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Abstract—Ageing is a highly complex biological process that is still poorly understood. With the growing amount of ageing-related data

available on the web, in particular concerning the genetics of ageing, it is timely to apply data mining methods to that data, in order to try

to discover novel patterns that may assist ageing research. In this work, we introduce new hierarchical feature selection methods for

the classification task of data mining and apply them to ageing-related data from four model organisms: Caenorhabditis elegans

(worm), Saccharomyces cerevisiae (yeast), Drosophila melanogaster (fly), andMus musculus (mouse). The main novel aspect of the

proposed feature selection methods is that they exploit hierarchical relationships in the set of features (Gene Ontology terms) in order

to improve the predictive accuracy of the Na€ıve Bayes and 1-Nearest Neighbour (1-NN) classifiers, which are used to classify model

organisms’ genes into pro-longevity or anti-longevity genes. The results show that our hierarchical feature selection methods, when

used together with Na€ıve Bayes and 1-NN classifiers, obtain higher predictive accuracy than the standard (without feature selection)

Na€ıve Bayes and 1-NN classifiers, respectively. We also discuss the biological relevance of a number of Gene Ontology terms very

frequently selected by our algorithms in our datasets.
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1 INTRODUCTION

THE causes and mechanisms of the biological process of
ageing are a mystery that has puzzled humans for a long

time. Research has, however, revealed some factors possibly
involved in ageing. For instance, caloric restriction extends
the longevity of many species [1]. Research has identified
several pathways regulating ageing in model organisms,
such as insulin/insulin-like growth factor-1 (IGF-1) signal-
ing [2]; and mutations in some DNA repair genes lead to
accelerated ageing syndromes [3]. In addition, a low degree
of protein oxidative damage is associated with longer-lived
species [4], and reactive oxygen species (ROS) may play an
important role on the process of ageing. Furthermore, some
diseases like cancermay be related to ageing, since cell senes-
cencemay be amechanism of tumour suppression [5].

Despite such findings, ageing is a highly complex biolog-
ical process which is still poorly understood, and much
more research is needed in this area. Due to the great diffi-
culty and ethical issues associated with conducting ageing
experiments in humans, research on the biology of ageing is
usually done by using model organisms. With the growing
amount of ageing-related data on model organisms avail-
able on the web, in particular related to the genetics of

ageing, it is timely to apply data mining methods to that
data, in order to try to discover novel patterns that may
assist ageing research.

This work addresses the classification task of data mining
[6], where each instance (object being classified) consists of a
set of features and a class variable. The goal of a classifica-
tion algorithm is to build, from a set of training instances
(the training set), a classification model that predicts the
value (or label) of the class variable for an instance, given
the values of the features for that instance. The classification
model is then used to predict the class values of a different
set of testing instances (the testing set). Hence, the testing
set is used to measure the predictive performance, or gener-
alization ability, of the model built from the training set.

In the classification task, when the number of features is
large (like in this work), it is common to apply feature selec-
tion methods, before applying a classification algorithm to
the data. Feature selection methods aim to select a subset of
the most relevant and non-redundant features [7], out of all
input features, in order to try to improve the predictive accu-
racy of a classification algorithm. Note that feature selection
is a hard computational problem, since the number of candi-
date solutions is 2m-1, wherem is the number of features.

In this work, the instances being classified are genes from
four major model organisms, namely: C. elegans, S. cerevisiae,
D. melanogaster and M. musculus. Each gene has to be classi-
fied into one of two classes: pro-longevity or anti-longevity,
based on the values of features indicating whether or not
the gene is associated with each of a number of Gene Ontol-
ogy (GO) terms, where each term refers to a type of bio-
logical process. Pro-longevity genes are those whose
decreased expression (due to knockout, mutations or RNA
interference) reduces lifespan and/or whose overexpression
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extends lifespan; accordingly, anti-longevity genes are those
whose decreased expression extends lifespan and/or whose
overexpression decreases it [8]. We adopt GO terms as fea-
tures to predict a gene’s effect on longevity because of the
widespread use of the GO in gene and protein function pre-
diction and the fact that GO terms were explicitly designed
to be valid across different types of organisms [9].

GO terms are organised into a hierarchical structure
where, for each GO term t, its ancestors in the hierarchy
denote more general terms (i.e. more general biological pro-
cesses) and its descendants denote more specialized terms
than t. It is important to consider the hierarchical relation-
ships among GO terms when performing feature selection,
because such relationships encode information about
redundancy among GO terms. In particular, if a given gene
g is associated with a given GO term t, this logically implies
that g is also associated with all ancestors of t in the GO hier-
archy. This kind of redundancy can have a negative effect
on the predictive accuracy of classification algorithms like
Na€ıve Bayes (NB) [6].

This work proposes two new feature selection methods
that exploit hierarchical relationships among GO terms, in
order to minimize the redundancy in the selected GO terms.
We use the term “hierarchical feature selection” to refer to
feature selection methods that cope with hierarchical rela-
tionships among features. The proposed hierarchical feature
selection methods work with the Na€ıve Bayes and 1-NN
(nearest neighbour) classifiers in the context of “lazy
learning” [10], [11], where a set of features (GO terms) is
selected specifically for each testing instance (gene). This is
in contrast to the much more common “eager learning” sce-
nario, where the same set of features is selected and used to
classify all testing set instances.

This paper is a major extension of our recent paper
[12], where we proposed a hierarchical feature selection
method that exploits the hierarchical relationships among
GO terms in order to improve the predictive accuracy of
Na€ıve Bayes when classifying C. elegans genes into pro-
longevity or anti-longevity classes. More precisely, this
paper extends our previous paper in four main directions.
Firstly, in this paper we propose two new hierarchical
feature selection methods; which in our experiments
obtained higher predictive accuracy than the method pro-
posed in [12]. Secondly, in this paper we report results
for genes of four different model organisms, instead of
results for just C. elegans genes as in our previous paper.
Thirdly, in this paper we discuss the biological relevance
(for ageing research) of 20 very frequently selected GO
terms; whilst in [12] we just briefly mentioned the biologi-
cal relevance of two GO terms. Fourthly, in this paper we
report results for Na€ıve Bayes and 1-NN classifiers,
instead of just for Na€ıve Bayes in [12].

