archive of interpretations of clinically
relevant variants. Nucleic Acids Res. 2015;44(D1):D862–8.

[121] Incarnato D et al. RNA Framework: an all-in-one toolkit for the analysis of
RNA structures and post-transcriptional modifications. Nucleic Acids Res
2018;46(16):e97.

[122] Chen Z et al. Comprehensive review and assessment of computational
methods for predicting RNA post-transcriptional modification sites from RNA
sequences. Briefings Bioinf. 2019:1–21.

[123] Chen K et al. WHISTLE: a high-accuracy map of the human N6-
methyladenosine (m6A) epitranscriptome predicted using a machine
learning approach. Nucleic Acids Res. 2019;47(7):e41.

[124] Zou Sr Q et al. Gene2vec: gene subsequence embedding for prediction of
mammalian N6-methyladenosine sites frommRNA. RNA 2018;25(2):205–18.

[125] Nazari I et al. iN6-Methyl (5-step): Identifying RNA N6-methyladenosine
sites using deep learning mode via Chou’s 5-step rules and Chou’s general
PseKNC. Chemomet Intell Lab 2019:103811.

[126] Zhang S-Y et al. Global analysis of N6-methyladenosine functions and its
disease association using deep learning and network-based methods. PLoS
Comput. Biol. 2019;15(1):e1006663.

[127] Huang Y et al. BERMP: a cross-species classifier for predicting m6A sites by
integrating a deep learning algorithm and a random forest approach. Int J Biol
Sci 2018;14(12):1669–77.

[128] Sun P et al. DeepMRMP: a new predictor for multiple types of RNA
modification sites using deep learning. Mathemat Biosci Eng 2019;16
(6):6231–41.

[129] Zhang Y, Hamada M. DeepM6ASeq: prediction and characterization of m6A-
containing sequences using deep learning. BMC Bioinf. 2018;19(19):524.

[130] Fan Y., et al., CNNPSP. Pseudouridine Sites Prediction Based on Deep Learning.
Intelligent Data Engineering and Automated Learning –. IDEAL, 2019. Cham:
Springer International Publishing. p. 2019.

[131] Tahir M, Tayara H, Chong KT. iRNA-PseKNC(2methyl): Identify RNA 2’-O-
methylation sites by convolution neural network and Chou’s pseudo
components. J. Theor. Biol. 2019;465:1–6.

[132] Nguyen-Vo T-H et al. iPseU-NCP: Identifying RNA pseudouridine sites using
random forest and NCP-encoded features. BMC Genomics 2019;20(10):971.

[133] Meyer KD et al. Comprehensive analysis of mRNA methylation reveals
enrichment in 3’ UTRs and near stop codons. Cell 2012;149(7):1635–46.

[134] Bastian L et al. Single-nucleotide resolution mapping of m6A and m6Am
throughout the transcriptome. Nat. Methods 2015;12(8):767.

[135] Rozenski J, Crain PF, McCloskey JA. The RNA modification database: 1999
update. Nucleic Acids Res. 1999;27(1):196–7.

[136] Cantara WA et al. The RNA modification database, RNAMDB: 2011 update.
Nucleic Acids Res. 2011;39:D195–201.

[137] Machnicka MA et al. MODOMICS: a database of RNA modification pathways-
2013 update. Nucleic Acids Res. 2013;41(D1):D262–7.

[138] Boccaletto P et al. MODOMICS a database of RNA modification pathways.
2017 update. Nucleic Acids Res. 2018;46(D1):D303–7.
[139] Liu H et al. MeT-DB: a database of transcriptome methylation in mammalian
cells. Nucleic Acids Res. 2015;43(D1):D197–203.

[140] Liu H et al. MeT-DB V2. 0: elucidating context-specific functions of N6-
methyl-adenosine methyltranscriptome. Nucleic Acids Res. 2018;46(D1):
D281–7.

[141] Sun W-J et al. RMBase: a resource for decoding the landscape of RNA
modifications from high-throughput sequencing data. Nucleic Acids Res.
2016;44(D1):D259–65.

