
RESEARCH Open Access

A multidimensional systems biology
analysis of cellular senescence in aging and
disease
Roberto A. Avelar1†, Javier Gómez Ortega1,2†, Robi Tacutu1,3,4†, Eleanor J. Tyler5†, Dominic Bennett1, Paolo Binetti1,
Arie Budovsky6, Kasit Chatsirisupachai1, Emily Johnson1, Alex Murray1, Samuel Shields1, Daniela Tejada-Martinez1,7,
Daniel Thornton1, Vadim E. Fraifeld8, Cleo L. Bishop5* and João Pedro de Magalhães1*

Abstract

Background: Cellular senescence, a permanent state of replicative arrest in otherwise proliferating cells, is a
hallmark of aging and has been linked to aging-related diseases. Many genes play a role in cellular senescence, yet
a comprehensive understanding of its pathways is still lacking.

Results: We develop CellAge (http://genomics.senescence.info/cells), a manually curated database of 279 human
genes driving cellular senescence, and perform various integrative analyses. Genes inducing cellular senescence
tend to be overexpressed with age in human tissues and are significantly overrepresented in anti-longevity and
tumor-suppressor genes, while genes inhibiting cellular senescence overlap with pro-longevity and oncogenes.
Furthermore, cellular senescence genes are strongly conserved in mammals but not in invertebrates. We also build
cellular senescence protein-protein interaction and co-expression networks. Clusters in the networks are enriched
for cell cycle and immunological processes. Network topological parameters also reveal novel potential cellular
senescence regulators. Using siRNAs, we observe that all 26 candidates tested induce at least one marker of
senescence with 13 genes (C9orf40, CDC25A, CDCA4, CKAP2, GTF3C4, HAUS4, IMMT, MCM7, MTHFD2, MYBL2, NEK2,
NIPA2, and TCEB3) decreasing cell number, activating p16/p21, and undergoing morphological changes that
resemble cellular senescence.

Conclusions: Overall, our work provides a benchmark resource for researchers to study cellular senescence, and our
systems biology analyses reveal new insights and gene regulators of cellular senescence.

Keywords: Biogerontology, Cancer, Genetics, Longevity, Transcriptome

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: c.l.bishop@qmul.ac.uk; jp@senescence.info
†Roberto A. Avelar, Javier Gómez Ortega, Robi Tacutu and Eleanor J. Tyler
contributed equally to this work.
5Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and
The London School of Medicine and Dentistry, Queen Mary University of
London, London E1 2AT, UK
1Integrative Genomics of Ageing Group, Institute of Ageing and Chronic
Disease, University of Liverpool, Liverpool L7 8TX, UK
Full list of author information is available at the end of the article

Avelar et al. Genome Biology           (2020) 21:91 
https://doi.org/10.1186/s13059-020-01990-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-01990-9&domain=pdf
http://genomics.senescence.info/cells/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:c.l.bishop@qmul.ac.uk
mailto:jp@senescence.info


Background
In the 1960s, Leonard Hayflick and Paul Moorhead
demonstrated that human fibroblasts reached a stable
proliferative growth arrest between their fortieth and
sixtieth divisions [1]. Such cells would enter an altered
state of “replicative senescence,” subsisting in a non-
proliferating, metabolically active phase with a distinct
vacuolated morphology [2]. This intrinsic form of senes-
cence is driven by gradual replicative telomere erosion,
eventually exposing an uncapped free double-stranded
chromosome end and triggering a permanent DNA
damage response [3, 4]. Additionally, acute premature
senescence can occur as an antagonistic consequence of
genomic, epigenomic, or proteomic damage, driven by
oncogenic factors, oxidative stress, or radiation [5]. Ini-
tially considered an evolutionary response to reduce mu-
tation accrual and subsequent tumorigenesis, the
pleiotropic nature of senescence has also been positively
implicated in processes including embryogenesis [6, 7],
wound healing [8], and immune clearance [9, 10]. By
contrast, the gradual accumulation and chronic
persistence of senescent cells with time promotes dele-
terious effects that are considered to accelerate deterior-
ation and hyperplasia in aging [11]. Senescent cells
secrete a cocktail of inflammatory and stromal regula-
tors—denoted as the senescence-associated secretory
phenotype, or SASP—which adversely impact neighbor-
ing cells, the surrounding extracellular matrix, and other
structural components, resulting in chronic inflamma-
tion, the induction of senescence in healthy cells, and
vulnerable tissue [12, 13]. Mice expressing transgenic
INK-ATTAC, which induces apoptosis of p16-positive
senescent cells, also have increased lifespan and im-
proved healthspan [14]. It is, therefore, no surprise that
in recent years gerontology has heavily focused on the
prevention or removal of senescent cells as a means to
slow or stop aging and related pathologies [15–17].
Research has sought to ascertain the genetic program

and prodrome underlying the development and phenotype
of senescent cells [18]. Expedited by recent advances in
genomic and transcriptomic sequencing, alongside high-
throughput genetic screens, a wealth of publicly available
data now exists which has furthered the understanding of
senescence regulation [19, 20]. Unfortunately, despite
our increasing knowledge of cellular senescence (CS),
determining whether a cell has senesced is not clear-
cut. Common senescence markers used to identify CS
in vitro and in vivo include senescence-associated β-
galactosidase (SA-β-gal) and p16INK4A (p16) [21–23].
However, β-galactosidase activity has been detected in
other cell types such as macrophages, osteoclasts, and
cells undergoing autophagy [24–26]. Furthermore,
some forms of senescence are not associated with p16
expression, while p16 has been detected in non-

senescent cells [3, 27]. As such, there are now over 200
genes implicated in CS in humans alone. Therefore, it
is necessary to conglomerate this data into a purpose-
fully designed database.
Gene databases are highly useful for genomic compu-

tational analyses, as exemplified by the Human Ageing
Genomic Resources (HAGR) [28]. HAGR provides
databases related to the study of aging, including the
GenAge database of aging-related genes, which contains
genes related to longevity and aging in model organisms
and humans, and DrugAge, which includes a compil-
ation of drugs, compounds, and supplements that extend
lifespan in model organisms. CellAge builds on these
HAGR facilities to provide a means of studying CS in
the context of aging or as a standalone resource; the ex-
pectation is that CellAge will now provide the basis for
processing the discrete complexities of cellular senes-
cence on a systematic scale.
Our recent understanding of biological networks has

led to new fields, like network medicine [29]. Biological
networks can be built using protein interaction and gene
co-expression data. A previous paper used protein-
protein interactions to build genetic networks identifying
potential longevity genes along with links between genes
and aging-related diseases [30]. Here, we present the
network of proteins and genes co-expressed with the
CellAge senescence genes. Assaying the networks, we
find links between senescence and immune system func-
tions and find genes highly connected to CellAge genes
under the assumption that a guilt-by-association ap-
proach will reveal genes with similar functions [31].
In this study, we look at the broad context of CS

genes—their association with aging and aging-related
diseases, functional enrichment, evolutionary conserva-
tion, and topological parameters within biological net-
works—to further our understanding of the impact of
CS in aging and diseases. Using our networks, we gener-
ate a list of potential novel CS regulators and experi-
mentally validate 26 genes using siRNAs, identifying 13
new senescence inhibitors.

Results
The CellAge database
The CellAge website can be accessed at http://genomics.
senescence.info/cells/. Figure 1a presents the main
CellAge data browser, which allows users to surf
through the available data. The browser includes several
columns with information that can be searched and
filtered efficiently. Users can search for a comma-
separated gene list or for individual genes. Once selected,
a gene entry page with more detailed description of the
experimental context will open.
CellAge was compiled following a scientific literature

search of gene manipulation experiments in primary,
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immortalized, or cancer human cell lines that caused
cells to induce or inhibit CS. The first CellAge build
comprises 279 distinct CS genes, of which 232 genes
affect replicative CS, 34 genes affect stress-induced CS,
and 28 genes affect oncogene-induced CS. Of the 279
total genes, 153 genes induce CS (~ 54.8%), 121 inhibit it
(~ 43.4%), and five genes have unclear effects, both indu-
cing and inhibiting CS depending on experimental con-
ditions (~ 1.8%) (Fig. 1b). The genes in the dataset are
also classified according to the experimental context
used to determine these associations.
We have also performed a meta-analysis to derive a

molecular signature of replicative CS and found 526
overexpressed and 734 underexpressed genes [32]. These
gene signatures are also available on the CellAge web-
site. Of the 279 CellAge genes, 44 genes were present in

the signatures of CS (15.8%). This overlap was significant
(p value = 1.62e−08, Fisher’s exact test). While 13 of the
CellAge inducers of CS significantly overlapped with the
overexpressed signatures of CS (8.5%, p = 2.06e−06, Fish-
er’s exact test), only 7 overlapped with the underex-
pressed signatures (4.6%, p = 5.13e−01, Fisher’s exact
test). The CellAge inhibitors of CS significantly over-
lapped with both the overexpressed signatures of CS
(n = 7, 5.8%, p = 4.08e−02, Fisher’s exact test) and under-
expressed signatures of CS (n = 17, 14%, p = 2.06e−06,
Fisher’s exact test).