1.1 Related Work on the Classification of
Ageing-Related Genes

Classification methods are widely adopted in bioinformatics,
but there are few studies using classificationmethods for ana-
lyzing data on ageing-related genes, as follows. Freitas et al.
[13] addressed the classification of DNA repair genes into
ageing-related or non-ageing related, and Fang et al. [14]
addressed the classification of ageing-related genes into

DNA repair or non-DNA repair genes. Both studies used
Gene Ontology terms as features, in addition to other types of
features. Li et al. [15] classified C. elegans genes into longevity
and non-longevity genes. They used a log-odds score to mea-
sure the difference in the frequency with which a given GO
term occurs in genes of the longevity and non-longevity clas-
ses. Huang et al. [16] predicted the effect of a gene’s deletion
on the longevity (lifespan) of yeast. The three effect classes
were: no effect on lifespan, increased or decreased lifespan.
For each deleted gene, they removed its downstream life-
span-related genes from the complete lifespan-related gene
network and considered the remaining network as the dele-
tion network for that gene. They computed GO enrichment
scores (based on the p-value of a hypergeometric test) as
functional features of the deletion networks.

It should be noted that all of these studies coped with
each GO term individually, without considering the hierar-
chical relationships between a GO term and its ancestor and
descendant terms in the GO hierarchy — unlike this work,
where feature selection takes the GO hierarchy into account.

1.2 Related Work on Hierarchical Feature Selection

In the classification task, hierarchical structure can occur in
the class labels to be predicted (creating a hierarchical classi-
fication problem) or in the features used as predictors (creat-
ing a hierarchical feature selection problem). Many
hierarchical classification methods have been proposed in
the literature [17]. However, our work follows a very differ-
ent hierarchical feature selection scenario, where the features
(in our case GO terms), rather than the class labels, are struc-
tured into a hierarchy. Hence, we exploit the GO hierarchy’s
information for conducting feature selection, but still use
conventional classifiers to predict the flat class labels.

Hierarchical feature selection for the classification task is a
very under-explored area, and works in this area are mainly
based on linear models for regression (prediction of continu-
ous variables) or classification [18], [19], [20], [21]. In general,
in these works the system has to find the parameters (feature
weights) of a linear model that minimizes both the value of a
loss function and the value of a regularization term, which
penalizes models with large values of feature weights. The
need tominimize the regularization term forces the construc-
tion of sparse models, where many features with a weight of
0 are eliminated. These methods achieve hierarchical feature
selection by using regularization terms that consider the fea-
ture hierarchy. Briefly, a feature can be added into the set of
selected features only if its parent feature is also included in
that set [18], [20]. This kind of feature selection methods for
linear models is very different from the kind proposed here
for classification, which is based on identifying redundant
information about feature values in the GO hierarchy. Also,
the hierarchical feature selection methods proposed here fol-
low the lazy learning approach, unlike the methods pro-
posed in the above studies.

1.3 Organisation of the Remainder of the Paper

Section 2 briefly reviews the background on the GO, Na€ıve
Bayes and 1-NN, lazy learning and feature selection. Section 3
describes the newly proposed hierarchical feature selection
methods. Section 4 presents the computational results. Those
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results are further discussed in Section 5, which also discusses
the biological relevance of very frequently selected GO terms
in the context of the biology of ageing. Finally, Section 6
presents the conclusion and future research directions.

2 BACKGROUND

2.1 The Gene Ontology

TheGOconsists of a collection ofwell-defined terms and hier-
archical relationships among terms. These hierarchical rela-
tionships are mainly “is_a”, generalization/specialization
relationships, represented by a directed acyclic graph (DAG).
For example, in Fig. 1, GO:0008150 (biological process) is the
root of the DAG; GO:0051704 (multi-organism process) is one
of the child nodes of GO:0008150; and GO:0044364 (disrup-
tion of cells of other organism) is one of the parents of node
GO:0031640 (killing of cells of other organism).

Note that, according to the GO’s “is_a” hierarchical rela-
tionships, if a gene is associated with GO term t, then the
gene is also associated with all GO terms that are ancestors
of t in the hierarchy. Conversely, if a gene is not associated
with a given GO term t, then the gene is not associated with
any of the GO terms that are descendants of t in the hierar-
chy. Therefore, the GO’s data structure contains some
redundant information about the GO terms associated with
a given gene. For example, in Fig. 1, if we know that a
gene is annotated with GO:0044364, the information that
the gene is annotated with its ancestor terms GO:0035821,
GO:0065008, GO:0065007, GO:0051704 and GO:0008150 can
be considered redundant, in the sense that those annota-
tions are logically implied by the GO:0044364 annotation.
The notion of redundancy refers to the GO terms associated
with an individual gene (an instance in our datasets), which
suggests that, in order to exploit hierarchical relationships
among GO terms when predicting classes, non-redundant
GO terms should be selected for each instance separately.
This leads to lazy learning, discussed later.

2.2 Na€ıve Bayes

Na€ıve Bayes is a popular classifier due to its simplicity, rela-
tively powerful predictive ability and its good interpretabil-
ity. The NB classifier uses the inference formula shown in

Equation (1):

Pðyjx1; x2; . . . ; xmÞ / PðyÞ
Ym

i¼1
Pðxi j yÞ; (1)

where m is the number of features and the probability of a
class label y given all feature values of an instance is esti-
mated by the product of the prior probability of y times the
probability of each feature value xi given y. Equation (1) is
based on the simplifying assumption that features are
independent from each other given the class. Clearly, the
predictive accuracy of Na€ıve Bayes is sensitive to the predic-
tive power of individual features; and its accuracy can also
be harmed by the use of very redundant features [6].
However, irrelevant or redundant features can be removed
by a feature selection method in a preprocessing step, as
described later.

2.3 1-Nearest Neighbour (1-NN)

1-NN is a popular “lazy learning” classifier (see Section 2.4).
It assigns to a testing instance the class of the training
instance which is most similar (or closest) to that testing
instance [10], [22], [23]. In our datasets all features are
binary, so we use the Jaccard coefficient [24], [25] as the sim-
ilarity measure in 1-NN, as shown in Equation (2):

Jaccardði; kÞ ¼ m11

m11 þm10 þm01
; (2)

where m11 denotes the number of features with value “1” in
both the ith and kth instances simultaneously; m10 denotes
the number of features with value “1” in the ith instance
and value “0” in the kth instance; m01 denotes the number
of features with value “0” in the ith instance and value “1”
in the kth instance. A greater value of the Jaccard coefficient
means a higher similarity (closer distance) between the two
instances.

2.4 Lazy Learning

In this work we use a “lazy learning” version of Na€ıve
Bayes and the conventional 1-NN algorithm (which natu-
rally performs “lazy learning”). The term “lazy” indicates
that the learning process is postponed to the moment when
a testing instance is observed and needs to be classified [10],
[11]. This is in contrast to the more common “eager
learning” approach, where the learning process is per-
formed before any testing instance is observed. Lazy learn-
ing builds one specific classifier for each testing instance,
whilst eager learning builds one single classifier for all test-
ing instances.

