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Introduction

The sequencing of genomes has revolutionized biolog-
ical and biomedical research. Thanks to various technolo-
gies and approaches that take advantage of genome
sequence knowledge, researchers can now focus on
whole biological systems rather than being limited to
studying isolated parts. Because most biological pro-
cesses are complex in the sense that they involve the
interplay of multiple genes and proteins with each other
and with the environment, surveying systems as a whole
is imperative to fully comprehending them, and more
accurately pinpointing how to intervene in them. Recent
breakthroughs in developing cheaper and quicker
sequencing technologies have given further power to our
capacity to survey biological systems in a holistic way
with multiple applications in aging research (reviewed in
de Magalhaes, Finch, & Janssens, 2010). In addition to
genomics, other omics approaches like transcriptomics,
proteomics, and epigenomics have allowed for a system-
atic profiling of biological processes and disease states.

Aging is widely acknowledged as a complex process
involving changes at various biological levels, interac-
tions between them, and feedback regulatory circuits.
The underlying mechanistic causes of aging remain a
subject of debate, and it is likely that multiple degenera-
tive processes are involved, including organ-specific
processes but also interacting cell- and organ-level com-
munications (Cevenini et al., 2010; de Magalhaes, 2011;
Lopez-Otin, Blasco, Partridge, Serrano, & Kroemer,
2013). While there are simple triggers to complex biologi-
cal processes, such as telomere shortening triggering rep-
licative senescence in human fibroblasts (de Magalhaes,
2004), most researchers would agree that organismal
aging involves multiple processes and possibly the inter-
play between various causal mechanisms. Likewise, hun-
dreds of genes have been associated with aging in model
organisms (Tacutu et al., 2018) and yet the pathways
involved are complex and often interact in nonlinear
ways (de Magalhaes, Wuttke, Wood, Plank, & Vora,
2012). One hypothesis is that aging and longevity cannot
be fully understood by studying individual components
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and processes (Cevenini et al., 2010). To understand
aging we must then account for the intrinsic complexity
of biological systems.

Our goal in this chapter is to review potential large-
scale technologies in the context of aging and longevity
research and how data can be analyzed and integrated
to advance our understanding of these complex pro-
cesses. We first review the major technologies available
for researchers to survey biological systems in a system-
atic fashion and their applications to advance the biol-
ogy and genetics of aging, debate issues in data analysis
and statistics, and discuss data integration between dif-
ferent sources, as this is one of the major challenges of
the post-genome era, and also one of the most promis-
ing. Various sources of data and approaches are dis-
cussed in this context.

Post-genome technologies and biogerontology

There are many open questions in biogerontology,
but arguably most researchers focus on two key
questions (de Magalhaes & Toussaint, 2004b): (1)
what are the genetic determinants of aging, both in
terms of longevity differences between individuals
and species differences in aging? and (2) which
changes occur across the lifetime to increase vulnera-
bility, for example in a person from age 30 to age 70
to increase the chance of dying by roughly 30-fold?
Post-genome technologies may help us answer both
these questions.

Genome-wide approaches and the genetics of
aging and longevity

Understanding human phenotypic variation in aging
and longevity has been a long-term research goal.
Studies in twins have shown that longevity in humans
has a genetic component, and the heritability of longev-
ity has been estimated at B25% (Christensen, Johnson,
& Vaupel, 2006). If we could identify genetic variants
associated with exceptional human longevity, these
would likely be suitable for drug discovery (de
Magalhaes et al., 2012). In 1994, APOE was associated
with longevity in a French population (Schachter et al.,
1994). The sequencing of the human genome in 2001
allowed for much more powerful whole-genome geno-
typing platforms capable of surveying hundreds of
thousands of genetic variants in a cost-effective way (de
Magalhaes, 2009). In spite of these recent technological
advances, the genetics of human longevity remains
largely misunderstood. Several genome-wide associa-
tion studies (GWAS) have been performed with hun-
dreds of individuals, with largely disappointing results.

For example, one landmark study involving several
European populations with a total of over 2000 nonage-
narian sibling pairs identified only APOE as associated
with longevity (Beekman et al., 2013); and although
APOE has been consistently associated with longevity,
it only modestly explains the heritability of longevity.
GWAS focused on complex diseases and processes
have been on many occasions equally disappointing to
date, suggesting that common genetic variants have a
modest contribution to longevity and complex diseases
(de Magalhaes & Wang, 2019; Manolio et al., 2009).

The dropping costs of DNA sequencing (Fig. 6.1)
mean that sequencing a human genome is rapidly
becoming affordable. Therefore, researchers are moving
from genotyping platforms based on known genetic
variants to genome sequencing of thousands of indivi-
duals. It is possible that this will reveal rare variants
with strong effects on longevity, as has been predicted
to be the case for complex diseases (Manolio et al.,
2009). Nonetheless, considering that only APOE has
been associated with confidence with longevity, our
understanding of the genetics of longevity lags behind
our understanding of the genetics of complex age-
related diseases, in itself made difficult by numerous
factors like multiple genes with small effects. Intrinsic
difficulties in longevity studies (e.g., lack of appropriate
controls) or because longevity is a more complex trait
may explain why our understanding of the heritability
of longevity is still poor (de Magalhaes, 2014b).

An even greater source of variation in aging and lon-
gevity than that observed between humans is observed
across species. We know that mice, for example, age
25�30 times faster than humans, even under the best
environmental conditions (Finch, 1990). Even when com-
pared to chimpanzees, our closest living relative whose
genome is about 95% similar to our own, aging is
significantly retarded in humans (de Magalhaes, 2006).

FIGURE 6.1 Exponential growth in sequencing capacity as
reflected in the dropping costs of sequencing from 2001 to 2019.
Source: NHGRI (https://www.genome.gov/about-genomics/fact-sheets/
Sequencing-Human-Genome-cost).
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Therefore there must be a genomic basis for species dif-
ferences in aging, and again the dropping costs of
sequencing have permitted much more affordable de
novo sequencing of genomes (de Magalhaes et al., 2010).
For example, the sequencing of long-lived species, such
as the naked mole-rat and bats (Keane et al., 2014; Kim
et al., 2011; Zhang et al., 2013a) can provide candidate
genes for selection in long-lived species, and it is interest-
ing to observe that genes involved in DNA damage
responses and repair have emerged from such studies
(de Magalhaes & Keane, 2013). For example, Keane et al.
reported the sequencing and comparative analysis of the
genome of the bowhead whale, the longest-lived known
mammal. The analysis revealed a number of genes under
positive selection and bowhead-specific mutations in
genes linked to cancer and aging. The analysis also iden-
tified gene changes associated with DNA repair, cell-
cycle regulation, cancer, and aging, and potentially rele-
vant changes in genes associated with thermoregulation,
sensory perception, dietary adaptations, and immune
response (Keane et al., 2015).

In addition to the analysis of genomes from long-
lived species, comparative analyses of genomes from
species with different lifespans are also beginning to
provide further candidate genes for a role in aging. We
developed a method to identify candidate genes
involved in species differences in aging based on
detecting proteins with accelerated evolution in multi-
ple lineages where longevity is increased (Li & de
Magalhaes, 2013). Our results revealed B100 genes
and functional groups that are candidate targets of
selection when longevity evolves (Li & de Magalhaes,
2013). These include DNA damage response genes and
the ubiquitin pathway and thus provide evidence that
at least some repair systems were selected for, and
arguably optimized, in long-lived species. Other meth-
ods aimed at discovering genes associated with lon-
gevity have focused on genes showing a stronger
conservation in long-lived species (Jobson, Nabholz, &
Galtier, 2010), searching for protein residues that are
conserved in long-lived species but not in short-lived
ones (Semeiks & Grishin, 2012). One recent work
employed two methods, one based on residue change
that co-occurs with the evolution of longevity and the
other based on changes in rates of protein evolution, to
identify candidate genes and biological processes mod-
ulating longevity across primates (Muntane et al.,
2018). Because all these methods are conceptually dif-
ferent from each other, little overlap has been observed
in the results. Nonetheless, it seems that genetic altera-
tions contributing to the evolution of longevity in
mammals have common patterns (or signatures) that
are detectable using cross-species genome compari-
sons, though much work remains in order to improve
the signal-to-noise ratio of these methods. One caveat

of these studies is the lack of experimental validation,
and thus all of these genes must be seen as candidates.
Given the declining costs of sequencing we can expect
many more such studies in the near future.