CellAge gene functions
High-quality curated datasets enable systematic compu-
tational analyses [33, 34]. Since we are interested in
learning more about the underlying processes and

Fig. 1 a The CellAge database of CS genes. The main data browser provides functionality to filter by multiple parameters like cell line and
senescence type, and select genes to view details and links with other aging-related genes on the HAGR website. b Breakdown of the effects all
279 CellAge genes have on CS, and the types of CS the CellAge genes are involved in. Genes marked as “Unclear” both induce and inhibit CS
depending on biological context. Numbers above bars denote the total number of genes inhibiting, inducing, or having unclear effects on CS. c
Functional enrichment of the nonredundant biological processes involving the CellAge genes (p < 0.05, Fisher’s exact test with BH correction)
(Additional file 1: Table S3). GO terms were clustered based on semantic similarities
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functionality shared by human CS genes, we started by
exploring functional enrichment within the CellAge
dataset.
Using the database for annotation, visualization and

integrated discovery—DAVID Version 6.8 [35, 36], we
found that genes in CellAge are enriched with several
clusters associated with Protein Kinase Activity, Tran-
scription Regulation, DNA-binding, DNA damage repair,
and Cell cycle regulation in cancer. In particular, genes
that induce senescence were more associated with pro-
moting transcription, while genes that inhibit senescence
were more associated with repressing transcription. Fur-
thermore, we found that inducers of senescence were
significantly associated with VEGF and TNF signalling
pathways (p < 0.01, Fisher’s exact test with Benjamini-
Hochberg correction) (Additional file 1: Table S1 and
S2). WebGestalt 2019 was used to determine which non-
redundant biological processes the CellAge genes are in-
volved in, and REVIGO was used to cluster related
processes (p < 0.05, Fisher’s exact test with BH correc-
tion) [37, 38]. A total of 298 categories were significantly
enriched and clustered: Signal transduction by p53 class
mediator; Aging; Protein localization to nucleus; DNA-
templated transcription, initiation; Epithelial cell prolifera-
tion; Cell growth; Rhythmic process; Cellular carbohydrate
metabolism; Reactive oxygen species metabolism; Cyto-
kine metabolism; Adaptive thermogenesis; Organic hy-
droxy compound metabolism; Methylation; Generation of
precursor metabolites and energy (Fig. 1c; Additional file 1:
Table S3).

Evolutionary conservation of CellAge genes in model
organisms
Next, we looked at the conservation of CellAge genes
across a number of mammalian and non-mammalian
model organisms with orthologues to human CellAge
genes using Ensembl BioMart (Version 96) [39] in order
to understand the genetic conservation of CS processes.
There was a significantly higher number of human
orthologues for CellAge genes than for other protein-
coding genes in mouse, rat, and monkey, while non-
mammalian species did not show significant conservation
of CellAge genes (two-tailed z-test with BH correction)
(Additional file 1: Table S4; Additional file 2: Fig. S1A).
Interestingly, previous studies have found that longevity-
associated genes (LAGs) are substantially overrepresented
from bacteria to mammals and that the effect of LAG
overexpression in different model organisms was mostly
the same [40]. It remains unclear what the evolutionary
origin of most of the CellAge genes is or why they are not
present in more evolutionarily distant organisms. Unique
evolutionary pressures could have played an important
role in the evolution of CellAge genes in mammals. How-
ever, somatic cells in C. elegans and Drosophila are post

mitotic and lack an equivalent CS process, which could
explain why the CellAge genes are not conserved. We fur-
ther compared the conservation of CellAge inducers and
inhibitors of CS and found that while the inducers were
significantly conserved in the mammal model organisms,
the inhibitors were not (Additional file 2: Fig. S1B).
We also report the number of orthologous CellAge

genes present in 24 mammal species using the OMA
standalone software v. 2.3.1 algorithm [41] (Additional
file 2: Fig. S1C). From 279 CellAge genes, we report 271
orthogroups (OGs) (Additional file 3). Twenty-two OGs
were conserved in the 24 mammals, including the
following genes: DEK, BRD7, NEK4, POT1, SGK1, TLR3,
CHEK1, CIP2A, EWSR1, HDAC1, HMGB1, KDM4A,
KDM5B, LATS1, MORC3, NR2E1, PTTG1, RAD21,
NFE2L2, PDCD10, PIK3C2A, and SLC16A7 (Additional
file 1: Table S5). Within the long-lived mammalian
genomes analyzed (human, elephant, naked mole rat,
bowhead whale, and little brown bat), we found 128 OG
CellAge genes (Additional file 3; genomes available in
Additional file 1: Table S6). However, finding OGs is
dependent on genome quality and annotations, and
higher-quality genomes would likely yield more OGs.
For the evolutionary distances, we found that the long-

lived species had similar distances to the other species,
meaning the branch lengths for long-lived species are
distributed throughout the phylogeny as expected in a
random distribution (Additional file 2: Fig. S1D). This
was the case when we analyzed the concatenated tree for
the 271 CellAge OGs as well as when we analyzed the
22 individual CellAge genes conserved among all 24
mammalian species (Additional file 4).

CellAge vs human orthologues of longevity-associated
model organism genes
To understand how senescence is linked to the genetics
of aging processes, we looked at the intersection of
CellAge genes and the 869 genes in the human ortholo-
gues of model organisms’ longevity-associated genes
(LAGs) dataset, collected based on quantitative changes
in lifespan [34]. Like CellAge, where genes are classified
based on whether their upregulation induces, inhibits, or
has an unknown impact on CS, the longevity orthologues
dataset also provides information on the effect of upregula-
tion of its genes, namely whether it promotes (pro, 421) or
inhibits (anti, 448) longevity (Additional file 1: Table S7;
Additional file 2: Fig. S2).
The CS inducers statistically overlapped with the anti-

longevity genes and not with the pro-longevity genes
(anti: n = 9, ~ 6%, p = 1.42e−02; pro: n = 6, ~ 4%, p =
1.40e−01, Fisher’s exact test with BH correction). We
noted an inverse result with the inhibitors of CS, where
there was a much greater overlap between the CellAge
inhibitors and the pro-longevity genes, resulting in the
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smallest p value of all the overlaps (n = 18, ~ 15%, p =
2.61e−10, Fisher’s exact test with BH correction). How-
ever, there was also a significant overrepresentation of
genes inhibiting the CS process within the anti-longevity
genes (n = 7, ~ 6%, p = 2.41e−02, Fisher’s exact test with
BH correction). It is possible that some of the pathways
the CS inhibitors are associated with increase longevity,
whereas other pathways have anti-longevity effects.
Overall, these results highlight a statistically significant
association between CS and the aging process and
suggest a potential inverse relationship between CS and
longevity, at least for some pathways. Gene overlaps are
available in Additional file 1: Table S8.

CellAge genes differentially expressed with age
In another work, we performed a meta-analysis to find
molecular signatures of aging derived from humans, rats,
and mice [42]. To investigate how the expression of
CellAge genes changes with age, we looked for CellAge
genes which either induce (153) or inhibit (121) senes-
cence within the list of aging signatures. The genes over-
expressed with age (449) had a significant overlap
with the CellAge genes (CS inducers: n = 17, ~ 11%,
p = 6.58e−07; CS inhibitors: n = 9, ~ 7%, p = 6.35e−03,
two-tailed Fisher’s exact test with BH correction)
while the genes underexpressed with age (162) did
not (CS inducers: n = 0, p = 8.57e−01; CS inhibitors:
n = 3, ~ 3%, p = 1.64e−01). The overexpressed genetic
signatures of replicative CS (526) also significantly
overlapped with the overexpressed signatures of aging
(n = 60, ~ 11%, p = 1.18e−23), but not the underex-
pressed signatures of aging (n = 3, ~ 1%, p = 8.79e−01).
Finally, the underexpressed signatures of replicative
CS (734) did not significantly overlap with the over-
expressed (n = 18, ~ 3%, p = 8.79e−01) or underex-
pressed (n = 9, ~ 1%, p = 3.26e−01) signatures of aging.
Given that 112 (40%) of CellAge genes have only been

confirmed to control CS in fibroblasts, we repeated the
above analyses using a subgroup of CellAge genes that
have been shown to affect CS in other cell types. A total
of 91 CellAge inducers of CS and 72 inhibitors were
overlapped with the signatures of aging. The same over-
laps were still significant after FDR correction, indicating
that the differential expression of CellAge genes with
age cannot exclusively be attributed to fibroblast idio-
syncrasies (CS inducers overexpressed: n = 10, ~ 11%,
p = 1.50e−04; underexpressed: n = 0, p = 1. CS inhibitors
overexpressed: n = 6, ~ 8%, 1.34e−02; underexpressed:
n = 2, ~ 3%, p = 1.98e−01).
Using all protein-coding genes from the meta-analysis

as a background list [42], we further examined the CS
inducers overexpressed with age for functional enrich-
ment using WebGestalt 2019 to determine if specific
biological processes were enriched [38]. In parallel, we

performed this analysis using the genes which over-
lapped between CellAge inhibitors and genes overex-
pressed with age. In total, 71 GO terms were
significantly enriched for the overlap between CellAge
senescence inducers and age upregulated genes (p < 0.05
Fisher’s exact test with BH correction) (Additional file 1:
Table S9). Because many of the enriched GO terms were
redundant (e.g., wound healing and response to wound
healing, regulation of cytokine production and cytokine
production), they were clustered based on semantic
similarity scores using REVIGO [37]. We found groups
enriched for regulation of apoptotic processes, response
to lipid, epithelium development, rhythmic process, circa-
dian rhythm, cytokine metabolism, and cell-substrate ad-
hesion (Additional file 2: Fig. S3A). A total of 71 enriched
GO terms for the overexpressed signatures of CS overex-
pressed with age were clustered using REVIGO, resulting
in enriched terms relating to regulated exocytosis,
aging, response to beta-amyloid, and cell proliferation
(Additional file 1: Table S10; Additional file 2: Fig.
S3B). No GO terms were significantly enriched for the
inducers of CS underexpressed with age, the inhibitors
of CS differentially expressed with age, the underex-
pressed signatures of CS differentially expressed with
age, or the overexpressed signatures of CS underex-
pressed with age.