2.5 Feature Selection

Feature selection methods are often used for data prepro-
cessing before classification, in order to filter out redundant
and irrelevant features [7]. Feature selection methods can be
broadly categorized into the wrapper and the filter
approaches. The former uses a classification or regression
algorithm to evaluate the performance of candidate features
subsets. The latter uses independent feature-evaluation
methods, e.g. entropy or chi-square [7], [11], which work
regardless of the classification algorithm to be applied to

Fig. 1. Example of a small part of Gene Ontology DAG.
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the selected features. The wrapper approach often achieves
higher predictive accuracy, since it uses the same algorithm
for measuring feature relevance and for classification. How-
ever, the wrapper approach is much more computationally
expensive than the filter approach. This problem is aggra-
vated in lazy feature selection, since feature selection is per-
formed for each testing instance. Hence, in this work we use
the filter approach to select relevant features (GO terms).

Note that the distinction between lazy and eager learning
approaches, made earlier, also holds for feature selection
methods. Lazy feature selection methods select a set of rele-
vant features for each testing instance separately; whilst
eager feature selection methods try to select a single set of
features that are relevant to classifying all testing instances.

The main motivation for using the lazy feature selection
approach in this work is that it can be used to select a cus-
tomized set of features (GO terms) for each individual test-
ing instance, which could lead to improved predictive
accuracy. Some evidence for this is given in[11], where lazy
feature selection has improved Na€ıve Bayes’ predictive
accuracy in most experiments. In addition, in [26] the lazy
version of a feature elimination approach improved predic-
tive accuracy.

In addition, taking into account that one of the motiva-
tions to use feature selection methods is to remove redun-
dant features, in this work a lazy feature selection approach
is naturally motivated by the fact that the redundancy
associated with the GO’s hierarhical relationships refer to
individual genes, as discussed earlier. That is, a lazy feature
selection method can remove features (GO terms) which
are redundant specifically for the classification of a given
instance (gene).

2.6 Relevance Measure

As a part of our feature selection method, we use Equation
(3) to measure the relevance (R)—or predictive power - of a
binary featureX taking value x1 or x2.

RðXÞ ¼
Xn

i¼1
½Pðyi jx1Þ � Pðyi jx2Þ�2; (3)

where yi is the ith class and n is the number of classes. A
general form of Equation (3) was originally used in [27] in
the context of nearest neighbour algorithms, and adjusted
in [12] to be used as a feature relevance measure for Na€ıve
Bayes. In this work, n ¼ 2, X is a GO term feature, and
Equation (3) is expanded to Equation (4)

RðGOÞ ¼ ½PðClass ¼ Pro jGO ¼ YesÞ
� PðClass ¼ Pro jGO ¼ NoÞ�2
þ ½PðClass ¼ Anti jGO ¼ YesÞ
� PðClass ¼ Anti jGO ¼ NoÞ�2:

(4)

This formula calculates the relevance of each GO term as a
function of the difference in the conditional probabilities of
each class given different values (“Yes” or “No”) of a GO
term, indicating whether or not a model organism gene is
annotated with that GO term.

3 PROPOSED HIERARCHICAL FEATURE SELECTION

METHODS

We explain the proposed hierarchical feature selectionmeth-
ods in the context of Na€ıve Bayes, whose predictive accuracy
is sensitive to redundant features [28]. However, the pro-
posed methods can be used with any lazy learning classifier,
and we will report later results for both Na€ıve Bayes and 1-
NN. As discussed in Section 2.1, the hierarchical relation-
ships among GO terms contain redundancy, but it is not
clear which GO terms should be removed to train Na€ıve
Bayes, since feature selection has two goals: minimizing
redundancy and selecting features with greater relevance
for class prediction. To investigate the relative importance of
these two goals, we propose three types of GO hierarchy-
based feature selection methods, namely Select Hierarchical
Information-Preserving (HIP) GO Terms, Select Most Relevant
(MR) GO Terms and Select Hierarchical Information-Preserving
and Most Relevant (HIP-MR) GO Terms, as explained below.
The HIP-MRmethod was proposed in our recent paper [12],
and the other two methods are new. All three methods per-
form lazy learning, i.e. feature selection is performed sepa-
rately for each testing instance.

In the description of the feature selection methods in the
next sections, an instance refers to a gene of a model organ-
ism, and each instance is described by a set of GO term fea-
tures. Each feature takes the value “Yes (1)” or “No (0)” for
each instance, indicating whether or not (respectively) the
gene corresponding to that instance is associated with the
corresponding GO term.

3.1 Select Hierarchical Information-Preserving GO
Terms

This method focuses only on minimizing the redundancy in
the set of selected GO terms, ignoring the relevance values
of individual GO terms.

The pseudocode of the HIP method is shown as Algo-
rithm 1, where Dataset<Train> and Dataset<Test> denote the
training dataset and testing dataset, and they consist of
all GO terms used as features; AncðGOiÞ and DecðGOiÞ
denote the set of ancestors and descendants (respectively)
of the ith GO term; StatusðGOiÞ means the selection status
(“Selected” or “Removed”) of the ith GO term; Instance<n>

means the current instance being classified in Dataset<Test>;
ValueðGOi;nÞ denotes the value of GOi feature (“1” or “0”)
in that instance; Aij denotes the jth ancestor of the ith GO
term; Dij denotes the jth descendant of the ith GO term;
Instance<s> means the shorter version of instance n that
consists only of GO terms whose status is “Selected”.

In the first part of Algorithm 1 (lines: 1-8), it firstly con-
structs the DAG, finds all ancestors and descendants of
each GO term, and initializes the status of each GO term as
“Selected”. In the second part of Algorithm 1 (lines: 9-24), it
performs feature selection for each testing instance in turn,
using a lazy learning approach. For each instance, for each
GO term GOi, the algorithm checks its value in that
instance. If GOi has value “1”, all its ancestors have their
status set to “Removed”—since the value “1” of each ances-
tor is redundant, being logically implied by the value “1” of
GOi. If GOi has value “0”, all its descendants have their
status set to “Removed”—since the value “0” of each
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descendant is redundant, being logically implied by the
value “0” of GOi.

To show how the second part of Algorithm 1 works, we
use as example a hypothetical testing instance with just 12
GO term features, denoted by the letters A-L. Fig. 2 shows a
small hypothetical DAG specifying the hierarchical relation-
ships among the GO term features of our hypothetical
instance. In Fig. 2, the relevance and feature value for each
GO term is shown on the left (in bold) and on the right
(respectively) of the node representing that GO term. Note
that the HIP feature selection method uses only information
about the GO term feature values and their hierarchical
relationships; the GO terms’ relevance values are used only
by the two other feature selection methods described later.