Aging is a particularly difficult process to unravel
because it is much harder to study in humans than
most other processes and diseases. Observational stud-
ies have been conducted but are extremely time-
consuming, and clinical trials for longevity itself are
challenging, even though trials for aging markers are
possible (de Magalhaes, Stevens, & Thornton, 2017; de
Magalhaes et al., 2012). Therefore most biogerontolo-
gists rely on model systems: human cells; unicellular
organisms such as the yeast Saccharomyces cerevisiae;
the roundworm Caenorhabditis elegans; the fruit fly
Drosophila melanogaster; and rodents, in particular mice
(Mus musculus) and rats (Rattus norvegicus). The small
size and short life cycles of these organisms—even
mice do not commonly live more than 4 years—make
them inexpensive subjects for aging studies, and the
ability to genetically manipulate them gives research-
ers ample opportunities to test their theories and
unravel molecular and genetic mechanisms of aging.

The aforementioned traditional biomedical model
organisms are widely used in other fields and not sur-
prisingly a variety of tools are available to study them,
and recently many of these powerful tools take advan-
tage of omics approaches. While the genetics of aging
was initially unraveled using traditional genetic
approaches (reviewed in Johnson, 2002), large-scale for-
ward genetic screening approaches now allow for hun-
dreds of genes to be tested simultaneously for
phenotypes of interest, including longevity and age-
related traits. Genome-wide screens for longevity have
been performed (McCormick & Kennedy, 2012), in par-
ticular in worms (Hamilton et al., 2005; Hansen, Hsu,
Dillin, & Kenyon, 2005; Samuelson, Carr, & Ruvkun,
2007). Hundreds of genes have been associated with life
extension in this way, although the overlap between
these studies has been smaller than expected. Moreover,
this type of aging studies will probably become even
more accessible, with the advent of specialized, auto-
mated screening devices that monitor lifespan. For
example, the Caenorhabditis elegans Lifespan Machine
was the first automated system dedicated to lifespan
assays based on video tracking of worms (Stroustrup
et al., 2013). Since then, a more advanced system has
been created, the WorMotel, a microfabricated device
for long-term cultivation and automated longitudinal
imaging of large numbers of worms confined to indi-
vidual wells (Churgin et al., 2017). One important
observation from the worm phenotypic screening of
genetic interventions is that it seems that the most
important pathways that modulate lifespan when dis-
rupted in worms (and possibly in model organisms)
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have been identified by now, even though there is still
ample room to identify individual components.

Although usually more laborious, screens for genes
affecting lifespan have also been performed in yeast,
including for replicative lifespan (Smith et al., 2008),
chronological lifespan (Fabrizio et al., 2010), and
using pooled screen approaches (Matecic et al., 2010).
Technical limitations in flies impede screens at the
genome-wide level, but lifespan screens have been
performed using the P-element modular-misexpression
system (Paik et al., 2012) and Gene Search misexpres-
sion vector system (Funakoshi et al., 2011). Costs
impede large-scale screens in mice, although large-scale
knockout mouse repositories like the Knockout Mouse
Project (www.komp.org) and the International Mouse
Phenotype Consortium (www.mousephenotype.org)
can facilitate such studies; one large-scale profiling of
mouse mutants for aging-related phenotypes, called the
Harwell Aging Screen, has been performed (Potter
et al., 2016).

A variety of genome-wide screens have also been
performed in vitro, in particular using RNAi-based
technologies (Echeverri & Perrimon, 2006; Moffat &
Sabatini, 2006; Mohr, Bakal, & Perrimon, 2010). These
include screens focused on traits of interest for aging
and longevity. For example, screens for cell lifespan
have been performed in human fibroblasts revealing
that senescent cells activate a self-amplifying secretory
network involving CXCR2-binding chemokines (Acosta
et al., 2008). A variety of readouts can be employed to
assay for specific traits. For instance, screens have been
performed for genes modulating resistance to oxidative
stress in mammalian cells (Nagaoka-Yasuda, Matsuo,
Perkins, Limbaeck-Stokin, & Mayford, 2007; Plank et al.,
2013) and antioxidant responses (Liu et al., 2007). The
possibilities are immense and provide another large-
scale tool for deciphering biological processes.

One of the goals of biogerontology is to develop
interventions that postpone degeneration, preserve
health, and extend life (de Magalhaes, 2014a). Large-
scale drug screening is now widespread in the phar-
maceutical industry (Macarron et al., 2011). While
life extension is harder and more expensive to assay
than targets in high-throughput screening, systematic
screens for life-extending compounds are now a
distinct possibility. Petrascheck et al. assayed 88,000
chemicals for the ability to extend worm lifespan
(Petrascheck, Ye, & Buck, 2007); while the success of
this approach was modest (only 115 compounds signif-
icantly extended lifespan and only 13 by more than
30%), it provides proof-of-concept for large-scale
screens in the context of life-extending drugs. Further
investigations into drug-mediated worm longevity,
using a similar protocol, even if with a smaller com-
pounds library of known or suspected mammalian

targets (many already approved for use in humans),
revealed 60 promising drugs, which might provide
beneficial effects on aging in mammals (Ye, Linton,
Schork, Buck, & Petrascheck, 2014).

Surveying the aging phenotype on a grand scale

In addition to understanding the genetic basis for
phenotypic variation in aging and longevity, it is also
crucial to elucidate the changes that contribute to age-
related degeneration. Several age-related changes have
been described and historically this focused on broad
physiological and morphological aspects and the
molecular and biochemical changes for which assays
existed. Thanks to genome-wide approaches we can
now survey the aging phenotype with unprecedented
detail (de Magalhaes, 2009; Valdes, Glass, & Spector,
2013). In particular, advances in transcriptomics have
allowed researchers to survey the expression levels of
all genes in the genome in a single, relatively inexpen-
sive, experiment.

One major breakthrough in transcriptomics was the
development of the microarray, which allows for the
quantification of all annotated genes simultaneously.
Briefly, this led in the past 20 years to a large number
of gene expression profiling studies of aging (de
Magalhaes, 2009; Glass et al., 2013; Lee, Klopp,
Weindruch, & Prolla, 1999; Zahn et al., 2007). In a
sense, however, these have been disappointing in that
relatively few genes are differentially expressed with
age in most tissues and few insights have emerged. As
an exception, Zahn et al. observed a degree of coordi-
nation in age-related changes in gene expression. In
mice, different tissues age in a coordinated fashion so
that a given mouse may exhibit rapid aging while
another ages slowly across multiple tissues (Zahn
et al., 2007). In addition, our 2009 meta-analysis of
aging gene expression studies revealed a conserved
molecular signature of mammalian aging across organs
and species consisting of a clear activation of
inflammatory pathways accompanied by a disruption
of collagen and mitochondrial genes (de Magalhaes,
Curado, & Church, 2009). This molecular signature of
aging maps well into established hallmarks of aging
(Lopez-Otin et al., 2013). It should be noted, however,
that transcriptional changes during aging may repre-
sent responses to aging rather than underlying causa-
tive mechanisms and thus their interpretation is not
straightforward.