Tissue-specific CS gene expression and differential
expression of CS genes in human tissues with age
The Genotype-Tissue Expression (GTEx) project con-
tains expression data from 53 different tissue sites
collected from 714 donors ranging from 20 to 79 years
of age, grouped into 26 tissue classes [43]. We asked if
CellAge genes and differentially expressed signatures of
CS were expressed in a tissue-specific manner [42] and
determined how CS gene expression changes across
different tissues with age [32].
We first examined tissue-specific CS expression and

found that CellAge genes were either expressed in a
tissue-specific manner less than expected by chance, or
in line with expectations; in other words, the majority of
CellAge genes tended to be expressed across multiple
tissues (Additional file 1: Table S11; Additional file 2:
Fig. S4A). Testis was the only tissue with significant dif-
ferences between the actual and expected number of
tissue-specific CellAge genes expressed (less tissue-
specific genes than expected by chance, p < 0.05, Fisher’s
exact test with BH correction). The underexpressed sig-
natures of CS were significantly less tissue-specific in the
testis and liver, while the overexpressed signatures of CS
were significantly less tissue-specific in the brain, liver,
pituitary, and skin, and more tissue-specific in blood.
We also compared the ratio of tissue-specific to non-
tissue-specific genes in the CS datasets to all protein-
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coding genes. While ~ 25% of all protein-coding genes
are expressed in a tissue-specific manner, only ~ 10% of
CellAge genes and ~ 11% of signatures of CS are
expressed in a tissue-specific manner (Additional file 2:
Fig. S4B), significantly less than expected by chance (p =
2.52e−12 and 3.93e−48 respectively, Fisher’s exact test
with BH correction).
Then, we examined the differential expression of CS

genes with age in different tissues. Using a previously
generated gene set of differentially expressed genes
(DEGs) with age in 26 tissues on GTEx [32, 43], we
found overlaps with 268 CellAge inducers and inhibitors
of CS present in the gene expression data (Fig. 2a). The
process of finding DEGs with age filters out lowly
expressed genes, which explains the 11 missing CellAge
CS regulators. Overall, senescence inducers were overex-
pressed across different tissues with age, although none
of the overlaps were significant after FDR correction
(Fisher’s exact test with BH correction, p < 0.05)
(Additional file 1: Table S12). There was the opposite
trend in the inhibitors of CS, where there was noticeably
less overexpression of CS inhibitors with age, although
these overlaps were also not significant after FDR correc-
tion. A total of 1240 differentially expressed signatures of
CS were also overlapped with the GTEx aging DEGs in 26
human tissues, including 9 tissues previously analyzed
(Fig. 2b) [32]. The overexpressed signatures of CS were sig-
nificantly overexpressed across multiple tissues with age,
and only significantly underexpressed with age in the brain
and uterus (p < 0.05, Fisher’s exact test with BH correction)
(Additional file 1: Table S13). Furthermore, the underex-
pressed signatures of CS trended towards being overex-
pressed less than expected by chance across multiple
tissues with age, although these overlaps were only signifi-
cant after FDR adjustment in the colon and nerve, while
the underexpressed signatures of CS were significantly
overexpressed more than expected in the uterus. Finally,
the underexpressed signatures of CS were underexpressed
with age more than expected by chance in the colon, lung,
and ovary, and underexpressed with age less than expected
by chance in the brain. We also compared the ratio of dif-
ferentially expressed to non-differentially expressed CS
genes in at least one tissue with age to the equivalent ratio
in all protein-coding genes (Additional file 2: Fig. S5A and
S5B) (see Overlap Analysis in Methods). We found that
~ 64% of all protein-coding genes did not significantly
change expression with age in any human tissues, while
~ 19% were overexpressed and ~ 17% were underexpressed
(~ 7% were both overexpressed and underexpressed across
multiple tissues) (Additional file 1: Table S14 and S15). For
the CellAge genes, the number of inducers of CS signifi-
cantly overexpressed with age in at least one tissue was sig-
nificantly higher than the genome average (n = 50, ~ 30%,
p = 1.5e−3, Fisher’s exact test with BH correction). The

inducers of CS underexpressed with age and the inhibitors
of CS differentially expressed with age were not significantly
different from the protein-coding average. We also com-
pared the number of signatures of CS differentially
expressed with age in at least one tissue to the protein-
coding genome average. The overexpressed signatures of
CS were significantly differentially expressed with age com-
pared to all protein-coding genes, whereas the number of
underexpressed signatures of CS was underexpressed with
age more than expected by chance.
The overall fold change (FC) with age of the CS genes

was also compared to the FC with age of all protein-
coding genes for each tissue in GTEx (Fig. 2c; Additional
file 1: Table S16). The median log2FC with age of the
CellAge CS inducers and the overexpressed signatures of
CS was greater than the genome median for the majority
of tissues on GTEx, although the difference in log2FC
distribution with age between the inducers of CS and all
protein-coding genes was only significant in seven tis-
sues (Wilcoxon rank sum test with BH correction,
p < 0.05). The median log2FC with age of the CellAge
inhibitors of CS and the underexpressed signatures of
aging was smaller than the genome median in the majority
of tissues, showcasing the opposite trend to the inducers of
CS and overexpressed signatures of CS. However, the only
tissues with significantly different distributions of log2FC
with age for the inhibitors of CS were the skin and esopha-
gus, where the median log2FC distribution was significantly
less than the genome average, and the salivary gland, where
the median log2FC distribution was significantly more than
the genome average. We also found that the distribution of
log2FC with age of the differentially expressed signatures of
CS significantly changed in opposite directions with age in
14 tissues. Interestingly, this trend was present even in the
adrenal gland and uterus, where the signatures of CS
changed with age in the opposite direction to the majority
of other tissues.
The expression of the majority of CS genes does not

change with age (Additional file 2: Fig. S5A), yet a sig-
nificant number of CS genes trend towards differential
expression with age across multiple tissues in humans
(Fig. 2). We ran 10,000 simulations on the GTEx RNA-
seq data to determine the likelihood of a CS gene be-
ing differentially expressed with age in more than one
tissue by chance (see Simulation of CS Gene Expression
in Human Aging in Methods) (Additional file 2: Fig.
S5C; Additional file 5). The likelihood of a CellAge
gene being overexpressed with age in more than three
tissues and underexpressed with age in more than two
tissues by chance was less than 5% (CS gene expression
simulations) (Fig. 2d; Additional file 1: Table S17;
Additional file 2: Fig. S5C). CS inducers overexpressed
in significantly more tissues with age than expected by
chance included CDKN2A, NOX4, CPEB1, IGFBP3.
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Fig. 2 Differential expression of a CellAge inducers and inhibitors of CS and b differentially expressed signatures of CS in human tissues with age.
Red values indicate that there were more genes differentially expressed with age than expected by chance (−log2(p-val)). Blue values indicate
that there were less genes differentially expressed with age than expected by chance (log2(p-val)). Asterisks (*) denote tissues with significantly
more CS genes differentially expressed with age (p < 0.05, Fisher’s exact test with BH correction, abs(50*log2FC) > log2(1.5)) (Additional file 1: Table
S12 and S13). c Comparison of the median log2FC and distribution of log2FC with age between the CS genes and all protein-coding genes in
human tissues. Red tiles indicate that the median log2FC of the CellAge and CS genes is higher than the median log2FC of all protein-coding
genes for that tissue, while blue tiles indicate that the median log2FC of the CS genes is lower than the median genome log2FC. Asterisks (*)
indicate significant differences between the log2FC distribution with age of CS genes and the log2FC distribution with age of all protein-coding
genes for that tissue (p < 0.05, Wilcoxon rank sum test with BH correction) (Additional file 1: Table S16). d CellAge genes differentially expressed in
at least two tissues with age. Gray tiles are genes which had low basal expression levels in the given tissue and were filtered out before the
differential gene expression analysis was carried out [32]. Colored tiles indicate significant differential expression with age (p < 0.05, moderated t-
test with BH correction, abs(50*log2FC) > log2(1.5)). Numbers by gene names in brackets denote the number of tissues differentially expressing
the CellAge gene with age. Red gene names specify that the CellAge gene was significantly overexpressed with age in more tissues than
expected by chance, while blue gene names show the CellAge genes significantly underexpressed with age in more tissues than expected by
chance (p < 0.05, random gene expression tissue overlap simulations) (Additional file 1: Table S17 – S20). Liver, pancreas, pituitary, spleen, small
intestine, and vagina did not have any significant CS DEGs with age
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ABI3, CDKN1A, CYR61, DDB2, MATK, PIK3R5,
VENTX, HK3, SIK1, and SOX2, while PTTG1, DHCR24,
IL8, and PIM1 were underexpressed in significantly
more tissues (Additional file 1: Table S18; Additional
file 2: Fig. S5D). ZMAT3 and EPHA3 were the two CS
inhibitors overexpressed in significantly more tissues
with age than expected by chance, while CDK1,
AURKA, BMI1, BRCA1, EZH2, FOXM1, HJURP,
MAD2L1, SNAI1, and VEGFA were underexpressed in
significantly more tissues. We also performed simula-
tions to determine the likelihood of gene expression sig-
natures of CS being differentially expressed with age in
multiple human tissues by chance (Additional file 1:
Table S19): less than 5% of the genes in the CS signa-
tures are expected by chance to be overexpressed with
age in more than three tissues or underexpressed with
age in more than two tissues. A total of 46 CS signature
genes (29 overexpressed, 17 underexpressed) were overex-
pressed with age in significantly more tissues than ex-
pected by chance, and 139 CS signature genes were
underexpressed in more tissues than expected by chance
(26 overexpressed genes in CS, 113 underexpressed genes
in CS) (Additional file 1: Table S20).