Algorithm 1. Select Hierarchical Information-Preserving
GO Terms

1: InitializeDAGwith all GO terms in Dataset;
2: InitializeDataset<Train>;
3: InitializeDataset<Test>;
4: for each GOi inDAG do
5: Initialize AncðGOiÞ inDAG;
6: InitializeDecðGOiÞ inDAG;
7: Initialize StatusðGOiÞ  “Selected”;
8: end for
9: for each Instance<n> 2Dataset<Test> do
10: for each GOi 2 DAG do
11: if ValueðGOi;nÞ = 1 then
12: for each Aij 2 AncðGOiÞ do
13: StatusðAijÞ  “Removed”;
14: end for
15: else
16: for each Dij 2DecðGOiÞ do
17: StatusðDijÞ  “Removed”;
18: end for
19: end if
20: end for
21: Instance<s> {GOi : StatusðGOi;nÞ= “Selected”};
22: Na€ıveBayesðDataset<Train>; Instance<s>Þ;
23: Re-assign 8GOi : StatusðGOiÞ  “Selected”;
24: end for

With respect to the example DAG in Fig. 2, lines 10-20 of
Algorithm 1 work as follows. When term A is processed,
the selection status of its ancestor terms D, J, C and K will
be assigned as “Removed” (lines: 12-14), since the value “1”
of A logically implies the value “1” of all of A’s ancestors.
Analogously, when term B is processed, the selection status
of its descendant terms G, I, F, L and E will be assigned as
“Removed” (lines: 16-18), since the value of “0” of B logi-
cally implies the value of “0” of all of B’s descendants.

After processing all terms in the example DAG, the terms
selected by the loop in lines 10-20 are A, B and H. Note that
these three core GO terms contain the complete hierarchical
information associated with all the terms in the DAG of
Fig. 2, in the sense that the observed values of these three
core GO terms logically imply the values of all other GO
terms in that DAG.

Next, the current testing instance is reduced to contain
only features whose status is “Selected” (line: 21), and that
reduced instance is classified by Na€ıve Bayes (line: 22).

Finally, the status of all GO term features is reassigned as
“Selected” (line: 23), as a preparation for feature selection
for the next testing instance.

3.2 Select Most Relevant GO Terms

This method performs feature selection considering both
the relevance value of individual GO terms and the redun-
dancy among hierarchically-related GO terms. Like the
HIP method, for each GO term t in the current instance
being classified, MR first identifies the sets of GO terms
whose values are implied by the value of t in that instance
—i.e. either the ancestors of t, if t has value “1”; or the
descendants of t, if t has value “0”, for each path from
the current node to a root or a leaf node of the GO DAG,
depending on whether the current term has value “1” or
“0”, respectively. Next, MR compares the relevance of t
and all terms in the identified GO terms in each path.
Among all those terms (including t), MR marks for
removal all terms, except the most relevant term. If there
are more than one GO terms with the same maximum rele-
vance value in a given path, as a tie-breaking criterion, MR
retains the most specific (deepest) term among the set of
terms with value “1” or the most generic (shallowest) term
among the set of terms with value “0”—since those terms’
values logically imply the largest number of other terms’
values, among the set of terms being compared.

The pseudocode of the MR method is shown as Algo-
rithm 2, where RðGOiÞ denotes the value of relevance for the
ith GO term; AncþðGOi;kÞ and DecþðGOi;kÞ denote the set of
GO terms containing both the ith GO term and its ancestors
or descendants (respectively) in the kth path; MRT denotes
the most relevant term among the set of GO terms in
AncþðGOi;kÞ or DecþðGOi;kÞ; Ai;j;kþ and Di;j;kþ denotes the
jth term inAncþðGOi;kÞ andDecþðGOi;kÞ, respectively.

In the first part of Algorithm 2 (i.e. lines 1-9), firstly the
DAG will be constructed, then Ancþ and Decþ for each GO
term at each path will be initialized, and the relevance (R)
value for each GO term will be calculated. In the second
part of the algorithm (i.e. lines 10-31), the feature selection
process will be conducted for each testing instance using a
lazy learning approach.

Fig. 2. Example of a small DAG of features.
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To show how the second part of Algorithm 2 works, we
use again as example the GO DAG shown in Fig. 2. When
term A (with value “1”) is processed (lines: 13-18), the GO
terms at two paths, i.e. path (a) containing terms J, D and A;
and path (b) containing terms K, C and A, are processed. In
path (a), the terms having maximum relevance value are D
and A; but only termA is selected as theMRT (line: 14), since
it is deeper than term D in that path. In path (b), only term C
is selected as MRT, since it has the maximum relevance
value. Hence, after processing term A, all terms contained in
the two paths have their status set to “Removed”, except
term C (lines: 15-17). Analogously, when term B (with value
“0”) is processed, the GO terms at three paths, i.e. path (a)
containing terms B, G and I; path (b) containing terms B, F
and L; and path (c) containing terms B, E and L will be proc-
essed. In path (a), both term G and I have maximum rele-
vance value, but Gwill be selected as theMRT (line: 21) since
it is shallower than I. In path (b), term F is selected as the
MRT since it has the maximum relevance value among all
terms in that path. In path (c), term E is selected as theMRT,
since it also has the maximum relevance value. Therefore,
after processing term B, the selection status for all terms con-
tained at those three paths will be assigned as “Removed”,
except termsG, F and E (lines: 22-24).

Algorithm 2. Select Most Relevant GO Terms

1: InitializeDAGwith all GO terms in Dataset;
2: InitializeDataset<Train>;
3: InitializeDataset<Test>;
4: for each GOi inDAG do
5: Initialize AncþðGOi;kÞ inDAG;
6: InitializeDecþðGOi;kÞ inDAG;
7: Initialize StatusðGOiÞ  “Selected”;
8: Calculate RðGOiÞ inDataset<Train>;
9: end for
10: for each Instance<n> 2Dataset<Test> do
11: for each GOi 2 DAG do
12: if ValueðGOi;nÞ = 1 then
13: for each Pathk from GOi to root inDAG do
14: FindMRT in AncþðGOi;kÞ;
15: for each Ai;j;kþ exceptMRT do
16: StatusðAi;j;kþÞ  “Removed”;
17: end for
18: end for
19: else
20: for each Pathk from GOi to leaf inDAG do
21: FindMRT inDecþðGOi;kÞ;
22: for each Di;j;kþ exceptMRT do
23: StatusðDi;j;kþÞ  “Removed”;
24: end for
25: end for
26: end if
27: end for
28: Instance<s> {GOi : StatusðGOi;nÞ=“Selected”};
29: Na€ıveBayesðDataset<Train>; Instance<s>Þ;
30: Re-assign 8GOi : StatusðGOiÞ  “Selected”;
31: end for

After processing all GO terms in that example DAG, the
selected terms are H, C, G, F and E. Next, the current testing
instance is reduced to contain only those five selected fea-
tures in line 28 of Algorithm 2, and that reduced instance is

classified by Na€ıve Bayes in line 29. Finally, the status of all
GO term features is reassigned to “Selected” in line 30, as a
preparation for feature selection for the next instance.