[142] Xuan J-J et al. RMBase v2.0: deciphering the map of RNA modifications from
epitranscriptome sequencing data. Nucleic Acids Res. 2018;46(D1):D327–34.

[143] Zheng Y et al. m6AVar: a database of functional variants involved in m(6)A
modification. Nucleic Acids Res. 2018;46(D1):D139–45.

[144] Liu S, He C, Chen MREPIC. A database for exploring N6-methyladenosine
methylome. Genome Biol 2020;21(1):100.

[145] Ramaswami G et al. RADAR: a rigorously annotated database of A-to-I RNA
editing. Nucleic Acids Res. 2014;42(D1):D109–13.

[146] Scuteri A et al. Genome-wide association scan shows genetic variants in the
FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3(7):
e115.

[147] Dina C et al. Variation in FTO contributes to childhood obesity and severe
adult obesity. Nat. Genet. 2007;39(6):724.

[148] Frayling TM et al. A common variant in the FTO gene is associated with body
mass index and predisposes to childhood and adult obesity. Science
2007;316(5826):889–94.

[149] Davis W et al. The fat mass and obesity-associated FTO rs9939609
polymorphism is associated with elevated homocysteine levels in patients
with multiple sclerosis screened for vascular risk factors. Metab. Brain Dis.
2014;29(2):409–19.

[150] Shen F et al. Decreased N6-methyladenosine in peripheral blood RNA from
diabetic patients is associated with FTO expression rather than ALKBH5. J Clin
Endocrinol Metabol 2015;100(1):E148–54.

[151] Yang Y et al. Increased N6-methyladenosine in human sperm RNA as a risk
factor for asthenozoospermia. Sci. Rep. 2016;6:24345.

[152] Daoud H et al. Identification of a pathogenic FTO mutation by next-
generation sequencing in a newborn with growth retardation and
developmental delay. J. Med. Genet. 2016;53(3):200–7.

[153] Zhang C et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-
dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA.
Proc. Natl. Acad. Sci. 2016;113(14):E2047–56.

[154] Zhang C et al. Hypoxia-inducible factors regulate pluripotency factor
expression by ZNF217-and ALKBH5-mediated modulation of RNA
methylation in breast cancer cells. Oncotarget 2016;7(40):64527.

[155] Bansal H et al. WTAP is a novel oncogenic protein in acute myeloid leukemia.
Leukemia 2014;28(5):1171.

[156] Kwok C-T et al. Genetic alterations of m 6 A regulators predict poorer survival
in acute myeloid leukemia. J Hematol Oncol 2017;10(1):39.

[157] Barbieri I et al. Promoter-bound METTL3 maintains myeloid leukaemia by
m6A-dependent translation control. Nature 2017;552(7683):126.

[158] Vu LP et al. The N6-methyladenosine (m6A)-forming enzyme METTL3
controls myeloid differentiation of normal hematopoietic and leukemia
cells. Nat. Med. 2017;23(11):1369.

[159] Li Z et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-
methyladenosine RNA demethylase. Cancer Cell 2017;31(1):127–41.

[160] Zhang S et al. m6A demethylase ALKBH5 maintains tumorigenicity of
glioblastoma stem-like cells by sustaining FOXM1 expression and cell
proliferation program. Cancer cell 2017;31(4):591–606.

[161] Gong A-H et al. FoxM1 drives a feed-forward STAT3-activation signaling loop
that promotes the self-renewal and tumorigenicity of glioblastoma stem-like
cells. Cancer Res. 2015;75(11):2337–48.

[162] Jin DI et al. Expression and roles of W ilms’ tumor 1-associating protein in
glioblastoma. Cancer Sci. 2012;103(12):2102–9.

[163] Lin S et al. The m6A methyltransferase METTL3 promotes translation in
human cancer cells. Mol. Cell 2016;62(3):335–45.