The dropping costs of sequencing have also
allowed for gene expression profiling approaches
that are digital in nature, as opposed to microarrays
that are analog. Sequencing the transcriptome, usu-
ally referred to as RNA-seq, allows for unprece-
dented accuracy and power. A number of reviews
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have focused on the advantages of RNA-seq as com-
pared to microarrays (de Magalhaes et al., 2010;
Mortazavi, Williams, McCue, Schaeffer, & Wold,
2008; Wang, Gerstein, & Snyder, 2009), and it is very
clear that RNA-seq has a superior dynamic range
and provides more data than microarrays. Our lab
performed one of the first RNA-seq profiling experi-
ments in the context of aging, which revealed gene
expression changes in the rat brain in various previ-
ously unknown genes, including noncoding genes
and genes not yet annotated in genome databases
(Wood, Craig, Li, Merry, & de Magalhaes, 2013).
Although it is exciting that many changes were
observed in the so-called “dark matter” transcripts,
because most of these are not annotated or have little
information, follow-up is complicated; this empha-
sizes the need to study the new genomic elements
that may be phenotypically important. In this
context, large-scale efforts, such as ENCODE (www.
encodeproject.org), which aims to identify all func-
tional elements in the human genome (Dunham
et al., 2012), are crucial to annotate and elucidate the
function of all genomic elements. Similarly, the
Genotype-Tissue Expression (GTEx) Consortium
(gtexportal.org) provides data from multiple human
tissues and ages (GTEx Consortium, 2015), and can
be used to study transcriptional changes with age in
human tissues (Chatsirisupachai, Palmer, Ferreira, &
de Magalhaes, 2019; Yang et al., 2015).

A number of studies have also focused on profiling
gene expression changes in life-extending interven-
tions or in long-lived strains (de Magalhaes, 2009; Lee
et al., 1999; Tyshkovskiy et al., 2019; Wood et al., 2015),
as well as in short-lived and/or progeroid animals. For
example, a large number of studies have focused on
caloric restriction (CR) to identify specific genes and
processes associated both with CR and whose age-
related change is ameliorated in CR. In contrast to
studies of aging, CR studies have revealed substantial
gene expression changes, some of which can be associ-
ated with specific pathways and processes (Lee et al.,
1999; Tsuchiya et al., 2004; Wood et al., 2015). A meta-
analysis of gene expression studies of CR revealed a
number of conserved processes associated with CR
effects like growth hormone signaling, lipid metabo-
lism, immune response, and detoxification pathways
(Plank, Wuttke, van Dam, Clarke, & de Magalhaes,
2012). In another study, midlife gene expression profil-
ing of mice of different lifespans due to different die-
tary conditions revealed a possible contribution of
peroxisome to aging, which was then tested experi-
mentally in invertebrates (Zhou et al., 2012). Arguably,
gene expression profiling of manipulations of aging
has been more successful in providing insights than
profiling of aging per se.

Another area that has recently flourished due to
technological developments is comparative transcrip-
tomics focused on species with different lifespans. In a
meta-analysis, Fushan et al., for example, analyzed the
RNA-seq gene expression in liver, kidney, and brain,
for 33 mammalian species from different families and
with varying lifespans. This uncovered parallel evolu-
tion of gene expression and lifespan, and revealed
genes evolving in agreement with the gradient of life-
history variation as well as several processes and path-
ways (Fushan et al., 2015). In a recent study, the de
novo assembled transcriptome of the gray whale (con-
sidered among the top 1% longest-lived mammals) has
also been compared with that of other long- and short-
lived mammals (including bowhead and minke
whales). The authors show that long-lived mammals
share common gene expression patterns, including
high expression of DNA maintenance and repair,
autophagy, ubiquitination, apoptosis, and immune
responses (Toren et al., 2020).

Technological and methodological advances promise
to allow even more powerful surveys of the molecular
state of cells. Ribosome profiling is one recent approach,
also based on next-generation sequencing platforms, con-
sisting of sequencing ribosome-protected mRNA frag-
ments. Compared to RNA-seq using total mRNA,
ribosome profiling has the advantage that it is surveying
active ribosomes, known as the translatome, and thus
can be used to quantify the rate of protein synthesis,
which is thought to be a better predictor of protein abun-
dance (Ingolia, Ghaemmaghami, Newman, & Weissman,
2009). Advances in sequencing technology have also
allowed for quantitative surveys of changes at the DNA
level, including quantifying mutation accumulation with
age in the genome and at the level of the mitochondrial
genome (reviewed in de Magalhaes et al., 2010). One
recent study found an age-related increase in human
somatic mitochondrial mutations inconsistent with oxi-
dative damage (Kennedy, Salk, Schmitt, & Loeb, 2013).
Another study in aging mice found no increase in mito-
chondrial DNA point mutations or deletions, questioning
whether these play a role in aging (Ameur et al., 2011).

Another level of changes during the life course
comes from epigenetics. These are heritable changes
that are not caused by changes in the DNA sequence.
Large-scale profiling of epigenetic changes with age is
now becoming more common, and with the dropping
costs of sequencing will no doubt become even more
widespread. It is clear that epigenetic changes, like
methylation, are associated with age as well as with
age-related diseases (Johnson et al., 2012). For example,
two recent studies found epigenetic (methylation)
marks highly predictive of chronological age in humans
(Hannum et al., 2013; Horvath, 2013). Recently, an
additional epigenetic biomarker of aging (DNAm
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PhenoAge), incorporating several clinical measures of
phenotypic age assayed in whole blood, has been devel-
oped to predict a variety of aging outcomes, including
all-cause mortality, cancers, healthspan, physical func-
tioning, and Alzheimer’s disease (Levine et al., 2018).
While there is still debate concerning the causality of
epigenetic changes, and whether they are causes or
effects of age-related degeneration, this is another field
that has received increased attention lately (Field et al.,
2018; Schnabl, Westermeier, Li, & Klingenspor, 2018).
Modern approaches that allow the epigenome to be sur-
veyed on a genome-wide scale however, such as
methyl-DNA immunoprecipitation (MeDIP) for survey-
ing DNA methylation and ChIP-Seq for studying his-
tone modifications, provide the tools for researchers to
study the epigenetics of aging (de Magalhaes et al.,
2010). As such, the epigenome is yet another layer of
genomic regulation that can be studied in a high-
throughput fashion across the lifespan and in manipula-
tions of longevity.

For all the success of transcriptomics, proteins are of
course the actual machines of life and the correlation
between transcripts and protein levels is not perfect.
Transcriptomics provides a snapshot of transcriptional
responses but in the context of aging we need proteo-
mics to truly assay what changes occur with age.
Proteomics approaches are still limited, however, in
that they do not allow a comprehensive survey of the
proteome in a single experiment (de Magalhaes, 2009).
There have been some advances, though the number of
proteins surveyed is often small compared to transcrip-
tional profiling. For example, protein profiling of aging
has been performed in the mouse heart, revealing
8 and 36 protein spots whose expression was, respec-
tively, upregulated and downregulated due to aging
(Chakravarti et al., 2008); comparable results in terms of
number of proteins were also found in the mouse brain
(Yang et al., 2008). Insights can be gained, however, and
for instance proteome profiling of aging in mice kidney
revealed functional categories associated with aging
related to metabolism, transport, and stress response
(Chakravarti et al., 2009). More recently, plasma proteo-
mic profiling has revealed a proteomic signature of age
(Tanaka et al., 2018).