Note that, for each set of GO terms being compared when
MR decides which terms will have their status set to
“Removed”, this decision is based both on the relevance val-
ues of the GO terms being compared and the redundancy
among hierarchically related terms, as explained earlier.
Thus, in general the MR method does not select all core GO
terms with complete hierarchical information on feature val-
ues, as selected by HIP (see Section 3.1). Consider, e.g., the
core term B = “0”, which implicitly contains the hierarchical
information that terms G, I, F, L and E have value “0”. Also,
the core term A = “1” implies that terms D, J, C and K have
value “1”. The GO terms B and A were selected by the HIP
method, but neither B nor A is selected by the MR method,
because the relevance value of B is smaller than the relevance
values of G, F and E; and the relevance value of A is smaller
than the relevance value of term C. Hence, we lose the infor-
mation about the values of nodes B and A, whose values are
not implied by the values of terms G, F, E and C (nor implied
by any other GO term in the DAG).

On the other hand, the MR method has the advantage
that in general it selects GO terms with higher relevance val-
ues than the GO terms selected by the HIP method (which
ignores GO term relevance values). For instance, in the case
of our example DAG in Fig. 2, the three GO terms selected
by HIP (A, B and H) have on average a relevance value of
0.263, whilst the five GO terms selected by MR (H, C, G, F
and E) have on average a relevance value of 0.322.

3.3 Select Hierarchical Information-Preserving and
Most Relevant GO Terms

Although both HIP and MR select a non-redundant set of
GO term features, HIP has the limitation of ignoring the rel-
evance of GO terms, and MR has the limitation that it does
not necessarily select all core terms with the complete hier-
archical information (terms whose observed values logically
imply the values of all other GO terms for the current
instance). The HIP-MR method addresses these limitations,
by both considering GO term relevance (like MR) and
selecting all core terms with the complete hierarchical infor-
mation (like HIP). The price paid for considering both these
criteria is that, unlike HIP and MR, HIP-MR typically selects
a large subset of GO term features having some redundancy
(although less redundancy than the original full set of fea-
tures), as will be discussed later.

For each GO term t in the instance being classified, HIP-
MR first identifies the GO terms whose values are implied
by the value of t in the instance—i.e. the set of terms which
are ancestors or descendants of t, depending on whether t
has value “1” or “0”, respectively. Then, HIP-MR removes
GO terms by combining ideas from the HIP and MR meth-
ods, as follows. If GO term t has value “1”, HIP-MR
removes the ancestors of t whose relevance values are not
greater than the relevance value of t. If the GO term t has
value “0”, HIP-MR removes the descendants of t whose rel-
evance values are not greater than the relevance value of t.

Therefore, HIP-MR selects a set of core GO terms
where each selected term has the property(ies) of being
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needed to preserve the complete hierarchical information
associated the instance being classified (the kind of GO
term selected by HIP) or has a relatively high relevance
in the context of its ancestors or descendants (the kind of
GO term selected by MR). Hence, the set of GO terms
selected by the HIP-MR method tends to include the
union of the sets of GO terms selected by the HIP and
MR methods separately, making HIP-MR a considerably
more “inclusive” feature selection method.

Algorithm 3 Select Hierarchical Information-Preserving
and Most Relevant GO Terms

1: InitializeDAGwith all GO terms in Dataset;
2: InitializeDataset<Train>;
3: InitializeDataset<Test>;
4: for each GOi inDAG do
5: Initialize AncðGOiÞ inDAG;
6: InitializeDecðGOiÞ inDAG;
7: Initialize StatusðGOiÞ  “Selected”;
8: Calculate RðGOiÞ inDataset<Train>;
9: end for
10: for each Instance<n> 2Dataset<Test> do
11: for each GOi 2 DAG do
12: if ValueðGOi;nÞ = 1 then
13: for each Aij 2 AncðGOiÞ do
14: if RðAijÞ � RðGOiÞ then
15: StatusðAijÞ  “Removed”;
16: end if
17: end for
18: else
19: for each Dij 2DecðGOiÞ do
20: if RðDijÞ � RðGOiÞ then
21: StatusðDijÞ  “Removed”;
22: end if
23: end for
24: end if
25: end for
26: Instance<s> {GOi : StatusðGOi;nÞ=“Selected”};
27: Na€ıveBayesðDataset<Train>; Instance<s>Þ;
28: Re-assign 8GOi : StatusðGOiÞ  “Selected”;
29: end for

The pseudocode is shown as Algorithm 3. In the first part
of the algorithm (lines: 1-9), firstly the DAG is constructed,
the ancestors and descendants of each GO term are found,
and the relevance value of each GO term is calculated by
Equation (4). In the second part of the algorithm (lines: 10-
29), the feature selection process is carried out by combining
ideas of the HIP and MR methods, as explained earlier, for
each testing instance.

In the case of our example GO DAG in Fig. 2, when GO
term A (with value “1”) is processed, its relevance value is
compared with the relevance values of all its ancestor terms
J, D, C and K. Then, terms J, D and K are marked for
removal, since their relevance values are not greater than
the relevance of A. Next, when term B (with value “0”) is
processed, none of its descendant terms is marked for
removal, since their relevance values are greater than the
relevance value of B. This process is repeated for all other
GO term features in the instance being classified. At the end
of this process, the selected GO terms are: H, C, B, A, G, F
and E. Note that in this example HIP-MR selects all GO

terms selected by HIP or MR. Actually, as will be shown in
Section 4, HIP-MR tends to select substantially more GO
terms than the number of GO terms selected by HIP and
MR together. Note that, although HIP-MR selects a GO
term subset with less redundancy than the original full GO
term set, the terms selected by HIP-MR still have some
redundancy, unlike the terms selected by HIP and MR. This
is because HIP-MR can select a redundant term t if t has
higher relevance than another selected term logically imply-
ing t. E.g., in the above example, HIP-MR selects term C,
which is redundant with respect to selected term A, since C
has higher relevance than A.

4 COMPUTATIONAL EXPERIMENTS

4.1 Data Preparation

We constructed four datasets with data about the effect of
genes on an organism’s longevity, by integrating data from
the Human Ageing Genomic Resources (HAGR) GenAge
database (Build 16) [29] and the Gene Ontology database
(version: 2013-08-07) [9]. HAGR provides longevity-related
gene data for four model organisms, i.e. C. elegans, S. cerevi-
siae,D. melanogaster andM. musculus. We created one dataset
for each of these model organisms. We used the “EntrezID”
number for each gene in GenAge to retrieve the list of all GO
terms annotated for that gene, by using the “gene2go” file
[30], version: 2013-08-06. We used only the biological process
GO terms, which can be more naturally interpreted by biolo-
gists as predictors of longevity, by comparison with the
molecular function and cellular component GO terms. After
mapping all genes to their annotated GO terms, we use the
“is_a” relationship between GO terms to find all ancestors of
each GO term. The final dataset for each model organism
consists of one instance for each gene, where each instance
consists of a set of binary GO term features (indicating
whether or not the gene is annotated with each GO term)
and a class value (Pro- or Anti-Longevity).