Do CS and longevity genes associate with aging-related
disease genes?
A previous paper [34] grouped 769 aging-related diseases
(ARDs) into 6 NIH Medical Subject Heading (MeSH) clas-
ses [44] based on data from the Genetic Association Data-
base [45]: cardiovascular diseases (CVD), immune system
diseases (ISD), musculoskeletal diseases (MSD), nutritional
and metabolic diseases (NMD), neoplastic diseases (NPD),
and nervous system diseases (NSD). The same approach
was used to build the HAGR aging-related disease gene se-
lection tool (http://genomics.senescence.info/diseases/
gene_set.php), which we used to obtain the ARD genes for
each disease class and overlap with the CellAge genes.
There were links between the CellAge genes and NPD

genes, which is expected given the anti-tumor role of
senescence (Additional file 1: Table S21). Without ac-
counting for publication bias (i.e., some genes being
more studied than others), all ARD classes are significantly
associated with CellAge genes, with lower commonalities
with diseases affecting mostly non-proliferating tissue such
as NSD. NPD genes are even more overrepresented in the
GenAge human dataset, which could suggest commonality
between aging and senescence through cancer-related path-
ways. Both the strong association of NPD genes with Gen-
Age and senescence, and the strong link between GenAge
and all ARD classes is interesting. Indeed, longevity-
associated genes have been linked to cancer-associated
genes in previous papers [46]. Considering age is the lead-
ing risk factor for ARD [47, 48], the results from GenAge
support the previously tested conjecture that there are (i) at

least a few genes shared by all or most ARD classes; and (ii)
those genes are also related to aging in general [34]. We
also looked for genes that are shared across multiple disease
classes and are also recorded as CS genes. CellAge genes
shared across multiple ARD classes included VEGFA and
IFNG (5 ARD classes), SERPINE1, MMP9, and AR (4 ARD
classes), and CDKN2A (3 ARD classes). Results are summa-
rized in Additional file 2: Fig. S6.

Are CS genes associated with cancer genes?
Cellular senescence is widely thought to be an anti-cancer
mechanism [49]. Therefore, the CellAge senescence in-
ducers and inhibitors of senescence were overlapped with
oncogenes from the tumor-suppressor gene (TSG) data-
base (TSGene 2.0) (n = 1018) [50] and the ONGene data-
base (n = 698) [51] (Additional file 1: Table S22 – S27).
The number of significant genes overlapping are shown in
Fig. 3a, while the significant p values from the overlap ana-
lysis are shown in Fig. 3b (p < 0.05, Fisher’s exact test with
BH correction).
The significant overlap between CellAge genes and

cancer indicates a close relationship between both pro-
cesses. Specifically, the overlap between CellAge inhibi-
tors and oncogenes, and the overlap between CellAge
inducers and TSGs were more significant, with lower
p values and larger odds ratios (Fig. 3) [52]. This analysis
was repeated after filtering out CellAge genes that were
only shown to induce senescence in fibroblasts. The
overlaps were still significant after FDR correction,
indicating that the overlap between CellAge and cancer
genes is not specific to genes controlling CS in fibroblasts
(CS inducers with oncogenes: n = 10, p = 9e−05; with TSGs:
n = 23, p = 4e−12. CS inhibitors with oncogenes: n = 17,
1e−12; with TSGs: n = 8, p = 9e−04, p < 0.05, Fisher’s exact
test with BH correction) (Additional file 2: Fig. S7).
Gene ontology (GO) enrichment analyses were performed

using WebGestalt to identify the function of the overlapping
genes [38]. Overlapping genes between CellAge senescence
inducers and TSGs were enriched in GO terms related to
p53 signalling and cell cycle phase transition (Add-
itional file 2: Fig. S8A). The enriched functions of overlap-
ping genes between CellAge senescence inducers and
oncogenes were mainly related to immune system processes
and response to stress (Additional file 2: Fig. S8B). Overlap-
ping genes between CellAge senescence inhibitors and TSGs
were enriched in only 5 terms, which are cellular response
to oxygen-containing compound, positive regulation
of chromatin organization, and terms relating to fe-
male sex differentiation (Additional file 2: Fig. S8C).
Finally, overlapping genes between CellAge senescence
inhibitors and oncogenes were related to processes
such as negative regulation of nucleic acid-templated
transcription, cellular response to stress, and cell
proliferation (Additional file 2: Fig. S8D). All of the
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functional enrichment data can be found in Add-
itional file 1: Table S28 – S31.

Network analyses
The CellAge genes form both protein-protein and gene
co-expression networks. The formation of a protein-
protein interaction (PPI) network is significant in itself
given that only ~ 4% of the genes in a randomly chosen
gene dataset of similar size are interconnected [53]. In
order to have a more holistic view of CS, we were inter-
ested in the topological parameters of the networks that
CS genes form. For this, several types of networks were
constructed using the CellAge genes as seeds: the CS
PPI network, along with two CS gene co-expression net-
works built using RNA-seq and microarray data. Bio-
logical networks generally have a scale-free topology in
which the majority of genes (nodes) have few interactions
(edges), while some have many more interactions, result-
ing in a power law distribution of the node degree (the
number of interactions per node) [31, 54]. As expected,
the node-degree distribution of the above networks does
confirm a scale-free structure (Additional file 2: Fig.
S9). Additional file 1: Table S32 presents the network
summary statistics for the resulting networks.
The network parameters we looked at were as follows:

Degree, Betweenness Centrality (BC), Closeness Central-
ity (CC), and Increased Connectivity (IC). The degree is
the number of interactions per node and nodes with
high degree scores are termed network hubs. BC is a
measure of the proportion of shortest paths between all
node pairs in the network that cross the node in ques-
tion. The nodes with high BC are network bottlenecks
and may connect large portions of the network which

would not otherwise communicate effectively or may
monitor information flow from disparate regions in the
network [31]. CC is a measure of how close a certain
node is to all other nodes and is calculated with the in-
verse of the sum of the shortest paths to all other nodes.
Lower CC scores indicate that nodes are more central to
the network, while high CC scores indicate the node
may be on the periphery of the network and thus less
central. The IC for each node measures the statistical
significance for any overrepresentation of interactions
between a given node and a specific subset of nodes (in
our case CellAge proteins) when compared to what is
expected by chance. Taken together, genes that score
highly for degree, BC, CC, and IC within the senescence
networks are likely important regulators of CS even if up
until now they have not been identified as CS genes.
Looking at the topology of CS networks, the PPI network,

microarray-based co-expression network, and RNA-seq co-
expression network all possess comparable scale-free struc-
tures. However, gene co-expression data is less influenced
by publication bias. This is particularly important consider-
ing published literature often reports positive protein-
protein interactions over protein interactions that do not
exist [55]. The lack of negative results for protein inter-
action publications complicates the interpretation of PPI
networks even more, as the absence of edges in networks
does not necessarily mean they do not exist. On the other
hand, RNA-seq and microarray co-expression data, while
not influenced by publication bias, does not give indications
of actual experimentally demonstrated interactions (phys-
ical or genetic). Furthermore, RNA read counts do not dir-
ectly correlate to protein numbers, with previous studies
reporting that only 40% of the variation in protein

Fig. 3 a Overlap between CellAge inducers and inhibitors, and oncogenes and tumor-suppressing genes. b Adjusted p value and odds ratio of
the overlap analysis. The number of overlapping genes in each category was significant (p < 0.05, Fisher’s exact test with BH correction). p values
are shown in gray writing for each comparison. Data available in Additional file 1: Table S22 – S27
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concentration can be attributed to mRNA levels, an im-
portant aspect to consider when interpreting RNA-seq data
[56]. Finally, the microarray network was constructed using
the COXPRESdb (V6), which contains 73,083 human sam-
ples and offered another degree of validation [57]. Although
RNA-seq reportedly detects more DEGs including ncRNAs
[58], GeneFriends [59] contains 4133 human samples, far
less than the microarray database from COXPRESdb.

The protein-protein interaction network associated with CS
We only used interactions from human proteins to build
the CellAge PPI network. The network was built by
taking the CellAge genes, their first-order partners and
the interactions between them from the BioGrid data-
base. The CellAge PPI network comprised of 2487 nodes
across four disjointed components, three of which only
comprised of two nodes each, and the main component
containing 2481 nodes.
The genes with the highest degree scores were TP53,

HDAC1, BRCA1, EP300, and MDM2. These same genes
also ranked in the top five CC. Expectedly, several of
these genes also possessed the highest BC: TP53,
BRCA1, HDAC1, and MDM2 (with BAG3, a gene with a
slightly smaller degree also within the top 5). On the
other hand, the genes ranked by top 5 IC were CCND1,
CCND2, CDKN2A, SP1, and EGR1. Of note among these
nodes, EP300, MDM2, CCND2, and EGR1 were not
already present in CellAge. Additional file 2: Fig. S10
summarizes the gene intersection across the computed
network parameters, while Additional file 1: Table S33
identifies potential senescence regulators not already
present in CellAge from the PPI network. We found that
from the top 12 PPI candidates, 11 have been recently
shown to regulate senescence in human cell lines and
will be added to CellAge build 2.
Within the main PPI network component, a large

portion of CS genes and their partners formed a single
large module with 1595 nodes. Using DAVID version
6.8, we found the terms enriched within the module;
the top five are: Transcription, DNA damage & repair,
cell cycle, Proteasome & ubiquitin, and ATP pathway
[35, 36] (Additional file 1: Table S34). These results are
all in line with previously described hallmarks of cellu-
lar senescence [60].
It is prudent to note that centrality measures in PPI

networks must be interpreted with caution due to publi-
cation bias that can be an inherent part of the network
[61, 62]. The top network genes identified from the PPI
network are likely to be heavily influenced by publica-
tion bias [63]. Looking at the average PubMed hits of
the gene symbol in the title or abstract revealed a mean
result count of approximately 2897 per gene, far higher
than the genome average (136) or existing CellAge genes
(712) (Additional file 2: Fig. S11).

