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Introduction

The sequencing of genomes has revolutionized biolog-
ical and biomedical research. Thanks to various technolo-
gies and approaches that take advantage of genome
sequence knowledge, researchers can now focus on
whole biological systems rather than being limited to
studying isolated parts. Because most biological pro-
cesses are complex in the sense that they involve the
interplay of multiple genes and proteins with each other
and with the environment, surveying systems as a whole
is imperative to fully comprehending them, and more
accurately pinpointing how to intervene in them. Recent
breakthroughs in developing cheaper and quicker
sequencing technologies have given further power to our
capacity to survey biological systems in a holistic way
with multiple applications in aging research (reviewed in
de Magalhaes, Finch, & Janssens, 2010). In addition to
genomics, other omics approaches like transcriptomics,
proteomics, and epigenomics have allowed for a system-
atic profiling of biological processes and disease states.
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Aging is widely acknowledged as a complex process
involving changes at various biological levels, interac-
tions between them, and feedback regulatory circuits.
The underlying mechanistic causes of aging remain a
subject of debate, and it is likely that multiple degenera-
tive processes are involved, including organ-specific
processes but also interacting cell- and organ-level com-
munications (Cevenini et al., 2010; de Magalhaes, 2011;
Lopez-Otin, Blasco, Partridge, Serrano, & Kroemer,
2013). While there are simple triggers to complex biologi-
cal processes, such as telomere shortening triggering rep-
licative senescence in human fibroblasts (de Magalhaes,
2004), most researchers would agree that organismal
aging involves multiple processes and possibly the inter-
play between various causal mechanisms. Likewise, hun-
dreds of genes have been associated with aging in model
organisms (Tacutu et al, 2018) and yet the pathways
involved are complex and often interact in nonlinear
ways (de Magalhaes, Wuttke, Wood, Plank, & Vora,
2012). One hypothesis is that aging and longevity cannot
be fully understood by studying individual components
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and processes (Cevenini et al, 2010). To understand
aging we must then account for the intrinsic complexity
of biological systems.

Our goal in this chapter is to review potential large-
scale technologies in the context of aging and longevity
research and how data can be analyzed and integrated
to advance our understanding of these complex pro-
cesses. We first review the major technologies available
for researchers to survey biological systems in a system-
atic fashion and their applications to advance the biol-
ogy and genetics of aging, debate issues in data analysis
and statistics, and discuss data integration between dif-
ferent sources, as this is one of the major challenges of
the post-genome era, and also one of the most promis-
ing. Various sources of data and approaches are dis-
cussed in this context.

Post-genome technologies and biogerontology

There are many open questions in biogerontology,
but arguably most researchers focus on two key
questions (de Magalhaes & Toussaint, 2004b): (1)
what are the genetic determinants of aging, both in
terms of longevity differences between individuals
and species differences in aging? and (2) which
changes occur across the lifetime to increase vulnera-
bility, for example in a person from age 30 to age 70
to increase the chance of dying by roughly 30-fold?
Post-genome technologies may help us answer both
these questions.

Genome-wide approaches and the genetics of
aging and longevity

Understanding human phenotypic variation in aging
and longevity has been a long-term research goal.
Studies in twins have shown that longevity in humans
has a genetic component, and the heritability of longev-
ity has been estimated at ~25% (Christensen, Johnson,
& Vaupel, 2006). If we could identify genetic variants
associated with exceptional human longevity, these
would likely be suitable for drug discovery (de
Magalhaes et al., 2012). In 1994, APOE was associated
with longevity in a French population (Schachter et al.,
1994). The sequencing of the human genome in 2001
allowed for much more powerful whole-genome geno-
typing platforms capable of surveying hundreds of
thousands of genetic variants in a cost-effective way (de
Magalhaes, 2009). In spite of these recent technological
advances, the genetics of human longevity remains
largely misunderstood. Several genome-wide associa-
tion studies (GWAS) have been performed with hun-
dreds of individuals, with largely disappointing results.
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FIGURE 6.1 Exponential growth in sequencing capacity as
reflected in the dropping costs of sequencing from 2001 to 2019.
Source:  NHGRI  (https://www.genome.gov/about-genomics/fact-sheets/
Sequencing-Human-Genome-cost).