Additional information about the created datasets is
shown in Table 1. The initial number of GO terms is the
number of GO terms (features) in the dataset before remov-
ing GO terms with frequency of occurence below a user-
defined threshold and before running the feature selection
methods. The GO term frequency threshold is a user-
defined parameter adopted for mitigating the overfitting
problem that would happen by constructing models using
GO terms with a very low frequency of occurrence (i.e.

TABLE 1
Detailed Information about the Created Datasets

Caenorhabditis

elegans

Saccharomyces

cerevisiae

Drosophila

melanogaster

Mus

musculus

Initial Number

of GO Terms

1528 1708 1595 2625

Initial Number

of Instances

566 293 121 89

Number (%) of

Pro-Longevity

Instances

203

(35.9 %)

41

(14.0 %)

81

(66.9 %)

63

(70.8 %)

Number (%) of

Anti-Longevity

Instances

363

(64.1 %)

252

(86.0 %)

40

(33.1 %)

26

(29.2 %)
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features whose value “1” occurs in very few instances),
since those features do not have a good generalization abil-
ity. Hence, it is necessary to investigate what is the most
appropriate threshold for the minimum number of occur-
rences of a GO term. In this work, we experimented with all
integer threshold values between 3 and 10. Thus, for each
model organism, there are eight different dataset versions—
each version using a different GO term frequency threshold.

4.2 Experimental Methodology

Generally, in our datasets, the distribution of instances
belonging to the two classes is imbalanced, as shown in
Table 1. Hence, we evaluate the predictive performance of
classifiers by using the value of Geometric mean (Gmean),
defined as Gmean ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sens� Spec
p

, because it takes into
account the balance of the classifiers’ sensitivity (Sens) and
specificity (Spec) [31]. Sensitivity means the proportion of
pro-longevity genes that were correctly predicted as pro-
longevity, and specificity means the proportion of anti-lon-
gevity genes that were correctly predicted as anti-longevity
in the testing dataset [32].

For all classifiers evaluated in this paper, the reported
values of Sens, Spec and Gmean were computed by a well-
known 10-fold cross validation procedure [6].

4.3 Results

We firstly report results comparing the Gmean of four ver-
sions of Na€ıve Bayes, namely standard-NB (without using
any feature selection method) and HIP-NB, MR-NB and
HIP-MR-NB, which denote NB applied on the set of features
selected by the respective hierarchical feature selection
method (HIP, MR or HIP-MR). The results are shown in
Table 2, where the bold figures denote the highest Gmean
value in the corresponding dataset version for each value of
the GO term frequency threshold. The figures after “�” are
standard errors.

In terms of average Gmean value among all dataset ver-
sions for the four model organisms, MR-NB obtained the
highest value, i.e. 61.9%, which is slightly higher than HIP-
NB’s value, i.e. 61.6 percent. In terms of performance on
individual model organisms, MR-NB obtained the highest
Gmean value (averaged over all threshold values) in the C.
elegans and S. cerevisiae datasets; and it obtained the second
highest Gmean value in the other two datasets. Conversely,
HIP-NB obtained the highest average Gmean value in the
D. melanogaster and M. musculus datasets; and it obtained
the second highest Gmean value in the C. elegans dataset. In
summary, both MR-NB and HIP-NB have been successful
feature selection methods, obtaining better results than both
the baseline standard Na€ıve Bayes (without feature selec-
tion) and the HIP-MR-NB feature selection method.

The main reasons for the inferior performance of HIP-
MR-NB seem to be that it tends to select a much larger num-
ber of GO term features, by comparison with HIP and MR
(see Section 3.3) and such a larger feature subset contains
some redundancy among hierarchically-related features
(unlike the non-redundant features selected by HIP and
MR), as explained earlier. As evidence for this, Table 3
shows the average number of features selected by each
method for each model organism and each dataset version.

Each value in the table is the mean number of selected fea-
tures over the 10 cross-validation iterations. As shown in
Table 3, the number of features selected by HIP-MR is
always larger (and in most cases substantially larger) than
the sum of the number of features selected by HIP and MR.
Such larger feature subsets contain many redundant fea-
tures, reducing the predictive accuracy of Na€ıve Bayes with
the HIP-MR method.

It is also worth observing the effect of different values of
the GO term frequency threshold in the Gmean value
obtained by the different versions of Na€ıve Bayes in Table 2.
Out of 16 cases (four versions of NB times four model
organisms), in nine cases the threshold value leading to the
highest Gmean value was either 3 or 4, which are the most
inclusive threshold values—i.e. the values that lead to the
largest number of GO term features used as input by the dif-
ferent versions of Na€ıve Bayes.

As a final note, we also conducted experiments compar-
ing HIP-MR-NB with a simple univariate feature selection
method that ranks all features and selects the top-ranked
ones. The results of these experiments are reported in [12].

5 DISCUSSION

5.1 Statistical Analysis of the Comparison of
Results for the Feature Selection Methods

We chose the combination of Friedman test and Holm post-
hoc test as the statistical significance tests applied on the
Geometric mean values obtained for the 32 datasets used in
our experiments (eight different GO term frequency thresh-
olds times four model organisms). The Friedman test is a
nonparametric test based on the rankings of each classifier’s
predictive performance on each dataset, which avoids the
problems associated with the assumption of normal distri-
bution made by the t-test and ANOVA [31], [33]. The Holm
post-hoc method is used for coping with the multiple-com-
parison problem when using significance tests, by adjusting
the p-values for individual pairwise comparisons. Demsǎr
[34] argues that in the case of multiple comparisons between
one control classifier and other classifiers, the Holm post-
hoc test is more powerful than the Nemenyi post-hoc test.
We selected MR-NB as the control method, since it obtains
the highest average Gmean value (averaged over the 32
dataset versions) among the four methods being compared
in Table 2. Comparing the Gmean values of MR-NB as the
control method against the values of each of the other meth-
ods, at the significance level of 5 percent, there is no signifi-
cant difference between the Gmean values of MR-NB and
HIP-NB; but MR-NB significantly outperforms both stan-
dard-NB and HIP-MR-NB.