[164] Chen M et al. RNA N6-methyladenosine methyltransferase-like 3 promotes
liver cancer progression through YTHDF2-dependent posttranscriptional
silencing of SOCS2. Hepatology 2018;67(6):2254–70.

[165] Kandimalla R et al. RNAMethyPro: a biologically conserved signature of N6-
methyladenosine regulators for predicting survival at pan-cancer level. NPJ
Precis. Oncol. 2019;3.

[166] Li Y et al. Molecular characterization and clinical relevance of m6A regulators
across 33 cancer types. Mol Cancer 2019;18(1):137.

[167] Zheng Y. , et al. m6AVar: a database of functional variants involved in m6A
modification.Nucleic Acids . Res. 2017 ; gkx895 - gkx895..

[168] Han Y et al. A Visualization and Exploration Database for m(6) As in Cell
Lines. Cells 2019;8(2):168.

[169] Tang Y et al. DRUM: inference of disease-associated m6A RNA methylation
sites from a multi-layer heterogeneous network. Front. Genet. 2019;10:266.

[170] Wu X et al. m6Acomet: large-scale functional prediction of individual m6A
RNA methylation sites from an RNA co-methylation network. BMC Bioinf.
2019;20(1):223.

[171] An S et al. Integrative network analysis identifies cell-specific trans
regulators of m6A. Nucleic Acids Res. 2020.

[172] He C. Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol.
2010;6(12):863–5.

[173] Saletore Y et al. The birth of the Epitranscriptome: deciphering the function
of RNA modifications. Genome Biol 2012;13(10):175.

http://refhub.elsevier.com/S2001-0370(20)30299-3/h0515
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0515
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0520
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0520
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0525
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0525
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0525
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0530
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0530
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0535
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0535
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0540
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0540
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0540
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0545
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0545
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0550
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0550
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0560
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0560
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0560
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0565
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0565
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0565
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0570
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0570
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0575
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0575
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0580
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0580
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0585
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0585
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0590
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0590
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0590
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0595
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0595
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0600
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0600
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0605
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0605
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0605
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0610
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0610
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0610
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0615
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0615
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0615
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0620
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0620
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0625
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0625
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0625
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0630
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0630
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0630
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0635
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0635
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0635
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0640
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0640
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0640
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0645
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0645
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0655
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0655
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0655
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0660
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0660
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0665
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0665
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0670
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0670
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0675
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0675
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0680
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0680
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0685
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0685
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0690
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0690
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0695
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0695
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0700
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0700
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0700
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0705
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0705
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0705
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0710
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0710
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0715
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0715
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0720
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0720
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0725
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0725
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0730
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0730
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0730
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0735
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0735
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0740
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0740
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0740
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0745
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0745
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0745
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0745
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0750
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0750
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0750
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0755
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0755
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0760
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0760
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0760
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0765
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0765
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0765
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0770
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0770
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0770
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0775
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0775
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0780
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0780
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0785
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0785
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0790
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0790
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0790
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0795
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0795
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0800
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0800
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0800
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0805
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0805
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0805
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0810
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0810
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0815
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0815
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0820
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0820
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0820
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0825
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0825
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0825
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0830
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0830
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0840
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0840
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0845
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0845
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0850
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0850
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0850
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0855
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0855
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0860
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0860
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0865
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0865


L. Liu et al. / Computational and Structural Biotechnology Journal 18 (2020) 1587–1604 1603
[174] Xu X et al. Advances in methods and software for RNA cytosine methylation
analysis. Genomics 2019;112(2):1840–6.

[175] Liu N et al. N6-methyladenosine alters RNA structure to regulate binding of a
low-complexity protein. Nucleic Acids Res 2017;45(10):6051–63.

[176] Tanzer A et al. RNA modifications in structure prediction - status quo and
future challenges. Methods 2018;159:32–9.

[177] Li Y et al. MeRIP-PF: an easy-to-use pipeline for high-resolution peak-finding
in MeRIP-Seq data. Genomics Proteom. Bioinform. 2013;11(1):72–5.