Another emerging approach to profile age-related
changes involves surveying the metabolome. One
study compared metabolic parameters of young and
old mice, which was then integrated with gene expres-
sion and biochemical data to derive a metabolic foot-
print of aging (Houtkooper et al., 2011). Another study
determined the sera metabolite profile of mice of dif-
ferent ages and different genetic backgrounds to derive
a metabolic signature that predicts the biological age
in mice (Tomas-Loba, Bernardes de Jesus, Mato, &
Blasco, 2013). In humans, a panel of 22 metabolites

was found to significantly correlate with age and with
age-related clinical conditions independent of age
(Menni et al., 2013), while another group found 71 and
34 metabolites significantly associated with age in,
respectively, women and men (Yu et al., 2012). In
another study of more than 300 unique compounds,
significant changes in the relative concentration of
more than 100 metabolites were associated with age
(Lawton et al., 2008). Complementarily, centenarians
have also been shown to be characterized by a meta-
bolic phenotype that is distinct from that of elderly
subjects, in particular regarding amino acids and lipid
species (Collino et al., 2013; Montoliu et al., 2014).

The relevance of large-scale approaches is likely to
increase in the near future thanks to the rapid develop-
ment of single-cell sequencing. As currently the most
developed class among these techniques, single-cell
RNA sequencing (scRNA-seq) can typically measure
the transcriptome of hundreds of thousands of individ-
ual cells simultaneously (Regev et al., 2017). Methods
targeting other molecular profiles, such as the epigen-
ome, also tend to show promising development (Clark,
Lee, Smallwood, Kelsey, & Reik, 2016), with in some
cases the possibility of measuring several profiles in
parallel in the same cell (Angermueller et al., 2016). An
important opportunity given by such technology is the
capacity to better define the notion of cell type and to
build a cell atlas, such as the recently created murine
atlas (Tabula Muris Consortium, 2018; Han et al., 2018)
and the future human cell atlas (Regev et al., 2017).

One important limitation in age-related omics pro-
filing, for example, transcriptomics, is that changes
could be due to changes in cell types within a given
tissue. As such, biogerontology will benefit from
single-cell sequencing and it is encouraging to notice
that a few scRNA-seq studies have already been spe-
cifically designed to investigate the aging process.
While results have recently been published for the
human pancreas (Enge et al., 2017), the mouse lung
(Angelidis et al., 2019), and the mouse brain
(Ximerakis et al., 2019), two other studies provide
aging data for, respectively, 3 and 18 tissues obtained
from the same mice (Kimmel et al., 2019; Pisco et al.,
2020). A common conclusion of these early investiga-
tions is that aging gives rise to distinct transcriptional
trajectories among cell types rather than to a univer-
sal pattern. For instance, Ximerakis et al. and Kimmel
et al. both report more than 3000 genes differentially
expressed with age, but most of them are specific to
only one cell type and some of them show opposite
regulations in different cell types. Along the same
lines, Kimmel et al. observe that changes in transcrip-
tional noise depend on cell identity (however this is
in contrast with Enge et al. and Angelidis et al., both
reporting an overall increase of such noise in the cell
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types they considered). As an interesting example of
multi-omics analysis, Angelidis et al. also show that
the combination of scRNA-seq with proteomics
reveals the cellular origin of extracellular matrix
remodeling in the lungs of old mice. Although we
have only considered here a few examples of the
results contained in the aforementioned articles,
we can already start appreciating the relevance and
the potential of single-cell sequencing for aging
research and large-scale analysis.

Challenges in data analysis

Although large-scale omics approaches facilitate a
broad array of studies and provide an incredible
amount of data, the sheer volume of data generated cre-
ates challenges in turning the data into meaningful
results and novel insights. From a statistical perspective,
large-scale approaches also increase the chances of false
hits that need to be accounted for when analyzing and
interpreting the results. The uncertainties concerning
potential false results in large-scale approaches empha-
size the need for further experimental validation using
a different, usually low-scale, approach. In gene expres-
sion studies, qPCR validation is usually used as the
gold standard (Derveaux, Vandesompele, & Hellemans,
2010). Some types of studies, like genetic association
studies of longevity, are not simple to validate, and
often depend on further studies in other populations,
which may or may not be feasible.

In a sense, the bottleneck in research using post-
genome technologies is moving away from generating
data toward interpreting data. As an example, a sin-
gle 3-day run from an Illumina HiSeq X platform gen-
erates up to 900 Gb of data, which must be stored,
processed, quality-controlled, and analyzed. This
means that the standard experiment using next-
generation sequencing platforms must account for
a substantial amount of time for the bioinformatics
and statistical processing of the data. Although sev-
eral software tools exist now for this in silico work,
labs not experienced with bioinformatics might strug-
gle to develop a suitable pipeline and have to rely on
core facilities, collaborators, or commercial services.
Another problem is that for many next-generation
sequencing approaches, especially in the case of
single-cell sequencing, there is still no gold standard
for the bioinformatics and statistical analysis and
multiple alternative analysis pipelines still exist.
Modest alterations in statistical parameters, for which
there is no established standard, can also result in sig-
nificant changes in results. For example, it is impor-
tant to mention that microarray platforms for gene
expression profiling are at present much quicker in

terms of data analysis than approaches based on next-
generation sequencing; because microarrays have
been used for longer, standard methods are available
for them and this is not yet the case for RNA-seq.
This is even more relevant for single-cell sequencing
for which comparative studies and standardization
have only started to be proposed very recently
(Luecken & Theis, 2019; Wang, Li, Nelson, & Nabavi,
2019). Researchers planning experiments need to care-
fully balance the advantages of the latest next-
generation sequencing platforms with the price and
simpler bioinformatics and statistics of array-based
platforms.

One major and long-recognized problem of large-
scale approaches is multiple hypothesis testing. Even a
low-density microarray platform with a few hundred
genes is testing for effects a few hundred times, which
by chance will generate false positives. Modern geno-
mic approaches, for example, in GWAS studies that sur-
vey millions of genetic variants, must adequately cope
with this problem to generate biologically relevant
results. A standard way of dealing with multiple
hypothesis testing is the Bonferroni correction, in which
the P value cutoff (typically.05) is divided by the num-
ber of hypotheses being tested (e.g., for an array with
20,000 genes use .05/20,000 as cutoff). Bonferroni
correction can be deemed as too stringent, and alterna-
tive methods for correcting for false positives have been
developed (Storey & Tibshirani, 2003). Benjamini correc-
tion is also widely used, and is less stringent and
straightforward to calculate (Benjamini & Hochberg,
1995). False discovery rate estimates based on simula-
tions and scrambling of data have also been widely
used, including by our lab (de Magalhaes et al., 2009;
Plank et al., 2012, 2013), and although it requires some
customization to the specific experiments, it provides
an estimate of false positives based on real data cap-
tured from the experiment.

Data integration

As mentioned previously, the recent shift in biologi-
cal research toward large-scale approaches has
resulted in the capacity to generate huge amounts of
data, much of which is publicly available. These data,
however, are in most cases heterogeneous and
obtained at different time scales and biological levels.
Moreover, differences also often exist due to platform
and methodology diversity. Still, if our aim is to obtain
a global picture of complex processes, such as aging
and most age-related diseases, we have to develop the
computational methods and tools that allow us to inte-
grate and analyze these diverse data. In this section,
we give an overview of the online resources currently
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available for aging research and discuss some of the
studies that aim to integrate and analyze various types
of data. This can be used on its own using public data-
bases or in combination with data from one’s own
experiment(s).