For example, one landmark study involving several
European populations with a total of over 2000 nonage-
narian sibling pairs identified only APOE as associated
with longevity (Beekman et al., 2013); and although
APOE has been consistently associated with longevity,
it only modestly explains the heritability of longevity.
GWAS focused on complex diseases and processes
have been on many occasions equally disappointing to
date, suggesting that common genetic variants have a
modest contribution to longevity and complex diseases
(de Magalhaes & Wang, 2019; Manolio et al., 2009).

The dropping costs of DNA sequencing (Fig. 6.1)
mean that sequencing a human genome is rapidly
becoming affordable. Therefore, researchers are moving
from genotyping platforms based on known genetic
variants to genome sequencing of thousands of indivi-
duals. It is possible that this will reveal rare variants
with strong effects on longevity, as has been predicted
to be the case for complex diseases (Manolio et al.,
2009). Nonetheless, considering that only APOE has
been associated with confidence with longevity, our
understanding of the genetics of longevity lags behind
our understanding of the genetics of complex age-
related diseases, in itself made difficult by numerous
factors like multiple genes with small effects. Intrinsic
difficulties in longevity studies (e.g., lack of appropriate
controls) or because longevity is a more complex trait
may explain why our understanding of the heritability
of longevity is still poor (de Magalhaes, 2014b).

An even greater source of variation in aging and lon-
gevity than that observed between humans is observed
across species. We know that mice, for example, age
25—30 times faster than humans, even under the best
environmental conditions (Finch, 1990). Even when com-
pared to chimpanzees, our closest living relative whose
genome is about 95% similar to our own, aging is
significantly retarded in humans (de Magalhaes, 2006).

I. Basic mechanisms, underlying physiological changes, model organisms and interventions
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Post-genome technologies and biogerontology

Therefore there must be a genomic basis for species dif-
ferences in aging, and again the dropping costs of
sequencing have permitted much more affordable de
novo sequencing of genomes (de Magalhaes et al., 2010).
For example, the sequencing of long-lived species, such
as the naked mole-rat and bats (Keane et al., 2014; Kim
et al., 2011; Zhang et al., 2013a) can provide candidate
genes for selection in long-lived species, and it is interest-
ing to observe that genes involved in DNA damage
responses and repair have emerged from such studies
(de Magalhaes & Keane, 2013). For example, Keane et al.
reported the sequencing and comparative analysis of the
genome of the bowhead whale, the longest-lived known
mammal. The analysis revealed a number of genes under
positive selection and bowhead-specific mutations in
genes linked to cancer and aging. The analysis also iden-
tified gene changes associated with DNA repair, cell-
cycle regulation, cancer, and aging, and potentially rele-
vant changes in genes associated with thermoregulation,
sensory perception, dietary adaptations, and immune
response (Keane et al., 2015).

In addition to the analysis of genomes from long-
lived species, comparative analyses of genomes from
species with different lifespans are also beginning to
provide further candidate genes for a role in aging. We
developed a method to identify candidate genes
involved in species differences in aging based on
detecting proteins with accelerated evolution in multi-
ple lineages where longevity is increased (Li & de
Magalhaes, 2013). Our results revealed ~100 genes
and functional groups that are candidate targets of
selection when longevity evolves (Li & de Magalhaes,
2013). These include DNA damage response genes and
the ubiquitin pathway and thus provide evidence that
at least some repair systems were selected for, and
arguably optimized, in long-lived species. Other meth-
ods aimed at discovering genes associated with lon-
gevity have focused on genes showing a stronger
conservation in long-lived species (Jobson, Nabholz, &
Galtier, 2010), searching for protein residues that are
conserved in long-lived species but not in short-lived
ones (Semeiks & Grishin, 2012). One recent work
employed two methods, one based on residue change
that co-occurs with the evolution of longevity and the
other based on changes in rates of protein evolution, to
identify candidate genes and biological processes mod-
ulating longevity across primates (Muntane et al.,
2018). Because all these methods are conceptually dif-
ferent from each other, little overlap has been observed
in the results. Nonetheless, it seems that genetic altera-
tions contributing to the evolution of longevity in
mammals have common patterns (or signatures) that
are detectable using cross-species genome compari-
sons, though much work remains in order to improve
the signal-to-noise ratio of these methods. One caveat
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of these studies is the lack of experimental validation,
and thus all of these genes must be seen as candidates.
Given the declining costs of sequencing we can expect
many more such studies in the near future.