[178] Zhang M et al. A Bayesian hierarchical model for analyzing methylated RNA
immunoprecipitation sequencing data. Quant. Biol. 2018;6(3):275–86.

[179] Antanaviciute A et al. m6aViewer: software for the detection, analysis and
visualization of N6-methyl-adenosine peaks from m6A-seq/ME-RIP
sequencing data. RNA 2017;23(10):1493–501.

[180] Cui X et al. A novel algorithm for calling mRNA m6A peaks by modeling
biological variances in MeRIP-seq data. Bioinformatics 2016;32(12):i378–85.

[181] Zhang Y-C et al. Spatially enhanced differential RNA methylation analysis
from affinity-based sequencing data with hidden markov model. Biomed Res.
Int. 2015;2015:12.

[182] Cui X et al. MeTDiff: a Novel Differential RNA Methylation Analysis for
MeRIP-Seq Data. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 2018;15(2):526–34.

[183] Liu L et al. DRME: count-based differential RNA methylation analysis at small
sample size scenario. Anal. Biochem. 2016;499:15–23.

[184] Schwartz S et al. Perturbation of m6A writers reveals two distinct classes of
mRNA methylation at internal and 5’ sites. Cell Rep 2014;8(1):284–96.

[185] Liu L et al. Decomposition of RNA methylome reveals co-methylation
patterns induced by latent enzymatic regulators of the epitranscriptome.
Mol. BioSyst. 2015;11(1):262–74.

[186] Chen K et al. Enhancing epitranscriptome module detection from m6A-seq
data using threshold-based measurement weighting strategy. Biomed Res.
Int. 2018.

[187] Cui X et al. A hierarchical model for clustering m6A methylation peaks in
MeRIP-seq data. BMC Genomics 2016;17(7):520.

[188] Hauenschild, R., et al., CoverageAnalyzer (CAn): A Tool for Inspection of
Modification Signatures in RNA Sequencing Profiles. Biomolecules, 2016. 6
(4).

[189] Ryvkin P et al. HAMR: high-throughput annotation of modified
ribonucleotides. RNA 2013;19(12):1684–92.

[190] Liang F et al. BS-RNA: an efficient mapping and annotation tool for RNA
bisulfite sequencing data. Comput Biol Chem 2016;65:173–7.

[191] Legrand C et al. Statistically robust methylation calling for whole-
transcriptome bisulfite sequencing reveals distinct methylation patterns for
mouse RNAs. Genome Res 2017;27(9):1589–96.

[192] Liu J et al. Episo: quantitative estimation of RNA 5-methylcytosine at isoform
level by high-throughput sequencing of RNA treated with bisulfite.
Bioinformatics 2019;36(7):2033–9.

[193] Feng P et al. iRNA-PseColl: identifying the occurrence sites of different RNA
modifications by incorporating collective effects of nucleotides into PseKNC.
Mol. Ther. Nucleic Acids 2017;7:155–63.

[194] Zhao Z et al. Imbalance learning for the prediction of N 6-Methylation sites in
mRNAs. BMC Genomics 2018;19(1):574.

[195] Chen W et al. iRNA-Methyl: Identifying N6-methyladenosine sites using
pseudo nucleotide composition. Anal. Biochem. 2015;490:26–33.

[196] Liu Z et al. pRNAm-PC: predicting N6-methyladenosine sites in RNA
sequences via physical-chemical properties. Anal. Biochem. 2015.

[197] Chen W, Xing P, Zou Q. Detecting N6-methyladenosine sites from RNA
transcriptomes using ensemble Support Vector Machines. Sci. Rep.
2017;7:40242.

[198] Chen W et al. Identification and analysis of the N6-methyladenosine in the
Saccharomyces cerevisiae transcriptome. Sci. Rep. 2015;5:13859.

[199] Jia CZ, Zhang JJ, Gu WZ. RNA-MethylPred: a high-accuracy predictor to
identify N6-methyladenosine in RNA. Anal Biochem 2016;510:72–5.