Data and databases

Before diving into aging-specific resources, it should be
mentioned that one important prerequisite step for data
integration, the existence of databases, has already seen a
tremendous expansion in the past years and continues to
develop at increasing speeds. Currently, there are a num-
ber of databases, for humans and model organisms, which
host a plethora of information available in a standardized,
computational-retrievable and-usable form (in many cases
these data are even manually curated to improve quality).
These databases provide access both to a wide range of
-omes (including genomes, transcriptomes, proteomes,
epigenomes, interactomes, reactomes, etc.) and to a multi-
tude of functional data (including biological processes,
molecular functions, appurtenance to molecular pathways,
etc.). Obviously, integrating this type of information with
aging-specific data leads to a more holistic perspective of
the aging process and can help in a number of analyses.
Although the field of biogerontology has seen a slower
increase in integrative systems biology, a series of
resources specific to aging have also been created in recent

years (Table 6.1), in particular in the context of our
Human Ageing Genomic Resources, which are arguably
the benchmark in the field (Tacutu et al., 2018).

It should also be noted that although each of these
databases acts as a stand-alone resource, focusing on
certain facets of aging, in many cases they also show
common patterns. For example, in the Human Ageing
Genomic Resources, there are many genes that can be
found in two or more databases (Fig. 6.2), hence also
increasing the confidence of their association to aging.

Similarly, a number of databases for age-related dis-
eases have been developed, though the quality and
type of data vary greatly. For example, there are many
very good databases for cancer, while the number of
databases for heart diseases is still limited. A nonex-
haustive list of databases for age-related diseases is
provided in Table 6.2.

While some of the resources presented above inte-
grate data related to more than one facet of aging
and/or age-related diseases, the concept of multidi-
mensional data integration, at least at the level of
aging- and disease-specific databases, is still in its
infancy and the task is usually left to the researchers
performing integrative analyses. Some large resources,
however, like NCBI and Ensembl integrate different
types of data and are of course major resources for
data integration.

One other aspect that should be kept in mind is
that sometimes even the amount of high-throughput

TABLE 6.1 List of major online databases and resources related to aging.

Name (citation) Web address Short description

AnAge (Tacutu et al., 2018) http://genomics.
senescence.info/
species/

Aging, longevity, and life history information in animals

CellAge (Avelar et al., 2020) https://genomics.
senescence.info/cells/

Database of genes associated with cell senescence

Comparative Cellular and Molecular Biology of
Longevity Database (Stuart et al., 2013)

http://genomics.brocku.
ca/ccmbl/

Database with cellular and molecular traits from vertebrate
species collected to identify traits correlated with longevity

DrugAge (Barardo et al., 2017) https://genomics.
senescence.info/drugs/

Database of drugs, compounds, and supplements that extend
longevity in model organisms

GenAge (Tacutu et al., 2018) http://genomics.
senescence.info/genes/

Genes associated with longevity and/or aging in model
organisms and candidate aging-related human genes

GenDR (Wuttke et al., 2012) http://genomics.
senescence.info/diet/

Genes associated with dietary restriction from mutations and
gene expression profiling

AgeFactDB (Huhne, Thalheim, & Suhnel, 2014) http://agefactdb.jenage.
de/

Observations on the effect of aging factors on lifespan and/or
aging phenotype

Digital Ageing Atlas (Craig et al., 2014) http://ageing-map.org/ Database of molecular, physiological, and pathological age-
related changes

LongevityMap (Budovsky et al., 2013) http://genomics.
senescence.info/
longevity/

Database of human genetic variants associated with longevity
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information for only one type of data may pose
computational challenges, both in terms of handling
and analyzing. Consequently, integrating and analyz-
ing data from multiple sources will result in an even
bigger challenge, the complexity increasing in most
cases in a nonlinear fashion, and as such data integra-
tion comes at a cost, the haystack in which the needles
have to be found increases exponentially.

Finding needles in haystacks: Network
approaches and multidimensional data
integration

With the expansion of large-scale approaches, and
the inevitable increase in age-related data available,
new hypotheses of aging trying to integrate multidi-
mensional information have been developed. More
than 20 years ago, the idea that aging was caused not
simply by the failure of individual components, but
rather by a network of parallel and gradual dysregula-
tions, was proposed (Kirkwood & Kowald, 1997).
While the effects of each individual event could be
relatively small, the authors argued that the integrative

FIGURE 6.2 Venn diagram for the overlap of genomic databases
in the Human Ageing Genomic Resources (Tacutu et al., 2018). Data
sources used included: GenAge, build 19: 307 human genes and 2152
genes in model organisms; GenDR, build 4: 214 genes in model organ-
isms; LongevityMap, build 3: 884 human genes; CellAge, build 1: 279
human genes. �Overlap between the four datasets was computed
considering the human genes from LongevityMap and CellAge, and
the nonredundant list of human genes and orthologs of genes in
model organisms for GenAge and GenDR.

TABLE 6.2 Selected online databases and resources related to age-related diseases.

Name (citation) Web address Short description

Ageing-related Disease Genes (Fernandes et al.,

2016)

https://genomics.senescence.info/diseases/ Dataset obtained from the comparison of aging-related genes

with age-related disease genes

OMIM (OMIM, 2014) http://www.omim.org/ Online Mendelian Inheritance in Man (part of NCBI)

Catalog of Published Genome-Wide Association

Studies (Buniello et al., 2019)

https://www.ebi.ac.uk/gwas/ NHGRI-EBI catalog of GWAS studies

Genetic Association Database (Zhang et al.,

2010)

http://geneticassociationdb.nih.gov/ Archive of human genetic association studies of complex

diseases and disorders

AlzGene (Bertram, McQueen, Mullin,

Blacker, & Tanzi, 2007)

http://www.alzgene.org/ Database with genetic resources for Alzheimer’s disease

The COSMIC Cancer Gene Census (Sondka

et al., 2018)

https://cancer.sanger.ac.uk/census/ Catalog of genes for which mutations have been causally

implicated in cancer

COSMIC (Tate et al., 2019) https://cancer.sanger.ac.uk/cosmic Catalogue Of Somatic Mutations In Cancer

The Cancer Genome Atlas (TCGA) http://cancergenome.nih.gov/ Portal providing access to cancer-related large-scale data from

the NCI and NHGRI

The Human Metabolome Database http://www.hmdb.ca/ Database of small-molecule metabolites found in the human

body

Roadmap Epigenomics Project http://www.roadmapepigenomics.org/ Resource of human epigenomic data

TSGene (Zhao, Kim, Mitra, Zhao, & Zhao, 2016) https://bioinfo.uth.edu/TSGene/ Tumor suppressor gene database

Progenetix (Cai et al., 2014) https://progenetix.org/ Copy number abnormalities in human cancer from

comparative genomic hybridization experiments

MethyCancer (He et al., 2008) http://methycancer.psych.ac.cn/ Human DNA methylation and cancer

PubMeth (Ongenaert et al., 2008) http://www.pubmeth.org/ Cancer methylation database

LncRNADisease (Bao et al., 2019) http://www.rnanut.net/lncrnadisease/ Long noncoding RNA and disease associations

HMDD 2.0 (Huang et al., 2019) http://www.cuilab.cn/hmdd Experimentally supported human microRNA and disease

associations
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contribution of defective mitochondria, aberrant pro-
teins, and free radicals, taken together, could explain
many of the major changes that occur during aging.
Although, since it was first proposed, many other
types of aging factors have been taken into consider-
ation (and the strife to integrate more will probably
continue), the “network theory of aging” might have
been the onset of studying aging in a holistic way.

Network biology provides a conceptual framework to
study the complex interactions between the multiple
components of biological systems (Barabasi, Gulbahce, &
Loscalzo, 2011). In network biology, a network is defined
as a set of nodes (as a mathematical model for genes,
proteins, metabolites, etc.) with some node pairs being
connected through directed/asymmetric or undirected/
symmetric edges (as a model for physical interactions,
coexpression relationships, metabolic reactions, etc.).
Depending on the type of components and the nature of
the interactions that are analyzed, there is currently a
large variety of network types that can be constructed;
perhaps the most used being protein interaction
networks, gene regulatory networks, coexpression net-
works, and metabolic networks.