Aging is a particularly difficult process to unravel
because it is much harder to study in humans than
most other processes and diseases. Observational stud-
ies have been conducted but are extremely time-
consuming, and clinical trials for longevity itself are
challenging, even though trials for aging markers are
possible (de Magalhaes, Stevens, & Thornton, 2017; de
Magalhaes et al., 2012). Therefore most biogerontolo-
gists rely on model systems: human cells; unicellular
organisms such as the yeast Saccharomyces cerevisiae;
the roundworm Caenorhabditis elegans; the fruit fly
Drosophila melanogaster; and rodents, in particular mice
(Mus musculus) and rats (Rattus norvegicus). The small
size and short life cycles of these organisms—even
mice do not commonly live more than 4 years—make
them inexpensive subjects for aging studies, and the
ability to genetically manipulate them gives research-
ers ample opportunities to test their theories and
unravel molecular and genetic mechanisms of aging.

The aforementioned traditional biomedical model
organisms are widely used in other fields and not sur-
prisingly a variety of tools are available to study them,
and recently many of these powerful tools take advan-
tage of omics approaches. While the genetics of aging
was initially unraveled using traditional genetic
approaches (reviewed in Johnson, 2002), large-scale for-
ward genetic screening approaches now allow for hun-
dreds of genes to be tested simultaneously for
phenotypes of interest, including longevity and age-
related traits. Genome-wide screens for longevity have
been performed (McCormick & Kennedy, 2012), in par-
ticular in worms (Hamilton et al., 2005; Hansen, Hsu,
Dillin, & Kenyon, 2005; Samuelson, Carr, & Ruvkun,
2007). Hundreds of genes have been associated with life
extension in this way, although the overlap between
these studies has been smaller than expected. Moreover,
this type of aging studies will probably become even
more accessible, with the advent of specialized, auto-
mated screening devices that monitor lifespan. For
example, the Caenorhabditis elegans Lifespan Machine
was the first automated system dedicated to lifespan
assays based on video tracking of worms (Stroustrup
et al., 2013). Since then, a more advanced system has
been created, the WorMotel, a microfabricated device
for long-term cultivation and automated longitudinal
imaging of large numbers of worms confined to indi-
vidual wells (Churgin et al, 2017). One important
observation from the worm phenotypic screening of
genetic interventions is that it seems that the most
important pathways that modulate lifespan when dis-
rupted in worms (and possibly in model organisms)
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have been identified by now, even though there is still
ample room to identify individual components.

Although usually more laborious, screens for genes
affecting lifespan have also been performed in yeast,
including for replicative lifespan (Smith et al.,, 2008),
chronological lifespan (Fabrizio et al, 2010), and
using pooled screen approaches (Matecic et al.,, 2010).
Technical limitations in flies impede screens at the
genome-wide level, but lifespan screens have been
performed using the P-element modular-misexpression
system (Paik et al., 2012) and Gene Search misexpres-
sion vector system (Funakoshi et al., 2011). Costs
impede large-scale screens in mice, although large-scale
knockout mouse repositories like the Knockout Mouse
Project (www.komp.org) and the International Mouse
Phenotype Consortium (www.mousephenotype.org)
can facilitate such studies; one large-scale profiling of
mouse mutants for aging-related phenotypes, called the
Harwell Aging Screen, has been performed (Potter
et al., 2016).

A variety of genome-wide screens have also been
performed in vitro, in particular using RNAi-based
technologies (Echeverri & Perrimon, 2006, Moffat &
Sabatini, 2006; Mohr, Bakal, & Perrimon, 2010). These
include screens focused on traits of interest for aging
and longevity. For example, screens for cell lifespan
have been performed in human fibroblasts revealing
that senescent cells activate a self-amplifying secretory
network involving CXCR2-binding chemokines (Acosta
et al., 2008). A variety of readouts can be employed to
assay for specific traits. For instance, screens have been
performed for genes modulating resistance to oxidative
stress in mammalian cells (Nagaoka-Yasuda, Matsuo,
Perkins, Limbaeck-Stokin, & Mayford, 2007; Plank et al.,
2013) and antioxidant responses (Liu et al., 2007). The
possibilities are immense and provide another large-
scale tool for deciphering biological processes.