[200] Li, G.Q., et al., TargetM6A: Identifying N6-methyladenosine Sites from RNA
Sequences via Position-Specific Nucleotide Propensities and a Support Vector
Machine. IEEE Transactions on NanoBioscience, 2016.15(7): 674-682.

[201] Chen W et al. iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites
using pseudo dinucleotide composition. Anal Biochem 2018;561:59–65.

[202] Wei L et al. M6APred-EL: A sequence-based predictor for identifying N6-
methyladenosine sites using ensemble learning. Mol Ther Nucleic Acids
2018;12:635–44.

[203] Wei L et al. Integration of deep feature representations and handcrafted
features to improve the prediction of N 6 -methyladenosine sites.
Neurocomputing 2018;324:3–9.

[204] Akbar S et al. iMethyl-STTNC: identification of N6-methyladenosine sites by
extending the Idea of SAAC into Chou’s PseAAC to formulate RNA sequences.
J. Theor. Biol. 2018;455:205–11.

[205] Zhao X et al. Identifying N6-methyladenosine sites using extreme gradient
boosting system optimized by particle swarm optimizer. J. Theor. Biol.
2019;467:39–47.

[206] Zhuang Y et al. A linear regression predictor for identifying N6-
methyleadenosine sites using frequent gapped K-mer pattern. Mol. Ther.
Nucleic Acids 2019.

[207] Chen W et al. Identifying N6-methyladenosine sites in the Arabidopsis
thaliana transcriptome. Mol. Genet. Genomics 2016;291(6):2225–9.

[208] Xiang S et al. AthMethPre: a web server for the prediction and query of mRNA
m6A sites in Arabidopsis thaliana. Mol. BioSyst. 2016;12(11):3333–7.
[209] Wang X et al. RFAthM6A: a new tool for predicting m(6)A sites in Arabidopsis
thaliana. Plant Mol Biol 2018;96(3):327–37.

[210] Zhang J et al. Identifying RNA N6-methyladenosine sites in Escherichia coli
genome. Front. Microbiol. 2018;9:955.

[211] Chen W et al. MethyRNA: A web-server for identification of N-
methyladenosine sites. J Biomol Struct Dyn 2016;35(3):683–7.

[212] Xiang S et al. RNAMethPre: a web server for the prediction and query of
mRNA m6A Sites. PLoS ONE 2016;11(10):e0162707.

[213] Zhou Y et al. SRAMP: prediction of mammalian N6-methyladenosine (m6A)
sites based on sequence-derived features. Nucleic Acids Res. 2016;44(10):
e91.

[214] Chen W et al. iRNA-3typeA: identifying three types of modification at RNA’s
adenosine sites. Mol Ther Nucleic Acids 2018;11:468–74.

[215] Dao F-Y et al. Computational identification of N6-Methyladenosine sites in
multiple tissues of mammals. Comput Struct Biotechnol. J. 2020;18:1084–91.

[216] Xing P et al. Identifying N6-methyladenosine sites using multi-interval
nucleotide pair position specificity and support vector machine. Sci Rep
2017;7:46757.

[217] Wenzhong, L., SICM6A: Identifying m6A Site across Species by Transposed
GRU Network. bioRxiv, 2019: p. 694158.

[218] Qiang X et al. M6AMRFS: robust prediction of N6-methyladenosine sites with
sequence-based features in multiple species. Front. Genet. 2018;9:495.

[219] Feng P et al. Identifying RNA 5-methylcytosine sites via pseudo nucleotide
compositions. Mol. BioSyst. 2016;12(11):3307–11.

[220] Qiu W-R et al. iRNAm 5C-PseDNC: identifying RNA 5-methylcytosine sites by
incorporating physical-chemical properties into pseudo dinucleotide
composition. Oncotarget 2017;8(25):41178–88.

[221] Zhang M et al. Accurate RNA 5-methylcytosine site prediction based on
heuristic physical-chemical properties reduction and classifier ensemble.
Anal Biochem 2018;550:41–8.