Unweighted RNA-Seq co-expression network
We used CellAge genes that induce and inhibit CS and
their co-expressing partners to build a cellular senes-
cence co-expression network. The network consists of a
main connected network with 3198 nodes, and a num-
ber of smaller “islands” that are not connected to the
main network (Fig. 4a).
The main interconnected network included 130 Cel-

lAge genes. Among these, we also found that 14% of
them are also human aging-related genes, reported in
GenAge - Human dataset, whereas the remainder of the
smaller networks only comprised of 1.6% longevity genes
[64]. Next, we looked at a number of centrality parame-
ters to see how CellAge genes are characterized com-
pared to the entire network. CellAge genes had a mean
BC of 0.00363, whereas the remainder of the genes had
a BC of 0.00178, revealing that if CellAge genes are re-
moved, modules within the network may become dis-
connected more easily. While nodes scoring highly for
BC in PPI networks are likely bottleneck regulators of
gene expression, this is not necessarily true for co-
expression networks. In this case, nodes can also have
high BC scores if they are co-activated via various signal-
ling pathways. Although BC alone is not enough to de-
termine which genes are regulating CS, taking BC into
account with other network topological parameters can
be a good indicator of gene function. Aside from high
BC, CellAge genes also had a lower local clustering coef-
ficient of 0.58, compared to a mean of 0.76 across non-
CellAge genes, indicating that locally, CellAge genes
connect to other genes less than the average for the net-
work. This can also be seen at the degree level, where
CellAge genes averaged only 53 connections, compared
to an average of 103 connections in non-CellAge genes.
Finally, the mean CC score was not significantly differ-
ent between CellAge nodes and other genes in the net-
work (0.148 in CellAge vs 0.158). CellAge genes were
therefore more likely to be bottlenecks in signalling
across different modules and occupy localized areas with
lower network redundancy, suggesting that perturba-
tions in their expression might have a greater impact on
linking different underlying cellular processes.
The topological analysis of the main network compo-

nent as a whole revealed a more modular topology than
the PPI network, resulting in genes tending not to ap-
pear in multiple measures of centrality. There were 23
nodes with significant IC with senescence-related genes,
including PTPN6, LAPTM5, CORO1A, CCNB2 and
HPF1. No node from the top 5 IC was present in the top
5 genes with high BC, CC, or Degree. Overall, the pri-
mary candidates of interest included KDM4C, which had
a significant IC and was at the top 1% of CC and top 5%
of BC, along with PTPN6, SASH3 and ARHGAP30,
which all had significant IC values and were at the top
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Fig. 4 a Cluster analysis of the RNA-Seq Unweighted Co-expression Network. The 171 seed nodes obtained from CellAge and their first order
interactors. The colours represent the breakdown of the network into clusters. The algorithm revealed 52 distinct clusters, of which we color and order
the 19 clusters with the best rankings for modularity, or in the case of module 17–19, size. The CellAge nodes are colored in dark purple, appearing
throughout the network. Larger nodes have higher betweenness centrality. In order of decreasing modularity, the main function clusters of the
modules were related to; Spermatogenesis (Module 1), Synapse (Module 2), Cardiac muscle contraction (Module 3), Cell Cycle (Module 4), Secreted
(Module 5), Tudor domain (Module 6), ATP-binding (Module 7), Symport (Sodium ion transport) (Module 8), DNA damage and repair (Module 9),
transit peptide: Mitochondrion (Module 10), Steroid metabolism (Module 11), Transcription regulation (Module 12), Protein transport (Module 13),
Mitochondrion (Module 14), Heme biosynthesis (Module 15), Innate immunity (Module 16), Signal peptide (Module 17), Keratinocyte (Module 18),
and Transcription repression (Module 19) (Enrichment results in Additional file 1: Table S35, genes in Additional file 1: Table S36). b RNA-Seq
Unweighted Co-expression Network, local clustering. Red/Orange represents nodes with high clustering coefficient, whereas pale green represents
nodes with lower clustering coefficient. Degree is also weighted using node size. CellAge nodes are colored purple, and GenAge Human nodes are
also shown and highlighted in bright green. The right-hand panel is an enlarged view of the left-hand panel
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5% of BC. We found that KDM4C and PTPN6 have been
shown to regulate CS in human cell lines, and will be
added to build 2 of CellAge [65, 66].
Previous studies have advocated that measures of cen-

trality are generally important to identify key network
components, with BC being one of the most common
measures. However, it has also been postulated mathemat-
ically that intra-modular BC is more important than inter-
modular BC [67]. Therefore, by isolating network clusters
of interest and identifying genes with high BC or centrality
within submodules, we propose to identify new senes-
cence regulators from the co-expression network.
Using the CytoCluster app (see Networks in Methods)

[68], we found 54 clusters in the network, of which we
represent the top clusters colored according to modular-
ity (Module 1–16) or size (Module 17–19) (Fig. 4a).
Reactome pathway enrichment for all main clusters
highlighted cell cycle and immune system terms in the
two largest clusters [35, 36]. The largest cluster of 460
nodes (17 CellAge nodes, Module 4), possessed a high
modularity score and was strongly associated with cell
cycle genes, including the following general terms: Cell
Cycle; Cell Cycle, Mitotic; Mitotic Prometaphase; Reso-
lution of Sister Chromatid Cohesion; and DNA Repair.
The second largest cluster (Module 16), however, had
weak modularity (ranking 26); it comprised of 450 nodes
(19 CellAge nodes) and was enriched for immune-
related pathways including: Adaptive Immune System;
Innate Immune System; Immunoregulatory interactions
between a Lymphoid and a non-Lymphoid cell; Neutro-
phil degranulation; and Cytokine Signaling in Immune
system. Cluster 4 and Cluster 5 were not enriched for
Reactome Pathways. A visual inspection showed a num-
ber of bottleneck genes between Module 1 and Module
16, consistent with the role of the immune system in
clearance and surveillance of senescence cells and the
secretion of immunomodulators by senescent cells [69]
(Additional file 1: Table S35).
We were also interested in visualizing areas in the net-

work with a high local clustering coefficient, as this par-
ameter represents areas with many neighborhood
interactions and, therefore, more robust areas in the net-
work. It was found that the two clusters of interest,
enriched for cell cycle terms and immune system terms,
overlapped with regions of lower clustering coefficient,
potentially implying parts of the biological system with
less redundancy in the underlying process. Figure 4b
depicts regions of high local clustering coefficient in the
network (orange) and regions less well connected locally
(green).

Unweighted microarray co-expression network
We also made an unweighted microarray co-expression
network built from the COXPRESdb database of

microarray gene co-expression (V6) [57] (Additional file 2:
Fig. S12). Compared with the RNA-seq co-expression net-
work, the microarray network is significantly smaller, and
only included 34% of the CellAge genes (Additional file 1:
Table S32). However, we found that SMC4 was an import-
ant bottleneck in the microarray network, being in the top
5% CC and IC (Additional file 2: Fig. S12D and S12E).
SMC4 was not independently associated with senescence
despite being part of the condensing II complex, which is
related to cell senescence [70]. Furthermore, SMC4 is as-
sociated with cell cycle progression and DNA repair, two
key antagonist mechanisms of cell senescence develop-
ment [71, 72]. SMC4 has been linked to cell cycle progres-
sion, proliferation regulation, and DNA damage repair, in
accordance to the most significantly highlighted functional
clusters in the module 2 and in the whole Microarray
network (Additional file 1: Table S39 and S40; Additional
file 2: Fig. S13) [73, 74]. There was limited overlap be-
tween the microarray co-expression network and the
RNA-seq co-expression network, although this is not sur-
prising considering the higher specificity and sensitivity,
and ability to detect low-abundance transcripts of RNA-
seq [75].

Experimental validation of senescence candidates
We set out to test if candidate genes from our network
analyses are indeed senescence inhibitors using a
siRNA-based approach, whereby knockdowns enable the
p16 and/or the p21 senescence pathway to be induced,
leading to senescence [76]. We tested 26 potential senes-
cence inhibitor candidates, 20 of which were chosen
using GeneFriends, a guilt-by-association database to
find co-expressed genes [59]. For this, we used the
CellAge CS inhibitors as seed genes, with the assump-
tion that genes co-expressed with senescence inhibitors
would also inhibit senescence, and generated a list of the
top co-expressed genes with CS inhibitors based on
RNA-seq data (Additional file 1: Table S41). Further-
more, CellAge has multiple ways of partitioning genes,
including the type of senescence the genes are involved
in (Fig. 1b). We decided to look for genes co-expressed
with stress-induced premature senescence (SIPS) inhibi-
tors. We generated a list of genes that are co-expressed
with the CellAge SIPS genes (Additional file 1: Table
S42). We chose to validate five additional genes that
were both co-expressed with the CellAge SIPS and are
present as underexpressed in our signature of CS [32].
Finally, we chose SMC4 from the microarray network
due to its interaction with other senescence genes within
the network, its association with cell cycle progression,
and the fact that it is underexpressed in senescent cells,
indicating it may be inhibiting senescence in replicating
cells. The genes chosen, along with experimental valid-
ation results are shown in Fig. 5, while the justification
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for our validation and Z-scores are shown in Additional
file 1: Table S43 and S44 respectively.
Next, we performed transient siRNA transfections of

normal human fibroblasts using the 26 candidates and
identified those siRNAs that generated the induction of
a senescence phenotype, using multiparameter analysis
of morphological measures and a panel of senescence
markers. Senescence induction is associated with a loss
of proliferation, as measured by a decrease in Ki67 index

and cell number, and changes in cellular morphology, as
measured by an increase in cell and nuclear area. We
also quantitated changes in p16 and p21 (key senescence
effectors [76]), interleukin 6 (IL-6, a common SASP
marker) and SA-β-galactosidase. Knockdown of cyclo-
philin B, a housekeeper, acted as a negative control [2],
while knockdown of CBX7, a potent senescence inhibi-
tor, was included as a positive control for senescence in-
duction [77]. Of the 26 genes tested, 80.7% (21/26)

Fig. 5 Experimental validation of 26 senescence candidates. a–e Representative images of fibroblasts following transfection with cyclophilin B
siRNA (top row), CBX7 siRNA (middle row), or GFT3C4 siRNA (bottom row). a DAPI (blue) and Ki67 (green). b DAPI (blue) and Cell Mask (red). c
DAPI (blue), p16 (green) and p21 (red). d DAPI (blue) and IL-6 (red). e Brightfield images following staining for SA-β-galactosidase. Size bar,
100 μm. f Heatmap of multiparameter analysis of proliferation markers (cell number and % Ki67 positive), senescence-associated morphology
(cellular and nuclear area) and senescence markers (% p16 positive, p21 intensity, perinuclear IL-6 and perinuclear SA-β-galactosidase). Colors
illustrate the number of Z-scores the experimental siRNA is from the cyclophilin B (cycloB) negative control mean. Data are ranked by whether or
not the siRNA is a top hit (siRNAs between the thick horizontal lines), and then by the cell number Z-score. Red values indicate Z-scores that are
“senescence-associated measures.” The CBX7 positive control is also shown for comparison. Data presented are from at least two independent
experiments each performed with a minimum of three replicates. All Z-scores are available in Additional file 1: Table S44
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resulted in a decrease in Ki67 positive nuclei greater
than 1 Z-score (i.e., direction of change also observed
for the CBX7 siRNA positive control, Fig. 5; Additional
file 1: Table S44); 80.7% (21/26) increased p16; 96.2% in-
creased p21 (25/26); 65.4% increase IL-6; and 65.4% (17/
26) increase SA-β-galactosidase. Of the siRNAs that re-
sulted in a decrease in Ki67 index, 61.9% (13/21) were
classified as top hits as they concomitantly decreased cell
number and altered at least one morphological measure.
92.3% (12/13) of the top hits activated both the p16 and
p21 pathway, 84.6% (11/13) upregulated the SASP factor
IL-6, while 61.5% (8/13) generated an increase in the
percentage of SA-β-galactosidase positive cells. In gen-
eral, we have shown the power of networks in predicting
gene function, with 13 “top hits” (GTF3C4, C9orf40,
HAUS4, MCM7, TCEB3, CDC25A, CDCA4, CKAP2,
MTHFD2, NEK2, IMMT, MYBL2, and NIPA2).