With regards to aging research, the idea of analyz-
ing many longevity/aging determinants at the same
time has been pushed forward, mostly due to the accu-
mulating knowledge about the genetic determinants of
aging (de Magalhaes & Toussaint, 2004a; Tacutu et al.,
2018), but also by the development of bioinformatics
tools pertaining to network biology like Cytoscape
(Saito et al., 2012). Not surprisingly, network-based
approaches have been increasingly used to study aging
and age-related diseases (Barabasi et al., 2011; de
Magalhaes et al., 2012; Fernandes et al., 2016; Ideker &
Sharan, 2008; Smita, Lange, Wolkenhauer, & Kohling,
2016; Soltow, Jones, & Promislow, 2010). Common
topics addressed by these approaches include network
construction for aging/longevity or various related
conditions, analysis of topological features, finding
functional submodules, etc.

Construction of longevity networks

The initial attempts to construct longevity networks
date back more than 15 years. As a first step toward
the construction of a human aging network, we used
genes previously associated with aging and their inter-
acting partners, using protein�protein interaction
data, to construct networks related to DNA metabo-
lism and the GH/IGF-1 pathway. We further sug-
gested, based on a “guilt-by-association” methodology,
that among the interacting partners of genes associated
with aging there could also be other genes that are
involved in aging. Additionally, functional analysis of
the network revealed that many of the genes which are

important during development might also regulate the
rate of aging (de Magalhaes & Toussaint, 2004a).

One central question in aging research is whether
genes and pathways associated with aging and longev-
ity are evolutionary conserved. For example, in Fig. 6.3
is a schematic representation of longevity protein inter-
action networks across model organisms. However, the
question of relevance arises: are aging-related data in
one species also relevant in another species? This is an
important issue since at times the data available in dif-
ferent species could be used complementarily. Results
so far suggest that genes whose manipulation results in
a lifespan effect tend to be highly evolutionary con-
served across divergent eukaryotic species (Budovsky,
Abramovich, Cohen, Chalifa-Caspi, & Fraifeld, 2007; de
Magalhaes & Church, 2007; Fernandes et al., 2016;
Smith et al., 2008; Yanai, Budovsky, Barzilay, Tacutu, &
Fraifeld, 2017). Moreover, while not universal, some
empirical data suggest that the effect on longevity of
many of these genes is also conserved (Smith et al.,
2008). As such, it is not completely senseless to integrate
longevity-associated genes from multiple species. Using
this premise, it was then shown that the human ortho-
logs of longevity-associated genes from model organ-
isms, together with their interacting partners, could act
in a cooperative manner and form a continuous pro-
tein�protein interaction network, called the Human
Longevity Network (Budovsky et al., 2007).

Topological features

One important aspect in network biology is the anal-
ysis of a network’s topological characteristics (i.e.,
studying the way in which the nodes and edges of a
network are arranged). Particular focus has been on
scale-free networks, a very common type of network
among social and biological networks. The scale-free
topology means that the nodes in the network have a
connectivity distribution p(k) given by a power-law
function k2γ, where p(k) is the probability that a certain
node has exactly k edges, and γ is the degree exponent,
a parameter value which for most of the studied net-
works is usually between 2 and 3 (Barabasi & Albert,
1999). The aforementioned Human Longevity Network
has a scale-free topology, with a high contribution of
hubs (highly connected genes) to the overall connectiv-
ity of the network. Interestingly, almost all of the hubs
in the longevity network had been reported previously
to be involved in at least one age-related pathology
(Budovsky et al., 2007), suggesting a link between dis-
eases and the mechanisms regulating longevity.

The scale-free design can be found in a wide range
of molecular and cellular systems, largely governing
their internal organization (Barabasi & Oltvai, 2004),
and it appears to have been also favored by evolution
(Oikonomou & Cluzel, 2006). Although a more detailed
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discussion about the evolvability of complex networks
is beyond the scope of this chapter, it should be men-
tioned that the properties of scale-free networks confer
some net advantages in solving cellular tasks. For exam-
ple, this type of architecture permits an efficient local
dissipation of external perturbations, while at the same
time reliably transmitting signals (and discriminating
against noise) between distant elements of the network
(Csermely & Soti, 2006). Additionally, the scale-free
property offers an unexpected degree of robustness,
maintaining the ability of nodes to communicate even
under extremely high fault rates, by minimizing the
effect of random failures on the entire network (Albert,
Jeong, & Barabasi, 2000; Wagner, 2000).

On one hand, analyzing the aging/longevity net-
works can provide a framework for the conceptualiza-
tion of the aging process and may reveal fundamental
traits and constraints of biological systems. On the other
hand, networks can help in assessing the importance of
genes in a certain process. For example, differentiating
between the hubs of a longevity network and all other
nodes is often a very attractive way of reducing a candi-
date list. This approach comes as no surprise, as some
components of a cellular network are more important

than others with regard to aging. It was previously
shown that longevity-associated genes in model organ-
isms have a higher average connectivity, with many
being network hubs (Budovsky et al., 2007; Ferrarini,
Bertelli, Feala, McCulloch, & Paternostro, 2005;
Promislow, 2004). Moreover, it has been established that
there is a positive correlation between a protein’s con-
nectivity and its degree of pleiotropy, an elevated
degree being common among proteins associated with
senescence (Promislow, 2004). As such, it makes sense
in choosing highly connected longevity candidates. Still,
it should also be kept in mind that other topological
measures besides degree also exist (e.g., closeness,
eigenvector centrality, betweenness, bridging centrality,
etc.) and their usage could result in a different sorting
order. Ultimately, no matter what the selection criteria
are, experimental validation is warranted.

Network modularity

Focusing on entire categories of genes or on net-
work modules, and on the cross-talk between these
modules, could provide valuable and unique hints
regarding the system’s susceptibility to failure. In rela-
tion to this, Xue et al. examined the modular structure

FIGURE 6.3 Schematic view on longevity networks across species. (A) Worm longevity network. (B) Fly longevity network. (C) Mouse lon-
gevity network. (A�C) Networks include longevity-associated genes (LAGs) from the GenAge database, and their protein�protein interaction
from the BioGRID database (Stark et al., 2006). Dark/light colors depict LAGs and LAG-interacting partners. The number of nodes in each net-
work (based on GenAge, build 19 and BioGRID, release 3.5.178) is summarized in the table below.

Species LAGs in GenAge LAGs with interactions Longevity network LAGs in the network

Worm 875 545 2534 525

Fly 191 162 2180 161

Mouse 136 99 834 94
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of protein�protein interaction networks during brain
aging in flies and humans. Interestingly, they found
two large modules of coregulated genes, both associ-
ated with the proliferation�differentiation switch, dis-
playing opposite age-related expression changes. A
few other modules found to be associated with the oxi-
dative�reductive metabolic switch were found, but
only during fly aging. Overall, the authors found that
aging is associated with a limited number of modules
which are interlinked through genes more likely to
affect aging/longevity (Xue et al., 2007).

Multidimensional data integration

Age-related changes can be found at many levels
(expression changes, posttranslational modifications,
cross-linking, or alterations in protein interactions), yet
integration of multidimensional data is still in its early
stages. Attempts to integrate protein�protein interac-
tion networks with transcriptional data have already
been made with relative success. As partly mentioned
previously, a new analytic method permitting the
integration of both transcriptome and interactome
information has been employed to study network
modularity in aging (Xue et al., 2007). In another
study, a human protein interaction network for lon-
gevity was used in conjunction with transcriptional
data from muscle aging in humans for the prediction
of new longevity candidates (Bell et al., 2009).