[222] Sabooh MF et al. Identifying 5-methylcytosine sites in RNA sequence using
composite encoding feature into Chou’s PseKNC. J Theor Biol 2018;452:1–9.

[223] Fang T et al. RNAm 5CPred: Prediction of RNA 5-methylcytosine sites based
on three different kinds of nucleotide composition. Mol. Ther. Nucleic Acids
2019:739–48.

[224] Akbar S et al. iRNA-PseTNC: identification of RNA 5-methylcytosine sites
using hybrid vector space of pseudo nucleotide composition. Front. Comput.
Sci 2019;14(2):451–60.

[225] Dou, L., et al., iRNA-m5C_NB: a novel predictor to identify RNA 5-
Methylcytosine sites based on the Naive Bayes classifier. . IEEE Access,
2020; 8: 84906 - 84917.

[226] Song J et al. Transcriptome-wide annotation of m5C RNA modifications using
machine learning. Frontiers Plant Sci. 2018:9(519).

[227] Li J et al. RNAm 5Cfinder: a web-server for predicting RNA 5-methylcytosine
(m5C) Sites based on random forest. Sci. Rep. 2018;8(1):17299.

[228] Li Y-H et al. PPUS: a web server to predict PUS-specific pseudouridine sites.
Bioinformatics 2015;31(20):3362–4.

[229] Song B et al. PIANO: a web server for pseudouridine site (W) identification
and functional annotation. Front Genet 2020;11(88).

[230] Chen W et al. iRNA-PseU: identifying RNA pseudouridine sites. Mol. Ther.
Nucleic Acids 2016;5:e332.

[231] He J et al. PseUI: pseudouridine sites identification based on RNA sequence
information. BMC Bioinf. 2018;19(1):306.

[232] Liu K et al. XG-PseU: an eXtreme Gradient Boosting based method for
identifying pseudouridine sites. Mol. Genet. Genomics 2019;295(1):13–21.

[233] Tahir M, Tayara H, Chong KT. iPseU-CNN: identifying RNA pseudouridine
sites using convolutional neural networks. Mol Therapy Nucleic Acids
2019;16:463–70.

[234] Bi Y et al. EnsemPseU: Identifying pseudouridine sites with an ensemble
approach.. IEEE Access 2020;8:79376–82.

[235] Qiu W-R et al. iRNA-2methyl: identify RNA 2’-O-methylation sites by
incorporating sequence-coupled effects into general PseKNC and ensemble
classifier. Med. Chem. 2017;13(8):734–43.

[236] Yang H et al. iRNA-2OM: a sequence-based predictor for identifying 2’-O-
methylation sites in homo sapiens. J Comput Biol 2018;25(11):1266–77.

[237] Chen, W., et al., Identifying 2 al., l., sed Predictor for Identifying 2’-O-leotide
chemical properties and nucleotide compositions. Genomics, 2016. 107(6): p.
255-258.

[238] Lian, L., et al., ISGm1A: Integration of sequence features and genomic features
to improve the prediction of human m1A RNA methylation sites. IEEE Access,
2020. 8(1): 81971 - 81977.

[239] Chen W et al. RAMPred: identifying the N1-methyladenosine sites in
eukaryotic transcriptomes. Sci. Rep. 2016;6:31080.

[240] Chen W et al. iRNA-AI: identifying the adenosine to inosine editing sites in
RNA sequences. Oncotarget 2017;8(3):4208.

[241] Ahmad A, Shatabda S. EPAI-NC: Enhanced prediction of adenosine to inosine
RNA editing sites using nucleotide compositions. Anal. Biochem.
2019;569:16–21.

[242] Chen W et al. PAI: Predicting adenosine to inosine editing sites by using
pseudo nucleotide compositions. Sci. Rep. 2016;6:35123.

[243] Chen W et al. iRNA-m2G: identifying N2-methylguanosine sites based on
sequence derived information. Mol. Ther. Nucleic Acids 2019;18:253–8.