One of the goals of biogerontology is to develop
interventions that postpone degeneration, preserve
health, and extend life (de Magalhaes, 2014a). Large-
scale drug screening is now widespread in the phar-
maceutical industry (Macarron et al.,, 2011). While
life extension is harder and more expensive to assay
than targets in high-throughput screening, systematic
screens for life-extending compounds are now a
distinct possibility. Petrascheck et al. assayed 88,000
chemicals for the ability to extend worm lifespan
(Petrascheck, Ye, & Buck, 2007); while the success of
this approach was modest (only 115 compounds signif-
icantly extended lifespan and only 13 by more than
30%), it provides proof-of-concept for large-scale
screens in the context of life-extending drugs. Further
investigations into drug-mediated worm longevity,
using a similar protocol, even if with a smaller com-
pounds library of known or suspected mammalian
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targets (many already approved for use in humans),
revealed 60 promising drugs, which might provide
beneficial effects on aging in mammals (Ye, Linton,
Schork, Buck, & Petrascheck, 2014).

Surveying the aging phenotype on a grand scale

In addition to understanding the genetic basis for
phenotypic variation in aging and longevity, it is also
crucial to elucidate the changes that contribute to age-
related degeneration. Several age-related changes have
been described and historically this focused on broad
physiological and morphological aspects and the
molecular and biochemical changes for which assays
existed. Thanks to genome-wide approaches we can
now survey the aging phenotype with unprecedented
detail (de Magalhaes, 2009; Valdes, Glass, & Spector,
2013). In particular, advances in transcriptomics have
allowed researchers to survey the expression levels of
all genes in the genome in a single, relatively inexpen-
sive, experiment.

One major breakthrough in transcriptomics was the
development of the microarray, which allows for the
quantification of all annotated genes simultaneously.
Briefly, this led in the past 20 years to a large number
of gene expression profiling studies of aging (de
Magalhaes, 2009; Glass et al, 2013; Lee, Klopp,
Weindruch, & Prolla, 1999; Zahn et al., 2007). In a
sense, however, these have been disappointing in that
relatively few genes are differentially expressed with
age in most tissues and few insights have emerged. As
an exception, Zahn et al. observed a degree of coordi-
nation in age-related changes in gene expression. In
mice, different tissues age in a coordinated fashion so
that a given mouse may exhibit rapid aging while
another ages slowly across multiple tissues (Zahn
et al., 2007). In addition, our 2009 meta-analysis of
aging gene expression studies revealed a conserved
molecular signature of mammalian aging across organs
and species consisting of a clear activation of
inflammatory pathways accompanied by a disruption
of collagen and mitochondrial genes (de Magalhaes,
Curado, & Church, 2009). This molecular signature of
aging maps well into established hallmarks of aging
(Lopez-Otin et al., 2013). It should be noted, however,
that transcriptional changes during aging may repre-
sent responses to aging rather than underlying causa-
tive mechanisms and thus their interpretation is not
straightforward.

The dropping costs of sequencing have also
allowed for gene expression profiling approaches
that are digital in nature, as opposed to microarrays
that are analog. Sequencing the transcriptome, usu-
ally referred to as RNA-seq, allows for unprece-
dented accuracy and power. A number of reviews
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have focused on the advantages of RNA-seq as com-
pared to microarrays (de Magalhaes et al.,, 2010;
Mortazavi, Williams, McCue, Schaeffer, & Wold,
2008; Wang, Gerstein, & Snyder, 2009), and it is very
clear that RNA-seq has a superior dynamic range
and provides more data than microarrays. Our lab
performed one of the first RNA-seq profiling experi-
ments in the context of aging, which revealed gene
expression changes in the rat brain in various previ-
ously unknown genes, including noncoding genes
and genes not yet annotated in genome databases
(Wood, Craig, Li, Merry, & de Magalhaes, 2013).
Although it is exciting that many changes were
observed in the so-called “dark matter” transcripts,
because most of these are not annotated or have little
information, follow-up is complicated; this empha-
sizes the need to study the new genomic elements
that may be phenotypically important. In this
context, large-scale efforts, such as ENCODE (www.
encodeproject.org), which aims to identify all func-
tional elements in the human genome (Dunham
et al., 2012), are crucial to annotate and elucidate the
function of all genomic elements. Similarly, the
Genotype-Tissue Expression (GTEx) Consortium
(gtexportal.org) provides data from multiple human
tissues and ages (GTEx Consortium, 2015), and can
be used to study transcriptional changes with age in
human tissues (Chatsirisupachai, Palmer, Ferreira, &
de Magalhaes, 2019; Yang et al., 2015).