Discussion
CellAge aims to be the benchmark database of genes
controlling cellular senescence and we expect it to be an
important new resource for the scientific community.
The development of CellAge has also provided us with
the means to perform systematic analyses of CS. While
showcasing the functionality of CellAge in this manu-
script, we have also explored the links between CS and
aging, ARDs, and cancer. At the same time, we have
aimed to expand the knowledge on both the evolution
and function of senescence genes, and on how CS genes
interact and form genetic networks. We showed that the
use of CellAge may help in identifying new senescence-
related genes and we have validated several such genes ex-
perimentally. As the body of knowledge around senescence
grows, it is our aim to maintain a quality resource to allow
integrative analyses and guide future experiments.
We began our CellAge analysis by gaining further

insight into the function of CellAge genes (Additional
file 2: Fig. S3). Unsurprisingly, inducers of CS were
enriched for both VEGF and TNF signalling (Additional
file 1: Table S1 and S2). Secretion of VEGF is a compo-
nent of the senescence phenotype and has been shown
to contribute towards cancer progression [78]. Interest-
ingly, the CellAge genes are more strongly conserved in
mammals compared to other protein-coding genes, an
effect not seen in worms, yeast, or flies (Additional
file 1: Table S4; Additional file 2: Fig. S1A and S1B).
Given the role that many of the senescence genes in
CellAge play in regulating the cell cycle, it makes
sense that they are evolutionarily conserved; it is not
entirely surprising that there is a greater evolutionary
pressure towards conserving cell cycle tumor-suppressor
genes than there is towards conserving other genes. Not-
ably, the pattern of evolutionary conservation of CS genes
was found to be almost identical to that of cancer-

associated genes, apparently reflecting the co-evolution
between these two phenomena [53]. Nonetheless, evolu-
tionary genomics in a comparative context allows us to
have a more comprehensive understanding of the genetic
bases in important phenotypic traits, like longevity [79].
During their evolutionary history, it is possible that long-
lived species found ways to more efficiently solve prob-
lems related to the aging process [80, 81]. Lineages where
naturally important gene regulators (e.g., TP53) have alter-
native molecular variants or have been lost from their
genomes [82, 83] can be investigated as natural knockouts
[84], since they have found a different way to solve aging-
related diseases like cancer [85, 86]. We also found that
the evolutionary distance between long-lived species
is randomly distributed (Additional file 2: Fig. S1D;
Additional file 4). Since longevity is a plastic trait that
is related to multiple factors in the evolutionary his-
tory of the organisms (e.g., reproduction, body mass,
habitat, metabolism, risk of predation), the way in
which these genes evolved could be independent in
the long-lived species analyzed.
The relationship between CS and longevity was

highlighted across various sections of this manuscript.
The inducers of senescence were significantly overrepre-
sented in the anti-longevity human orthologues, while
the inhibitors of senescence were even more overrepre-
sented in the pro-longevity human orthologues (Add-
itional file 1: Table S7) [34]. Furthermore, both the
CellAge regulators of CS and the overexpressed signa-
tures of CS were significantly overrepresented in the
overexpressed aging signatures from the human, rat, and
mouse aging signature meta-analysis [42]. Interestingly,
we found that the overexpressed signatures of replicative
CS overexpressed with age were significantly enriched
for regulated exocytosis (including leukocyte activation),
cell proliferation, and aging (Additional file 1: Table S10;
Additional file 2: Fig. S3B). The SASP is a known in-
ducer of chronic inflammation in aged tissue [12, 13],
and the enrichment of terms relating to leukocyte activa-
tion highlights the role CS plays in activating the immune
system via inflammatory factors with age. One tissue that
consistently showed different CS expression patterns with
age was the uterus. This observations was already noted in
a previous study which also observed that DEGs downreg-
ulated in cancer were upregulated with age and DEGs up-
regulated in cancer were downregulated with age in six
tissues, but not in the uterus [32].
CS genes are not expressed in a tissue-specific manner

(Additional file 1: Table S11; Additional file 2: Fig. S4)
and less than half of the CS genes undergo a significant
change in expression with age (Fig. 2; Additional file 2:
Fig. S5A), suggesting that the pathways triggering differ-
ential expression of CS genes with age are shared between
cells across tissues. Indeed, we found that CDKN2A was
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overexpressed in 19 human tissues with age, albeit only
significantly so in 10 of the tissues (Additional file 1: Table
S18) [32]. Nonetheless, across all simulations, CS genes
significantly overexpressed across multiple tissues with
age by chance never exceeded seven tissues (Fig. 2d;
Additional file 1: Table S17 and S19). The significant in-
crease in CDKN2A expression across a significant number
of human tissues with age is an indicator that at least
some cell types are undergoing CS with age. ZMAT3, an
inhibitor of CS, was also significantly overexpressed with
age in seven tissues, including blood vessel, lung, and
prostate, which also had significant increases in CDKN2A
expression. Indeed, both ZMAT3 and CDKN2A were
overexpressed across the majority of GTEx tissues with
age (Additional file 2: Fig. S5D). Furthermore, ~ 40% of
the CellAge database was compiled using experiments ex-
clusively in human fibroblast cell lines. Of the 20 studies
used to compile the signatures of CS, 10 also performed
gene manipulation experiments on fibroblasts [32]. Fibro-
blasts are present in connective tissues found between
other tissue types across the human body, and the tissue
samples analyzed to compile GTEx likely contained fibro-
blast gene expression. This may partially explain the lack
of tissue-specific CellAge genes. It is further unclear
whether the trends in differential expression of the Cel-
lAge genes we see across aged human tissue samples is a
result of fibroblast senescence, or if heterogenous gene
populations are undergoing CS. We have partially ad-
dressed this issue by doing subgroup analysis of CellAge
genes confirmed to control senescence outside of fibro-
blast cell lines and found that the overlap between these
genes and both the signatures of aging and cancer genes is
still significant.
We found a strong association between senescence

and neoplastic diseases (Additional file 1: Table S21).
This is not surprising given the known role of senes-
cence in tumor suppression. Some CS genes were also
shared between many of the ARD classes. These results
are in line with a previous analysis investigating the rela-
tionship between CS and ARD genes carried out using
different datasets [53]. Tacutu et al reported significant
overlaps (i.e., 138 genes – 53% – in common between
CS and cancer vs 21–8% – between CellAge and neo-
plasms); many more than we did. The study found that
many genes shared between CS and several non-cancer
ARDs are also involved in cancer. While removing can-
cer genes from our ARD dataset did not result in such a
striking effect, it nonetheless substantially cut the num-
ber of overlaps to a statistically insignificant level, adding
weight to the hypothesis that cancer genes have a bridg-
ing role between CS and ARDs. Furthermore, we found
a significant overlap between both the CellAge inhibitors
and inducers of senescence, and oncogenes and TSG
(Fig. 3). Genes that induce senescence, however, tended

to be tumor suppressors, while genes that inhibit senes-
cence tended to be oncogenes, a finding that is consist-
ent with the classical view of cellular senescence as a
tumor-suppressor mechanism.
We next explored what information could be obtained

by applying a network analysis to CellAge. From the list
of CellAge genes, three networks of CS were generated:
a PPI network and two co-expression networks, with the
aim of identifying new senescence regulators based pri-
marily on network centrality of the genes.
The examination of the PPI network to identify pos-

sible regulators based on centrality revealed 25 central
genes in the network, ranking in the top 1% in at least
two network topological parameters (degree, BC, CC,
or IC) (Additional file 1: Table S33). However, 13 of
these genes are already in the CellAge database, and we
found 11 of these genes have already been shown to
drive CS in human cell lines and will be added into
build 2 of CellAge.
We looked at the RNA-Seq co-expression network in

detail, using the main connected component of 3198
genes to find highly central genes to the network as a
whole, and those occupying subnetworks of interest. The
RNA-Seq was a highly modular network, separated into
some subnetworks of distinct functions (Fig. 4). The two
largest and more central networks contained a number of
known senescence genes. We expanded the analysis of
these networks in particular, identifying a number of
bottleneck nodes. Cluster 1 was enriched for cell cycle
processes, which is not overly surprising given that senes-
cence involves changes in cell cycle progression. However,
cluster 2 comprised of enriched terms relating to immune
system function. One of the aims in biogerontology is to
understand and reverse the effects of aging on the im-
mune system. Additional file 1: Table S38 highlights the
genes in both clusters that are potential CS bottlenecks
within the network and may warrant further study.
Using siRNAs, we were able to test the potential role of

26 gene candidates in inhibiting senescence (Fig. 5). The
list of candidates was primarily compiled using CellAge
inhibitors as seeds to generate co-expressed genes in Gen-
eFriends, a collection of RNA-seq co-expression data [59]
(Additional file 1: Table S43). Of the 26 genes, 13 were
top hits, decreasing cell number, altering at least one mor-
phological measure, and activating the p16 and/or p21
pathway. Additional file 1: Table S45 highlights the four
CS candidates we found that have not yet been associated
with senescence. We have showcased how co-expression
networks can be used to accurately infer senescence gene
candidates, which can then be experimentally verified.