[244] Chen W et al. iRNA-m7G: identifying N7-methylguanosine sites by fusing
multiple features. Mol. Ther. Nucleic Acids 2019;18:269–74.

http://refhub.elsevier.com/S2001-0370(20)30299-3/h0870
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0870
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0875
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0875
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0880
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0880
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0885
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0885
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0890
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0890
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0895
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0895
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0895
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0900
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0900
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0905
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0905
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0905
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0910
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0910
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0910
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0915
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0915
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0920
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0920
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0925
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0925
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0925
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0930
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0930
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0930
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0935
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0935
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0945
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0945
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0950
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0950
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0955
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0955
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0955
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0960
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0960
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0960
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0965
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0965
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0965
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0970
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0970
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0975
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0975
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0980
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0980
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0985
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0985
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0985
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0990
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0990
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0995
http://refhub.elsevier.com/S2001-0370(20)30299-3/h0995
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1005
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1005
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1010
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1010
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1010
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1015
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1015
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1015
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1020
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1020
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1020
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1025
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1025
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1025
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1030
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1030
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1030
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1035
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1035
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1040
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1040
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1045
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1045
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1050
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1050
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1055
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1055
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1060
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1060
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1065
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1065
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1065
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1070
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1070
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1075
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1075
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1080
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1080
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1080
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1090
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1090
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1095
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1095
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1100
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1100
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1100
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1105
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1105
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1105
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1110
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1110
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1115
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1115
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1115
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1120
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1120
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1120
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1130
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1130
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1135
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1135
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1140
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1140
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1145
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1145
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1150
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1150
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1155
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1155
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1160
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1160
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1165
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1165
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1165
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1170
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1170
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1175
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1175
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1175
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1180
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1180
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1195
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1195
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1200
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1200
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1205
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1205
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1205
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1210
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1210
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1215
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1215
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1220
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1220


1604 L. Liu et al. / Computational and Structural Biotechnology Journal 18 (2020) 1587–1604
[245] Song B et al. m7GHub: deciphering the location, regulation and pathogenesis
of internal mRNA N7-methylguanosine (m7G) sites in human. Bioinformatics
2020;36(11):3528–3536.

[246] Xu Z-C et al. iRNAD: a computational tool for identifying D modification sites
in RNA sequence. Bioinformatics 2019;35(23):4922–9.
[247] Liu, Y., et al., iRNA5hmC: The First Predictor to Identify RNA 5-
Hydroxymethylcytosine Modifications Using Machine Learning. Frontiers in
Bioengineering and Biotechnology, 2020. 8(227).

[248] Zhao W et al. PACES: prediction of N4-acetylcytidine (ac4C) modification
sites in mRNA. Sci. Rep. 2019;9(1).

http://refhub.elsevier.com/S2001-0370(20)30299-3/h1225
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1225
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1225
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1230
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1230
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1240
http://refhub.elsevier.com/S2001-0370(20)30299-3/h1240

	Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics
	1 Background
	2 Tools for epitranscriptome data analysis
	2.1 MeRIP-Seq (or m6A-Seq)
	2.1.1 Peak Calling (or Site Detection)
	2.1.2 Differential methylation analysis
	2.1.3 Clustering analysis of m6A sites (peaks)
	2.1.4 Quality assessment

	2.2 Reverse transcription signature in sequencing
	2.3 RNA bisulfite sequencing
	2.3.1 Quality control of raw RNA Bisulfite sequencing data
	2.3.2 Alignment of RNA bisulfite sequencing reads
	2.3.3 Methylation calling and elimination of false positive sites

	2.4 Other tools for RNA modification analysis

	3 RNA modification site prediction
	3.1 Deep learning in RNA modification sites prediction

	4 RNA modification databases
	4.1 RNAMDB
	4.2 MODOMICS
	4.3 MeT-DB
	4.4 RMBase
	4.5 m6AVar
	4.6 REPIC
	4.7 RADAR

	5 Disease marker and association prediction
	6 Summary and outlook
	7 Author’s contribution
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