A number of studies have also focused on profiling
gene expression changes in life-extending interven-
tions or in long-lived strains (de Magalhaes, 2009; Lee
et al., 1999; Tyshkovskiy et al., 2019; Wood et al., 2015),
as well as in short-lived and/or progeroid animals. For
example, a large number of studies have focused on
caloric restriction (CR) to identify specific genes and
processes associated both with CR and whose age-
related change is ameliorated in CR. In contrast to
studies of aging, CR studies have revealed substantial
gene expression changes, some of which can be associ-
ated with specific pathways and processes (Lee et al.,
1999; Tsuchiya et al., 2004; Wood et al., 2015). A meta-
analysis of gene expression studies of CR revealed a
number of conserved processes associated with CR
effects like growth hormone signaling, lipid metabo-
lism, immune response, and detoxification pathways
(Plank, Wuttke, van Dam, Clarke, & de Magalhaes,
2012). In another study, midlife gene expression profil-
ing of mice of different lifespans due to different die-
tary conditions revealed a possible contribution of
peroxisome to aging, which was then tested experi-
mentally in invertebrates (Zhou et al., 2012). Arguably,
gene expression profiling of manipulations of aging
has been more successful in providing insights than
profiling of aging per se.
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Another area that has recently flourished due to
technological developments is comparative transcrip-
tomics focused on species with different lifespans. In a
meta-analysis, Fushan et al., for example, analyzed the
RNA-seq gene expression in liver, kidney, and brain,
for 33 mammalian species from different families and
with varying lifespans. This uncovered parallel evolu-
tion of gene expression and lifespan, and revealed
genes evolving in agreement with the gradient of life-
history variation as well as several processes and path-
ways (Fushan et al.,, 2015). In a recent study, the de
novo assembled transcriptome of the gray whale (con-
sidered among the top 1% longest-lived mammals) has
also been compared with that of other long- and short-
lived mammals (including bowhead and minke
whales). The authors show that long-lived mammals
share common gene expression patterns, including
high expression of DNA maintenance and repair,
autophagy, ubiquitination, apoptosis, and immune
responses (Toren et al., 2020).

Technological and methodological advances promise
to allow even more powerful surveys of the molecular
state of cells. Ribosome profiling is one recent approach,
also based on next-generation sequencing platforms, con-
sisting of sequencing ribosome-protected mRNA frag-
ments. Compared to RNA-seq using total mRNA,
ribosome profiling has the advantage that it is surveying
active ribosomes, known as the translatome, and thus
can be used to quantify the rate of protein synthesis,
which is thought to be a better predictor of protein abun-
dance (Ingolia, Ghaemmaghami, Newman, & Weissman,
2009). Advances in sequencing technology have also
allowed for quantitative surveys of changes at the DNA
level, including quantifying mutation accumulation with
age in the genome and at the level of the mitochondrial
genome (reviewed in de Magalhaes et al., 2010). One
recent study found an age-related increase in human
somatic mitochondrial mutations inconsistent with oxi-
dative damage (Kennedy, Salk, Schmitt, & Loeb, 2013).
Another study in aging mice found no increase in mito-
chondrial DNA point mutations or deletions, questioning
whether these play a role in aging (Ameur et al., 2011).

Another level of changes during the life course
comes from epigenetics. These are heritable changes
that are not caused by changes in the DNA sequence.
Large-scale profiling of epigenetic changes with age is
now becoming more common, and with the dropping
costs of sequencing will no doubt become even more
widespread. It is clear that epigenetic changes, like
methylation, are associated with age as well as with
age-related diseases (Johnson et al., 2012). For example,
two recent studies found epigenetic (methylation)
marks highly predictive of chronological age in humans
(Hannum et al, 2013; Horvath, 2013). Recently, an
additional epigenetic biomarker of aging (DNAm
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PhenoAge), incorporating several clinical measures of
phenotypic age assayed in whole blood, has been devel-
oped to predict a variety of aging outcomes, including
all-cause mortality, cancers, healthspan, physical func-
tioning, and Alzheimer’s disease (Levine et al., 2018).
While there is still debate concerning the causality of
epigenetic changes, and whether they are causes or
effects of age-related degeneration, this is another field
that has received increased attention lately (Field et al.,
2018; Schnabl, Westermeier, Li, & Klingenspor, 2018).
Modern approaches that allow the epigenome to be sur-
veyed on a genome-wide scale however, such as
methyl-DNA immunoprecipitation (MeDIP) for survey-
ing DNA methylation and ChIP-Seq for studying his-
tone modifications, provide the tools for researchers to
study the epigenetics of aging (de Magalhaes et al,
2010). As such, the epigenome is yet another layer of
genomic regulation that can be studied in a high-
throughput fashion across the lifespan and in manipula-
tions of longevity.