Conclusion
Overall, our CellAge database is the first comprehensive
cellular senescence database, which will be a major
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resource for researchers to understand the role of senes-
cence in aging and disease. Besides, we found that CS
genes are conserved in vertebrates but not invertebrates
and that genes related to the CS tend not to be tissue-
specific. We observed that genes inducing CS trended
towards upregulation with age across most human tis-
sues, and these genes are overrepresented in both anti-
longevity and tumor-suppressing gene datasets, while
genes inhibiting senescence were not overexpressed with
age and were overrepresented in pro-longevity and
oncogene datasets. CS genes were also overrepresented
in genes linked to aging-related diseases, primarily in
neoplasms.
Using network biology, we implicated the CellAge

genes in various processes, particularly cell division and
immune system processes. We used network topology to
identify potential regulators of CS and bottlenecks that
could impact various downstream processes if deregu-
lated. Indeed, we identified 11 genes that have already
been shown to contribute towards CS, which will be
added to future versions of CellAge. Finally, we experi-
mentally verified 26 genes that induce CS morphology or
biomarkers when knocked down in human mammary fi-
broblasts. Of these, 13 genes (C9orf40, CDC25A, CDCA4,
CKAP2, GTF3C4, HAUS4, IMMT, MCM7, MTHFD2,
MYBL2, NEK2, NIPA2, and TCEB3) were strong hits in
inducing a senescent phenotype.
Cellular senescence is one of the hallmarks of aging

[87] and the accumulation of senescent cells in human
tissues with age has been implicated as a driver of aging-
related diseases. Indeed, pharmacological approaches
targeting senescent cells, like senolytics, are a major and
timely area of research that could result in human clin-
ical applications [5, 88]. It is imperative that we fully
understand and deconstruct cellular senescence in order
to target aging-related diseases. We hope that CellAge
will help researchers understand the role that CS plays
in aging and aging-related diseases and contributes to
the development of drugs and strategies to ameliorate
the detrimental effects of senescent cells.

Methods
CellAge compilation
CellAge was compiled following a scientific literature
search, manual curation, and annotation, with genes be-
ing appended to the database if they met the following
criteria:

� Only gene manipulation experiments (gene knockout,
gene knockdown, partial or full loss-of-function muta-
tions, overexpression or drug-modulation) were used
to identify the role of the genes in cellular senescence.
The search focussed on genes from genetic

manipulation experiments to ensure objectivity in the
selection process.

� The genetic manipulation caused cells to induce or
inhibit the CS process in the lab. Cellular senescence
was detected by growth arrest, increased SA-β-
galactosidase activity, SA-heterochromatin foci, a
decrease in BrdU incorporation, changes in
morphology, and/or specific gene expression
signatures.

� The experiments were performed in primary,
immortalized, or cancer human cell lines.

40% of the experiments were conducted exclusively in
fibroblasts. The data was compiled from 230 references.
The curated database comprises cell senescence genes
together with a number of additional annotations useful
in understanding the context of each identified CS gene
(Additional file 1: Table S46).
We categorized genes according to three types of sen-

escence: replicative, oncogene-induced or stress-induced.
Replicative senescence was the default category, while
genes were listed as oncogene-induced if the reference
explicitly mentioned the gene induced or delayed
oncogene-induced senescence. Finally, stress-induced
senescence was used to indicate that the gene was neces-
sary to induce or inhibit senescence caused by external
stressors like drugs/chemicals, serum deprivation, or ra-
diation. We also recorded whether a gene induces or in-
hibits CS. For example, a gene whose overexpression is
associated with increased senescence is classified with
the “induces” tag, whereas if the overexpression of a
gene inhibits senescence, then it is classified with the
“inhibits” tag. Similarly, if the knockout or knockdown
of a gene induces senescence, then it is recorded with
the “inhibits” tag. Together with the annotations identified
in Additional file 1: Table S46, we also incorporated a
number of secondary annotations into the database such
as various gene identifiers, the gene description, gene in-
teraction(s), and quick links to each senescence gene. The
CellAge database also provides crosslinks to genes in other
HAGR resources, i.e., GenAge, GenDR and Longevity-
Map, which we hope will enable inferences to be made re-
garding the link between human aging and CS.

CellAge data sources
Build 1 of CellAge resulted in a total of 279 curated cell
senescence genes which we have incorporated into the
HAGR suite of aging resources. The HAGR platform
comprises a suite of aging databases and analysis scripts.
The CellAge interface has been designed with the help
of JavaScript libraries to enable more efficient retrieval
and combinatorial searches of genes. As with the other
HAGR databases, we have used PHP to serve the data
via an Apache web server. The raw data can be

Avelar et al. Genome Biology           (2020) 21:91 Page 16 of 22



downloaded via the main HAGR downloads page in
CSV format or filtered and downloaded from the main
search page.
The first part of our work consisted in finding which

genes driving CS are also associated with ARDs or with
longevity, using the following data sources:

� Human genes associated with CS: CellAge build 1.
� Human genes associated with human aging: GenAge

human build 19.
� Human orthologues of model organisms’ genes

associated with longevity: proOrthologuesPub.tsv
and antiOrthologuesPub.tsv file (https://github.com/
maglab/genage-analysis/blob/master/Dataset_4_
aging_genes.zip) [34].

� Human oncogenes: Oncogene database (http://
ongene.bioinfo-minzhao.org/index.html).

� Human tumor suppressor gene database: TSGene
2.0 (https://bioinfo.uth.edu/TSGene/index.html).

� Human genes associated with ARDs (https://github.
com/maglab/genage-analysis/blob/master/
Dataset_5_disease_genes.zip) [34]. This data
concerns the 21 diseases with the highest number of
gene associations, plus asthma, a non-aging-related
respiratory system disease used as a control.

� Human genes differentially expressed with age from
the GTEx project (v7, January 2015 release) [32, 43].

CellAge data analysis
Statistical significance was determined by comparing the
p-value of overlapping CellAge gene symbols with the
different data sources, computed via a hypergeometric
distribution and Fisher’s exact test. We used PubMed to
understand the relative research focus across the
protein-coding genome and incorporate this into the
analysis to account for publication bias. We used Bio-
Mart to obtain approximately 19,310 protein-coding
genes, then using an R script we queried NCBI for the
publication results based on the gene symbol using the
following query [89, 90]:
(“GENE_SYMBOL”[Title/Abstract] AND Homo

[ORGN]) NOT Review [PTYP]
The GENE_SYMBOL was replaced in the above query by

each of the genes in turn. Certain genes were removed as
they matched common words and, therefore, skewed the
results: SET, SHE, PIP, KIT, CAMP, NODAL, GC, SDS,
CA2, COPE, TH, CS, TG, ACE, CAD, REST, HR, and MET.
The result was a dataframe in R comprising variables for
the “gene” and the “hits.” We used the R package called
“rentrez” to query PubMed for the result count [91].

Evolution of CellAge genes
The percentage of CellAge genes with orthologues in
Rhesus macaque, Rattus norvegicus, Mus musculus,

Saccharomyces cerevisiae, Caenorhabditis elegans, and
Drosophila melanogaster were found using Biomart ver-
sion 88 by filtering for genes with “one2one” homology
and an orthology confidence score of one [89]. We also
found the total number of human genes with ortholo-
gues in the above species using Biomart. Significance
was assessed using a two-tailed z-test with BH
correction.
The phylogenetic arrangement included twenty-four

species representative of major mammalian groups. The
genomes were downloaded in CDS FASTA format from
Ensembl (http://www.ensembl.org/) and NCBI (https://
www.ncbi.nlm.nih.gov/) (Additional file 1: Table S6).
To remove low quality sequences we used the cluster-

ing algorithm of CD-HITest version 4.6 [92] with a se-
quence identity threshold of 90% and an alignment
coverage control of 80%. The longest transcript per gene
was kept using TransDecoder.LongOrfs and TransDeco-
der. Predict (https://transdecoder.github.io) with default
criteria [93]. In order to identify the orthologs of the 279
CellAge human genes in the other 23 mammalian spe-
cies, the orthology identification analysis was done using
OMA standalone software v. 2.3.1 [41]. This analysis
makes strict pairwise sequence comparisons “all-against-
all,” minimizing the error in orthology assignment. The
orthologous pairs (homologous genes related by speci-
ation events) are clustered into OrthoGroups (OG) [94];
this was done at the Centre for Genomic Research com-
puting cluster (Linux-based) at the University of Liver-
pool. The time calibrated tree was obtained from
TimeTree (http://www.timetree.org/) and the images
were downloaded from PhyloPic (http://phylopic.org/).
In order to structure the evolutionary distance for the

CellAge genes between the five long-lived mammals and
the others 19 mammalian species, the amino acid se-
quences from the 271 CellAge OrthoGroups were
aligned using the L-INS-i algorithm from MAFFT v.7
[95]. Ambiguous and missing sites were removed from
the alignments using the pxclsq function from phyx [96].
We concatenated the amino acid alignments using the
concat function from AMAS [97] for the 271 CellAge
genes. To analyze the variation of the CellAge genes in
mammals, we obtained the branch lengths using log-
likelihood for a fixed tree through IQ-TREE [98] for (a)
the concatenated alignment (271 CellAge genes) and (b)
the 22 CellAge genes conserved among the 24 mamma-
lian species in order to understand the individual gene
evolution. The topology of reference was the phylogen-
etic tree from TimeTree.
We used the Faith’s phylogenetic diversity index (PD)

[99] through the “picante” R package [100] to calculate
the evolutionary distances. The Faith’s PD index was
used to calculate the sum of the total phylogenetic
branch length for one or multiples species. We
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calculated the observed Faith’s PD from our data and we
compared the results with the expected Faith’s PD
(expected.pd) using a binomial sampling with a fixed
probability of each tip being sampled.