Comparing the predictive accuracy of HIP-NB, MR-NB
and HIP-MR-NB, it seems that redundancy among the
selected GO terms tends to decrease NB’s predictive accu-
racy. As evidence for this, HIP-MR-NB, which selects a set
of GO terms with some redundancy, performed consider-
ably worse than MR-NB and HIP-NB, which do not select
redundant features. Also, the core GO terms containing the
complete hierarchical information in the GO DAG for a
given instance seem valuable for prediction, since HIP-NB,
which selects such non-redundant core GO terms regardless
of relevance, performed about as well as MR-NB.
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TABLE 2
Sensitivity (%), Specificity (%) & Geometric Mean (%) of Na€ıve Bayes Classifier

Caenorhabditis elegans

Standard-NB HIP-NB MR-NB HIP-MR-NB

Thre. Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean

T3 52.6 � 3.0 63.2 � 4.4 57.7 53.7 � 3.7 70.8 � 3.5 61.7 57.9 � 3.1 68.8 � 4.7 63.1 51.6 � 3.4 69.4 � 3.8 59.8
T4 55.8 � 3.9 61.8 � 2.5 58.7 54.2 � 3.9 71.2 � 2.3 62.1 57.4 � 4.0 68.8 � 2.0 62.8 51.1 � 5.0 68.1 � 2.2 59.0
T5 54.7 � 2.9 61.5 � 3.9 58.0 52.1 � 3.0 72.6 � 2.4 61.5 57.4 � 2.0 72.2 � 3.0 64.4 51.6 � 2.7 69.4 � 3.8 59.8
T6 60.0 � 4.6 59.4 � 4.0 59.7 53.7 � 4.6 71.9 � 2.9 62.1 57.9 � 2.9 69.8 � 3.5 63.6 56.3 � 4.8 67.4 � 3.9 61.6
T7 56.8 � 4.7 61.5 � 3.1 59.1 55.8 � 4.7 71.2 � 2.7 63.0 55.3 � 3.6 71.2 � 2.6 62.7 56.3 � 3.5 66.0 � 2.3 61.0
T8 56.8 � 4.8 56.8 � 2.2 56.8 52.1 � 5.2 70.0 � 2.5 60.4 53.2 � 3.4 70.4 � 3.4 61.2 56.8 � 4.3 62.4 � 2.9 59.5
T9 57.9 � 4.0 59.2 � 4.0 58.5 51.1 � 5.0 69.0 � 3.0 59.4 48.9 � 3.3 71.4 � 3.3 59.1 53.2 � 3.6 62.4 � 4.2 57.6
T10 58.4 � 4.8 57.1 � 2.4 57.7 48.4 � 3.6 69.7 � 2.8 58.1 50.0 � 3.5 71.4 � 1.4 59.7 52.1 � 4.1 61.3 � 2.2 56.5
Ave. 56.6 � 4.1 60.1 � 3.3 58.3 52.6 � 4.2 70.8 � 2.8 61.0 54.8 � 3.2 70.5 � 3.0 62.1 53.6 � 3.9 65.8 � 3.2 59.4

Saccharomyces cerevisiae

Standard-NB HIP-NB MR-NB HIP-MR-NB

Thre. Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean

T3 45.0 � 7.3 82.2 � 2.7 60.8 40.0 � 8.5 92.3 � 2.0 60.8 60.0 � 8.5 80.3 � 2.4 69.4 12.5 � 7.7 98.1 � 1.1 35.0
T4 55.0 � 8.2 83.1 � 3.4 67.6 47.5 � 10.2 92.3 � 2.2 66.2 52.5 � 8.7 80.7 � 2.9 65.1 20.0 � 9.0 97.6 � 1.3 44.2
T5 50.0 � 6.5 82.0 � 3.3 64.0 40.0 � 7.6 90.3 � 2.3 60.1 52.5 � 6.9 80.1 � 3.2 64.8 17.5 � 6.5 97.6 � 2.0 41.3
T6 45.0 � 5.0 77.2 � 2.7 58.9 40.0 � 4.1 87.4 � 2.7 59.1 55.0 � 6.2 79.1 � 3.5 66.0 17.5 � 3.8 96.1 � 1.9 41.0
T7 45.0 � 8.2 78.6 � 3.2 59.5 37.5 � 5.6 91.3 � 1.9 58.5 50.0 � 6.5 85.0 � 3.1 65.2 20.0 � 7.3 97.1 � 1.3 44.1
T8 45.0 � 7.3 80.8 � 2.1 60.3 35.0 � 5.5 91.1 � 1.7 56.5 45.0 � 6.2 82.8 � 3.8 61.0 15.0 � 5.5 96.6 � 1.2 38.1
T9 47.5 � 5.8 78.6 � 2.0 61.1 42.5 � 9.9 88.1 � 2.6 61.2 42.5 � 6.5 79.1 � 2.6 58.0 12.5 � 5.6 96.0 � 1.0 34.6
T10 52.5 � 7.9 78.6 � 1.9 64.2 37.5 � 6.7 89.1 � 1.5 57.8 37.5 � 5.6 80.6 � 1.2 55.0 20.0 � 6.2 96.0 � 1.5 43.8
Ave. 48.1 � 7.0 80.1 � 2.7 62.1 40.0 � 7.3 90.2 � 2.1 60.0 49.4 � 6.9 81.0 � 2.8 63.1 16.9 � 6.5 96.9 � 1.4 40.3

Drosophila melanogaster

Standard-NB HIP-NB MR-NB HIP-MR-NB

Thre. Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean

T3 73.8 � 4.4 51.3 � 10.5 61.5 75.0 � 3.7 53.8 � 10.0 63.5 70.0 � 6.2 53.8 � 10.2 61.4 81.3 � 4.7 41.0 � 7.6 57.7
T4 73.8 � 4.4 48.7 � 10.8 60.0 75.0 � 2.6 51.3 � 10.4 62.0 70.0 � 3.8 59.0 � 10.3 64.3 85.0 � 4.5 43.6 � 8.2 60.9
T5 70.0 � 5.0 43.6 � 4.5 55.2 76.3 � 3.9 48.7 � 3.2 61.0 70.0 � 6.0 48.7 � 4.1 58.4 80.0 � 4.2 38.5 � 4.0 55.5
T6 72.5 � 4.5 43.6 � 9.0 56.2 80.0 � 3.3 46.2 � 8.8 60.8 76.3 � 4.4 43.6 � 8.2 57.7 85.0 � 3.1 35.9 � 6.6 55.2
T7 76.3 � 5.7 43.6 � 6.3 57.7 80.0 � 4.2 53.8 � 8.8 65.6 76.3 � 3.9 53.8 � 8.0 64.1 83.8 � 3.3 43.6 � 6.3 60.4
T8 72.5 � 4.5 43.6 � 9.0 56.2 78.8 � 5.6 48.7 � 6.7 61.9 78.8 � 5.6 43.6 � 8.2 58.6 83.8 � 5.3 38.5 � 7.6 56.8
T9 75.0 � 5.6 43.6 � 10.2 57.2 82.5 � 6.0 48.7 � 10.4 63.4 75.0 � 5.3 48.7 � 10.4 60.4 77.5 � 5.2 43.6 � 8.7 58.1
T10 71.3 � 4.6 41.0 � 8.5 54.1 81.3 � 3.8 43.6 � 7.5 59.5 77.5 � 4.5 46.2 � 9.0 59.8 75.0 � 4.6 46.2 � 8.2 58.9
Ave. 73.2 � 4.8 44.9 � 8.6 57.3 78.6 � 4.1 49.4 � 8.2 62.2 74.2 � 5.0 49.7 � 8.6 60.6 81.4 � 4.4 41.4 � 7.2 57.9