Our meta-analysis of CR microarray studies in mam-
mals integrated co-expression data, information on
genetic mutants, and analysis of transcription factor
binding sites to reveal promising candidate regulators,
providing a comprehensive picture of the changes that
occur during CR. In addition to the several processes
previously associated with CR mentioned above, we
also found novel associations, such as strong indications
of the effect that caloric restriction has on circadian
rhythms (Plank et al., 2012). A cross comparison of
insulin signaling and CR models, using transcriptomics
and metabolomics, identified some key pathways and
metabolite fingerprints shared in long-lived strains,
highlighting the potential role of increased amino acid
metabolism and purine upregulation in longevity (Gao
et al., 2018). Addressing another crucial aim in gerontol-
ogy, the need to have reliable biomarkers of aging can
also be done by using network-based approaches, and
the integration of networks with gene expression data
to create modular biomarkers of aging has been carried
out (Fortney, Kotlyar, & Jurisica, 2010).

Functional classification analysis, using for example
web tools like DAVID (Huang da, Sherman, &
Lempicki, 2009) which analyze Gene Ontology and
pathway annotations, can also generate useful informa-
tion regarding the nature of longevity-associated genes.
For example, several studies have already shown that

inhibition of translation can be an effective modulator
of lifespan extension (Curran & Ruvkun, 2007; Hansen
et al., 2007; Pan et al., 2007). The integration of large-
scale lists of genes with gene annotation data is there-
fore common in analyzing omics experiments and can
provide insights concerning mechanisms, processes,
and pathways (reviewed in de Magalhaes et al., 2010).

The study of aging is strongly linked to that of age-
related diseases. This becomes obvious when looking
at the overlap between the genes associated with major
age-related diseases (including atherosclerosis, cancer,
type II diabetes, and Alzheimer’s disease) and the
genes involved in lifespan regulation (Budovsky et al.,
2007, 2009; Fernandes et al., 2016; Tacutu, Budovsky,
Yanai, & Fraifeld, 2011; Wolfson, Budovsky, Tacutu, &
Fraifeld, 2009), as well as when analyzing the many
direct and indirect molecular interactions which exist
between them (Simko, Gyurko, Veres, Nanasi, &
Csermely, 2009; Tacutu et al., 2011). Networks have
been extensively used for the study of diseases (Goh &
Choi, 2012; Ideker & Sharan, 2008). Recently, examples
of analyses of multidimensional data for age-related
diseases have also started to amass. For example,
based on a network of genes and diseases created by
Goh et al. (2007), structural facets of proteins, such as
the intrinsic disorder content, and epigenetic aspects
as alternative splicing, have been studied (Midic,
Oldfield, Dunker, Obradovic, & Uversky, 2009).
Models of diseases�genes�drugs have also been con-
structed, and new insights have been found about the
usage of drugs (Yildirim, Goh, Cusick, Barabasi, &
Vidal, 2007). However, outside the scope of this chap-
ter, gene�drug interaction data are thus another type
of data that can be used, and indeed there are success-
ful examples in aging research (Barardo et al., 2017;
Calvert et al., 2016; Donertas, Fuentealba Valenzuela,
Partridge, & Thornton, 2018; Ziehm et al., 2017). In
fact, a network-based view of drug discovery and bio-
markers is starting to emerge to also account for the
complexity of human biology (de Magalhaes et al.,
2012; Erler & Linding, 2010).

In the context of GWAS, combining GWAS with phy-
logenetic conservation and a complexity assessment of
co-occurring transcription factor binding sites can
identify cis-regulatory variants and elucidate their mech-
anistic role in disease. This has been recently carried out
for type II diabetes successfully linking genetic associa-
tion signals to disease-related molecular mechanisms
(Claussnitzer et al., 2014). For Parkinson disease, integra-
tive analyses of gene expression and GWAS data have
also provided key insights into the genetic etiology of
the disease (Edwards et al., 2011). Lastly, constructing
molecular networks based on whole-genome gene
expression profiling and genotyping data, together with
the use of Bayesian inference, has helped to identify key
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causal regulators in late-onset Alzheimer’s disease
(Zhang et al., 2013b). Studies of proteomic and metabolo-
mic networks, although in their infancy, may be another
key step in constructing an integrative framework to
study aging and age-related disease. Such integration
has been suggested as needed, complementarily to the
more classical genome�transcriptome�phenotype model
(Hoffman, Lyu, Pletcher, & Promislow, 2017).

The above examples are only a selected few since
many different types of network analyses and data
integration can be performed. It is not surprising that
integrative approaches are starting to be used to combine
disease and aging-related data. While some studies have
focused on a particular disease and its links to aging/
longevity (Budovsky et al., 2009; Miller, Oldham, &
Geschwind, 2008), others have attempted in a broader
way to look at the common signatures of aging/longev-
ity and all major age-related diseases (Wang, Zhang,
Wang, Chen, & Zhang, 2009; Wolfson et al., 2009).

In order to better understand the gene expression
and protein level changes that occur with age, other
genomic and epigenetic layers should be considered.
For example, age-related changes in miRNA expres-
sion profiles can have a significant impact on protein
levels. In terms of data integration, combining miRNA
data with protein�protein interactions has been used
to analyze the molecular links between aging, longev-
ity, and age-related diseases, and to suggest the poten-
tial role for miRNAs in targeting certain genes with
features of antagonistic pleiotropy, implying thus a
preferability to initiate longevity-promoting interven-
tions in adult life (Tacutu, Budovsky, Wolfson, &
Fraifeld, 2010). In another study, interpreting the meth-
ylation patterns in cancer and aging has been done
using an integrative system. By developing a novel
epigenome�interactome approach with differential
methylation data, tissue-independent age-associated
methylation hot spots targeting stem-cell differentia-
tion pathways have been recently discovered (West,
Beck, Wang, & Teschendorff, 2013).

One important aspect of data integration is that inte-
grating multiple data sources will significantly expand
our view of the aging process, and it is possible that
some of the current well-accepted hypotheses will
even be challenged. For example, although at the net-
work level of protein�protein interactions it seems
that hub genes are of utmost importance for the
robustness of the entire network, when looking at an
epigenetic level it has been suggested that the age-
associated drift in DNA methylation occurs preferen-
tially in genes that occupy peripheral network
positions of exceptionally low connectivity (West,
Widschwendter, & Teschendorff, 2013). Only by hav-
ing a complete, multilayered picture of the aging pro-
cess can we hope to fully understand its intricacies.

The emerging concept of multilayer networks looks
therefore relevant and promising to shed new light on
integrative approaches. The main idea is to go beyond
the usual one-dimensional representation of networks
containing only one type of nodes and one type of
edges. Indeed, the above discussion makes it clear that
biological systems are complex, heterogeneous, and
involve various types of agents and relations between
them. Interestingly, the last few years have shown
increasing efforts to develop new mathematical tools
to adapt the features of usual networks (such as topol-
ogy and modularity) to more complex structures. As
such, Kivelä et al. offer both a comprehensive review
of the subject and a unifying classification of the vari-
ous types of multilayer networks (Kivelä et al., 2014).
Of interest, Halu et al. recently applied such techni-
ques to create and analyze a multiplex network of
human diseases (Halu, De Domenico, Arenas, &
Sharma, 2019). Their model is made of two layers of
similar nodes, each node representing a disease. In
the first layer, diseases are connected by an edge if
they share common genes, whereas in the second
layer they are connected if they share common symp-
toms. Considering the two layers as part of a single
system offers an integrative genotype�phenotype
approach. The authors report, for example, that dis-
eases sharing common genes tend to share common
symptoms or also that multiplex community detection
allows to confirm and find new disease associations.
Inspired by such results, it is expected that similar
studies applied to aging/longevity networks will
appear in the future.