Overlap analysis
We conducted overlap analysis using R to understand
how the CellAge genes and signatures of CS were differ-
entially expressed with GenAge, ARD, and cancer genes.
We also examined the overlap between CS genes and
differentially expressed signatures of aging [42], and
genes differentially expressed in various human tissues
with age. Fisher’s exact test was used on the contingency
tables and significance was assessed by p values adjusted
via Benjamini-Hochberg (BH) correction. For the com-
parison of genes differentially expressed in at least one
tissue with age between the CS genes and the genome,
some genes were differentially expressed in opposite di-
rections across numerous tissues (Additional file 2: Fig.
S5A). Genes differentially expressed in both directions
were added to the overexpressed and underexpressed
DEGs in each CS gene list, and to the total number of
genes in the genome to compensate for the duplicate
gene count (Additional file 1: Table S14 and S15). Fish-
er’s exact test was also used to test for significance of
tissue-specific CellAge gene expression. Significance of
overlap analysis between CellAge and LAGs was com-
puted using a hypergeometric distribution and FDR was
corrected using Bonferroni correction. The GeneOverlap
package in R was used to test for overlaps between the
CellAge inducers and inhibitors of senescence, and the
oncogenes and TSGs [101]. Results for all overlap ana-
lyses were plotted using the ggplot2 library [90, 102].

Simulation of CS gene expression in human aging
The RNA-seq gene expression data on GTEx was scram-
bled in such a way that all protein-coding genes in each
tissue were assigned a random paired p and log2FC value
from the original gene expression data of each respective
tissue. The randomly sorted gene expression data was
then filtered for significance (p < 0.05, moderated t-test
with BH correction, absolute log2FC > log2(1.5)) [32, 103],
and the CellAge accessions were extracted and overlapped
across all the simulated expression data in 26 tissues from
GTEx. The probability of a CS gene being overexpressed
or underexpressed across multiple tissues by chance was
calculated across 10,000 simulations.

Functional enrichment
The analysis of CellAge included gene functional enrich-
ment of the database. We used DAVID functional clus-
tering (https://david.ncifcrf.gov/) to identify functional
categories associated with CellAge [35, 36].

The Overrepresentation Enrichment Analysis (ORA)
of biological processes (Gene Ontology database) was
done via the WEB-based Gene SeT AnaLysis Toolkit
(WebGestalt) for the analysis of all CellAge genes,
CellAge CS regulators and overexpressed signatures of
CS overexpressed in the meta-analysis of aging signa-
tures, and for the CellAge genes overlapping with tumor
suppressor and oncogenes [38]. A p value cutoff of 0.05
was used, and p values were adjusted using BH correc-
tion. Redundant GO terms were removed and the
remaining GO terms were grouped into categories based
on their function using the default parameters on Re-
duce + Visualize Gene Ontology (REVIGO) [37]. Results
were then visualized using and the R package treemap
[104] (Fig. 1c; Additional file 2: Fig. S8A – S8D). Venn
diagrams to represent gene overlaps were created using
Venny [52] and the ggplot2 library [90, 102].

Networks
We used Cytoscape version 3.6.1 to generate networks
and R version 3.3.1 to perform aspects of the statistical
analysis [90, 105]. The networks were built starting from
a list of seed nodes—all genes included in build 1 of Cel-
lAge, part of the Human Ageing Genomic Resources
[28]. Network propagation was measured using the
Cytoscape plugin Diffusion [106].
The analysis of the fit to the scale-free structure was

calculated by the Network Analyzer tool of Cytoscape
3.2.1 [105]. Network analyzer is a Cytoscape plugin
which performs topological analysis on the network and
reports the pillar nodes on the network structure based
on a series of mathematical parameters. Network
analyzer also calculates the fit of the distribution of the
number of edges per node to the power law distribution.
A significant fit to the power law indicates the presence
of a scale-free structure in the network [61, 107]. The
analysis was applied to the PPI network, the RNA-seq
Unweighted Co-expression network, and the Microarray
Unweighted Co-expression network of cellular senes-
cence (Additional file 2: Fig. S9). The Network Analyzer
tool was also used to calculate BC, CC, and IC in the
networks.

Protein-protein interaction network
The protein-protein interaction network was built from
the BioGrid database of physical multi-validated protein
interactions (Biology General Repository for Interaction
Datasets) version 3.4.160, using CellAge proteins as seed
nodes and extracting the proteins encoded by CellAge
genes as well as the first-order interactors of CellAge
proteins [108]. After removing duplicated edges and
self-loops, the network consisted of 2643 nodes and 16,
930 edges. The network was constructed and visualized
in Cytoscape version 3.6.1. The “CytoCluster” App in
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Cytoscape was used to identify modules in the network
with the following parameters: HC-PIN algorithm; Weak,
Threshold = 2.0; ComplexSize Threshold = 1% [68].

Unweighted RNA-Seq co-expression network
The RNA-seq co-expression network was built using
CellAge data and RNA-Seq co-expression data taken
from Genefriends (http://genefriends.org/RNAseq) [59].
The unweighted co-expression network was built

applying the method of correlation threshold selection
described by Aoki to the GeneFriends database of RNA-
Seq co-expression version 3.1 [109]. Aoki initially de-
signed this methodology for plant co-expression network
analysis, but it has been successfully applied to build hu-
man networks [110]. The Pearson Correlation Coeffi-
cient (PCC) threshold which generated the database of
edges with the lowest network density was selected. The
network density is the proportion of existing edges out
of all possible edges between all nodes. The lower the
network density is the more nodes and fewer edges are
included in the network. The lower the number of edges,
the higher the minimum correlation in expression be-
tween each pair of genes represented by the edges. The
higher the number of nodes, the higher the portion of
nodes from CellAge included, and, therefore, the more
representative the network is of the CellAge database.
The PCC threshold of 0.65 generated the database of in-
teractions of RNA-Seq co-expression with the lowest
network density, 0.01482 (Additional file 2: Fig. S14A).
The unweighted RNA-Seq network was generated and
visualized in Cytoscape 3.6.1.

Microarray co-expression network
The microarray co-expression network was generated
using the CellAge genes as seed nodes and their direct
interactions and edges, derived using the COXPRESdb
database of Microarray co-expression (version Hsa-
m2.c2-0) [57]. PCC threshold of 0.53 created the Micro-
array database with the lowest network density, 1.006 ×
10− 2 (Additional file 2: Fig. S14B). The adjustment of
the node-degree distribution to the power law distribu-
tion had a correlation of 0.900 and an R-squared of
0.456 (Additional file 2: Fig. S9C). The fit to the power
law distribution confirmed the scale-free structure of the
network.

Experimental validation of new CS genes
We used normal human mammary fibroblasts (HMFs)
and siRNAs to find new CS regulators based on high-
ranking co-expressed inhibitors of CS and SIPS inhibi-
tors. We also tested SMC4 due to its high-scoring topo-
logical parameters within the microarray co-expression
network (see Experimental Validation of Senescence
Candidates in Results).

Cell culture and reagents
Fibroblasts were obtained from reduction mammoplasty
tissue of a 16-year-old individual, donor 48 [111]. The
cells were seeded at 7500 cells/cm2 and maintained in
Dulbecco’s modified Eagle’s medium (DMEM) (Life
Technologies, UK) supplemented with 10% fetal bovine
serum (FBS) (Labtech.com, UK), 2 mM L-glutamine (Life
Technologies, UK) and 10 μg/mL insulin from bovine
pancreas (Sigma). All cells were maintained at 37 °C/5%
CO2. All cells were routinely tested for mycoplasma and
shown to be negative.

siRNA knockdown experiments
For high-content analysis (HCA), cells were forward
transfected with 30 nM siRNA pools at a 1:1:1 ratio
(Ambion) using Dharmafect 1 (Dharmacon) in 384-well
format. Control siRNA targeting cyclophilin B (Dharma-
con) or Chromobox homolog 7 (CBX7, Ambion) were
also included as indicated. Cells were incubated at 37 °C/
5% CO2 and medium changed after 24 h. Cells were then
fixed/stained 96 h later and imaged as described below.
The siRNA sequences are provided in Additional file 1:
Table S47A and S47B.

Z-score generation
For each of the parameters analyzed, significance was
defined as one Z-score from the negative control mean
and average Z-scores from at least two independent ex-
periments performed in at least triplicate are presented.
Z-scores were initially generated on a per experiment
basis according to the formula below:

Z−score ¼ mean value of target siRNA �mean value for cyclophilin B siRNAð Þ
=standard deviation SDð Þ for cyclophilin B siRNA:

Immunofluorescence microscopy and high-content analysis
Cells were fixed with 3.7% paraformaldehyde, perme-
abilized for 15min using 0.1% Triton X and blocked in
0.25% BSA before primary antibody incubations. Primary
antibodies used are listed in Additional file 1: Table S48.
Cells were incubated for 2 h at room temperature with the
appropriate AlexaFluor-488 or AlexaFluor-546 conjugated
antibody (1:500, Invitrogen), DAPI, and CellMask Deep
Red (Invitrogen). Images were acquired using the IN Cell
2200 automated microscope (GE), and HCA was
performed using the IN Cell Developer software (GE).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-020-01990-9.

Additional file 1: Supplementary Tables. Excel file containing
Supplementary Tables S1-S48.
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Additional file 2: Supplementary Figures. PDF containing
Supplementary Fig. S1-S14.

Additional file 3. 271 CellAge orthogroups. Directory containing FASTA
files of CellAge orthogroups.

Additional file 4. Evolutionary distance in CellAge genes. PDF with
Faith’s phylogenetic diversity index of 22 individual CellAge genes
conserved amongst all 24 mammalian species.
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expected number of overlaps between GTEx tissue DEGs with age when
gene names are scrambled.
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