For all the success of transcriptomics, proteins are of
course the actual machines of life and the correlation
between transcripts and protein levels is not perfect.
Transcriptomics provides a snapshot of transcriptional
responses but in the context of aging we need proteo-
mics to truly assay what changes occur with age.
Proteomics approaches are still limited, however, in
that they do not allow a comprehensive survey of the
proteome in a single experiment (de Magalhaes, 2009).
There have been some advances, though the number of
proteins surveyed is often small compared to transcrip-
tional profiling. For example, protein profiling of aging
has been performed in the mouse heart, revealing
8 and 36 protein spots whose expression was, respec-
tively, upregulated and downregulated due to aging
(Chakravarti et al., 2008); comparable results in terms of
number of proteins were also found in the mouse brain
(Yang et al., 2008). Insights can be gained, however, and
for instance proteome profiling of aging in mice kidney
revealed functional categories associated with aging
related to metabolism, transport, and stress response
(Chakravarti et al., 2009). More recently, plasma proteo-
mic profiling has revealed a proteomic signature of age
(Tanaka et al., 2018).

Another emerging approach to profile age-related
changes involves surveying the metabolome. One
study compared metabolic parameters of young and
old mice, which was then integrated with gene expres-
sion and biochemical data to derive a metabolic foot-
print of aging (Houtkooper et al., 2011). Another study
determined the sera metabolite profile of mice of dif-
ferent ages and different genetic backgrounds to derive
a metabolic signature that predicts the biological age
in mice (Tomas-Loba, Bernardes de Jesus, Mato, &
Blasco, 2013). In humans, a panel of 22 metabolites
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was found to significantly correlate with age and with
age-related clinical conditions independent of age
(Menni et al., 2013), while another group found 71 and
34 metabolites significantly associated with age in,
respectively, women and men (Yu et al, 2012). In
another study of more than 300 unique compounds,
significant changes in the relative concentration of
more than 100 metabolites were associated with age
(Lawton et al.,, 2008). Complementarily, centenarians
have also been shown to be characterized by a meta-
bolic phenotype that is distinct from that of elderly
subjects, in particular regarding amino acids and lipid
species (Collino et al., 2013; Montoliu et al., 2014).

The relevance of large-scale approaches is likely to
increase in the near future thanks to the rapid develop-
ment of single-cell sequencing. As currently the most
developed class among these techniques, single-cell
RNA sequencing (scRNA-seq) can typically measure
the transcriptome of hundreds of thousands of individ-
ual cells simultaneously (Regev et al., 2017). Methods
targeting other molecular profiles, such as the epigen-
ome, also tend to show promising development (Clark,
Lee, Smallwood, Kelsey, & Reik, 2016), with in some
cases the possibility of measuring several profiles in
parallel in the same cell (Angermueller et al., 2016). An
important opportunity given by such technology is the
capacity to better define the notion of cell type and to
build a cell atlas, such as the recently created murine
atlas (Tabula Muris Consortium, 2018; Han et al., 2018)
and the future human cell atlas (Regev et al., 2017).

One important limitation in age-related omics pro-
filing, for example, transcriptomics, is that changes
could be due to changes in cell types within a given
tissue. As such, biogerontology will benefit from
single-cell sequencing and it is encouraging to notice
that a few scRNA-seq studies have already been spe-
cifically designed to investigate the aging process.
While results have recently been published for the
human pancreas (Enge et al., 2017), the mouse lung
(Angelidis et al, 2019), and the mouse brain
(Ximerakis et al., 2019), two other studies provide
aging data for, respectively, 3 and 18 tissues obtained
from the same mice (Kimmel et al., 2019; Pisco et al.,
2020). A common conclusion of these early investiga-
tions is that aging gives rise to distinct transcriptional
trajectories among cell types rather than to a univer-
sal pattern. For instance, Ximerakis et al. and Kimmel
et al. both report more than 3000 genes differentially
expressed with age, but most of them are specific to
only one cell type and some of them show opposite
regulations in different cell types. Along the same
lines, Kimmel et al. observe that changes in transcrip-
tional noise depend on cell identity (however this is
in contrast with Enge et al. and Angelidis et al., both
reporting an overall increase of such noise in the cell
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types they considered). As an interesting example of
multi-omics analysis, Angelidis et al. also show that
the combination of scRNA-seq with proteomics
reveals the cellular origin of extracellular matrix
remodeling in the lungs of old mice. Although we
have only considered here a few examples of the
results contained in the aforementioned articles,
we can already start appreciating the relevance and
the potential of single-cell sequencing for aging
research and large-scale analysis.