Predictive methods and models

Given the intrinsic costs of performing animal aging
studies, particularly in mammals, developing predic-
tive computational tools is of utmost importance.
Indeed, to identify suitable drug targets with antiaging
properties, methods for prioritizing them are necessary
(de Magalhaes et al., 2012). Fortunately, many compu-
tational tools are already available for prioritizing can-
didates (Moreau & Tranchevent, 2012), and could be of
great use to biogerontologists.

One of the main assumptions for many predictive
methods is based on the “guilt-by-association” princi-
ple, in which new genes or drugs are considered can-
didates due to their relation with genes that are
already known to be associated with aging or longev-
ity. Though this premise is common to many strate-
gies, they usually differ in the type of associations that
are considered. For example, based on the finding that
hubs and centrally located nodes have a higher likeli-
hood to be associated with aging/longevity, Witten
and Bonchev used a C. elegans network to predict new
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longevity-associated genes (Witten & Bonchev, 2007).
Likewise, other topological measures have been
employed for similar goals. Using a proximity measure
in a yeast network (the shortest path to an already
known gene reported to be associated with an
increased lifespan), Managbanag et al. identified a set
of single-gene deletions predicted to affect lifespan.
Testing this experimentally, their validation showed
that the predicted set was enriched for mutations con-
ferring either increased or decreased replicative life-
span (Managbanag et al., 2008). In another example,
using machine learning and classification techniques,
Freitas et al. devised a predictive model to discrimi-
nate between aging-related and nonaging-related DNA
repair genes. In this analysis, they found that gene con-
nectivity together with specific gene ontology terms,
having an interaction with the XRCC5 protein, and a
high expression in T lymphocytes are good predictors
of aging association for human DNA repair genes
(Freitas, Vasieva, & de Magalhaes, 2011). Because
machine learning is outside the scope of this chapter
we refer readers to a recent review of machine learning
in aging research (Fabris, Magalhaes, & Freitas, 2017).

In C. elegans, various properties of longevity genes
have been analyzed and then used to verify the predic-
tion of new longevity regulators (Li, Dong, & Guo,
2010). In one study, the authors found that longer
genomic sequences, co-expression with other genes
during the transition from dauer to nondauer state,
enrichment in certain functions and RNAi phenotypes,
higher sequence conservation, and a higher connectiv-
ity in a functional interaction network, are all predic-
tors of an association with longevity. While the
validation of the prediction was computational only,
based on the precision calculated with a 10-fold cross
method for a set of known positive and negative
longevity-associated genes, the authors found that a
few of the predicted genes had been in the meantime
experimentally validated in the scientific literature (Li
et al., 2010).

We have recently used a combined approach, first
reasoning that the interaction partners of longevity-
associated genes are more likely to modulate longev-
ity, and second narrowing down the candidate list
based on features of antagonistic pleiotropy. Although
by the time of this study several genome-wide longev-
ity assays had been performed in C. elegans, our pre-
diction method, followed by experimental validation,
resulted in the discovery of new longevity regulators
at a frequency much higher than previously achieved
(Tacutu et al., 2012).

Combining a network-based approach with transcrip-
tional data from human aging has also been used as a
method of prediction. Using a human longevity net-
work constructed based on homologs from invertebrate

species, and comparing the result with age-related tran-
scriptional data from human muscle aging, Bell et al.
determined a set of human interaction partners poten-
tially involved in aging. Testing the homologs of these
genes in C. elegans revealed that 33% of the candidates
extended lifespan when knocked-down (Bell et al.,
2009). In another, more recent study, fly longevity-
associated genes from GenAge were analyzed using net-
works in order to predict key pathways and genes
involved in lifespan regulation, which have been shown
to have significant transcriptional changes in aging (Li
et al., 2019).

Focusing on CR, network and systems biology
approaches have also been used to predict genes nec-
essary for the life-extending effects of CR. By looking
at genes that are more connected to already-known
CR-related genes, Wuttke et al. successfully predicted
a set of novel genes mediating the life-extending
effects of CR. Nine novel genes related to CR were val-
idated experimentally in yeast. This revealed three
novel CR mimetic genes (Wuttke et al., 2012).

In terms of metabolomics, a recent study has used net-
work reconstruction and network analysis of metabolite
relationships to associate measured plasma metabolites
with sex and age, as well as to analyze the variations in
the regulation of metabolic activity of amino acids, lipids,
and ketone bodies (Vignoli, Tenori, Luchinat, & Saccenti,
2018). This type of methods could be used as diagnostic
and predictive tools in the investigation of the human
aging phenotype at a metabolic level.

While in the last few decades many studies in
model organisms have successfully identified genetic
factors that affect lifespan, the effect of combined inter-
ventions (epistasis), whether synergistic or antagonis-
tic, has been evaluated to a much more limited degree.
Using network features and biochemical/physico-
chemical features, a two-layer deletion network model
has been recently developed and used for predicting
the epistatic effects of double deletions on yeast lon-
gevity. Results showed that the functional features
(such as mitochondrial function and chromatin silenc-
ing), the network features (such as the edge density
and edge weight density of the deletion network), and
the local centrality of deletion gene are important pre-
dictors for the deletion effects on longevity (Huang
et al., 2012).

Candidate gene prioritization methods, such as the
ones described in this section, have been instrumental
in guiding various experiments that provided important
insights into aging mechanisms (Lorenz, Cantor, &
Collins, 2009; Wuttke et al., 2012; Xue et al., 2007).
The accuracy and specificity of these in silico predictive
methods is still limited, however. Similarly, while
computational methods have been developed for
predicting candidate drugs from gene expression data
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(Iorio et al., 2010; Lamb et al., 2006; Sirota et al., 2011),
these have only been partly implemented in the context
of aging (Calvert et al., 2016; Donertas et al., 2018), in
spite of their widespread interest.

Concluding remarks

Biological and medical research has often failed to
capture the whole picture of the disease or process
under study. Researchers have traditionally focused on
a limited number of players that either had the greatest
impact or, by chance, happened to be associated with
the phenotype of interest. For some diseases (e.g., anti-
biotics were developed as therapies with only a modest
understanding of the mechanisms involved) and pro-
cesses (e.g., overcoming replicative senescence with
ectopic telomerase expression), a limited mechanistic
understanding may suffice to develop interventions,
but for many others our understanding and models are
imperfect at best and possibly even flawed. Researchers
do not see the forest for the trees and for complex pro-
cesses like aging, and age-related diseases like cancer
and neurodegenerative diseases, this impedes the devel-
opment of successful interventions. Not surprisingly,
the overall rate of success of clinical trials is only about
20% (DiMasi, Feldman, Seckler, & Wilson, 2010), and to
date there is no established approach to retard, even if
slightly, human aging. While serendipitous discoveries
like antibiotics, are always possible, it is widely
acknowledged that the study of complex processes like
aging stands a better chance of developing clinical inter-
ventions based on broad biological understanding (de
Magalhaes, 2014a; de Magalhaes et al., 2017). In addi-
tion, the discoveries in the genetics of aging and techno-
logical advances in large-scale methodologies, like high-
throughput profiling and screening, mean that it is vital
now to cope with the growing amount of data in the
context of drug discovery (de Magalhaes et al., 2012).
As new layers of genomic regulation are uncovered
(e.g., noncoding RNAs) this raises new challenges and
further emphasizes the need to study biological systems
in a comprehensive fashion to capture and decipher
their intrinsic complexity.

Overall, our belief is that the combination of large-
scale approaches to unravel both age-related changes
as well as identify the causes for variability across
individuals and species will drive the field forward.
These require, however, adequate data and statistical
analysis to avoid biases and false results. The integra-
tion of different types of data provides opportunities
for synergy and discovery that we believe will result
in a much deeper understanding of aging and the
development of interventions to extend lifespan and
preserve health.
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