Challenges in data analysis

Although large-scale omics approaches facilitate a
broad array of studies and provide an incredible
amount of data, the sheer volume of data generated cre-
ates challenges in turning the data into meaningful
results and novel insights. From a statistical perspective,
large-scale approaches also increase the chances of false
hits that need to be accounted for when analyzing and
interpreting the results. The uncertainties concerning
potential false results in large-scale approaches empha-
size the need for further experimental validation using
a different, usually low-scale, approach. In gene expres-
sion studies, qPCR validation is usually used as the
gold standard (Derveaux, Vandesompele, & Hellemans,
2010). Some types of studies, like genetic association
studies of longevity, are not simple to validate, and
often depend on further studies in other populations,
which may or may not be feasible.

In a sense, the bottleneck in research using post-
genome technologies is moving away from generating
data toward interpreting data. As an example, a sin-
gle 3-day run from an Illumina HiSeq X platform gen-
erates up to 900 Gb of data, which must be stored,
processed, quality-controlled, and analyzed. This
means that the standard experiment using next-
generation sequencing platforms must account for
a substantial amount of time for the bioinformatics
and statistical processing of the data. Although sev-
eral software tools exist now for this in silico work,
labs not experienced with bioinformatics might strug-
gle to develop a suitable pipeline and have to rely on
core facilities, collaborators, or commercial services.
Another problem is that for many next-generation
sequencing approaches, especially in the case of
single-cell sequencing, there is still no gold standard
for the bioinformatics and statistical analysis and
multiple alternative analysis pipelines still exist.
Modest alterations in statistical parameters, for which
there is no established standard, can also result in sig-
nificant changes in results. For example, it is impor-
tant to mention that microarray platforms for gene
expression profiling are at present much quicker in
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terms of data analysis than approaches based on next-
generation sequencing; because microarrays have
been used for longer, standard methods are available
for them and this is not yet the case for RNA-seq.
This is even more relevant for single-cell sequencing
for which comparative studies and standardization
have only started to be proposed very recently
(Luecken & Theis, 2019; Wang, Li, Nelson, & Nabavi,
2019). Researchers planning experiments need to care-
fully balance the advantages of the latest next-
generation sequencing platforms with the price and
simpler bioinformatics and statistics of array-based
platforms.

One major and long-recognized problem of large-
scale approaches is multiple hypothesis testing. Even a
low-density microarray platform with a few hundred
genes is testing for effects a few hundred times, which
by chance will generate false positives. Modern geno-
mic approaches, for example, in GWAS studies that sur-
vey millions of genetic variants, must adequately cope
with this problem to generate biologically relevant
results. A standard way of dealing with multiple
hypothesis testing is the Bonferroni correction, in which
the P value cutoff (typically.05) is divided by the num-
ber of hypotheses being tested (e.g., for an array with
20,000 genes use .05/20,000 as cutoff). Bonferroni
correction can be deemed as too stringent, and alterna-
tive methods for correcting for false positives have been
developed (Storey & Tibshirani, 2003). Benjamini correc-
tion is also widely used, and is less stringent and
straightforward to calculate (Benjamini & Hochberg,
1995). False discovery rate estimates based on simula-
tions and scrambling of data have also been widely
used, including by our lab (de Magalhaes et al., 2009;
Plank et al., 2012, 2013), and although it requires some
customization to the specific experiments, it provides
an estimate of false positives based on real data cap-
tured from the experiment.

Data integration

As mentioned previously, the recent shift in biologi-
cal research toward large-scale approaches has
resulted in the capacity to generate huge amounts of
data, much of which is publicly available. These data,
howe