Mus musculus
Standard-NB HIP-NB MR-NB HIP-MR-NB

Thre. Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean

T3 79.4 � 5.6 53.8 � 8.5 65.4 82.5 � 5.3 57.7 � 9.7 69.0 63.5 � 5.4 61.5 � 8.9 62.5 96.8 � 2.1 30.8 � 7.4 54.6
T4 73.0 � 6.4 46.2 � 8.3 58.1 82.5 � 5.5 57.7 � 8.3 69.0 66.7 � 6.2 61.5 � 5.7 64.0 95.2 � 3.5 34.6 � 6.6 57.4
T5 81.0 � 3.9 42.3 � 8.3 58.5 82.5 � 4.3 50.0 � 9.9 64.2 71.4 � 7.3 57.7 � 10.9 64.2 93.7 � 3.2 34.6 � 6.8 56.9
T6 71.4 � 2.8 46.2 � 11.0 57.4 81.0 � 4.2 46.2 � 9.9 61.2 68.3 � 5.9 53.8 � 6.6 60.6 95.2 � 2.4 34.6 � 10.2 57.4
T7 74.6 � 5.2 42.3 � 6.2 56.2 84.1 � 4.3 46.2 � 8.2 62.3 69.8 � 6.4 53.8 � 9.6 61.3 90.5 � 3.6 34.6 � 8.4 56.0
T8 69.8 � 5.7 42.3 � 12.2 54.3 76.2 � 6.5 50.0 � 12.4 61.7 74.6 � 4.5 50.0 � 11.2 61.1 92.1 � 2.6 34.6 � 11.7 56.5
T9 74.6 � 6.3 50.0 � 14.2 61.1 81.0 � 6.2 46.2 � 11.1 61.2 73.0 � 7.2 53.8 � 12.2 62.7 92.1 � 4.4 38.5 � 12.7 59.5
T10 71.4 � 5.6 57.7 � 13.1 64.2 76.2 � 6.0 42.3 � 12.7 56.8 74.6 � 5.5 46.2 � 12.0 58.7 85.7 � 5.6 30.8 � 11.3 51.4
Ave. 74.4 � 5.2 47.6 � 10.2 59.4 80.8 � 5.3 49.5 � 10.3 63.2 70.2 � 6.1 54.8 � 9.6 61.9 92.7 � 3.4 34.1 � 9.4 56.2

TABLE 3
Average Number of Selected GO Terms by Feature Selection Method for the 4 Model Organisms

Caenorhabditis elegans Saccharomyces cerevisiae Drosophila melanogaster Mus musculus

Thre. HIP-NB MR-NB HIP-MR-NB HIP-NB MR-NB HIP-MR-NB HIP-NB MR-NB HIP-MR-NB HIP-NB MR-NB HIP-MR-NB

T3 65.3 140.7 265.4 54.3 99.6 218.7 73.3 121.4 228.2 120.6 178.5 330.3
T4 58.6 113.2 223.6 49.4 89.8 185.3 65.2 101.5 190.7 107.4 139.5 264.4
T5 55.7 99.7 201.9 44.5 73.2 151.3 60.4 88.4 164.7 93.1 114.8 215.9
T6 52.4 87.7 182.2 41.5 66.7 134.3 51.9 73.7 139.7 81.8 96.1 188.8
T7 51.1 84.0 170.0 37.3 57.2 117.1 47.2 68.4 122.8 71.8 78.3 160.9
T8 49.4 73.0 152.6 34.2 50.5 106.0 44.4 62.1 108.9 65.7 73.4 145.1
T9 46.7 67.0 142.9 33.2 46.0 98.5 41.2 55.3 97.8 61.0 68.0 133.7
T10 45.5 63.3 135.9 31.7 43.1 85.9 38.8 47.6 87.1 55.5 60.7 117.6
Ave. 53.1 91.1 184.3 40.8 65.8 137.1 52.8 77.3 142.5 82.1 101.2 194.6
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Finally, we briefly report results of experiments with the
1-NN classifier, in Table 4. HIP-1NN obtained the highest
average Gmean value averaged over the 32 dataset versions,
viz. 61.4 percent. It was also the best method in the S. cerevi-
siae and D. melanogaster datasets and the second best
method in the other two datasets. Then we chose HIP-1NN
as the control method to be compared with the other classi-
fiers. The results of the Friedman and Holm post-hoc tests
at the 5 percent significance level show that there is no sta-
tistically significant difference between HIP-1NN and MR-

1NN, nor between HIP-1NN and standard-1NN; but HIP-
1NN significantly outperformed HIP-MR-1NN. This con-
firms that the non-redundant set of core GO terms contain-
ing the complete hierarchical information in the GO DAG is
valuable for prediction.

5.2 On the Statistical and Biological Relevance of a
Number of Very Frequently Selected GO Terms

We now discuss the relevance, to the biology of ageing, of 20
GO terms very frequently selected as features by the MR

TABLE 4
Sensitivity (%), Specificity (%) & Geometric Mean (%) of 1-NN Classifier

Caenorhabditis elegans

Standard-1NN HIP-1NN MR-1NN HIP-MR-1NN

Thre. Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean

T3 44.2 � 2.5 71.9 � 2.2 56.4 38.9 � 3.5 76.7 � 2.2 54.6 46.3 � 4.6 77.8 � 2.6 60.0 40.0 � 3.9 74.7 � 3.7 54.7
T4 41.6 � 3.3 68.8 � 1.9 53.5 36.3 � 3.5 76.4 � 2.8 52.7 42.1 � 3.7 74.3 � 1.9 55.9 44.7 � 3.9 74.0 � 3.0 57.5
T5 43.2 � 4.1 70.8 � 2.1 55.3 39.5 � 4.5 76.0 � 1.8 54.8 47.4 � 2.7 77.4 � 2.3 60.6 40.5 � 4.8 75.0 � 2.7 55.1
T6 41.6 � 3.1 68.8 � 1.7 53.5 42.1 � 4.3 76.4 � 1.3 56.7 42.1 � 3.3 75.3 � 2.9 56.3 37.9 � 3.7 72.6 � 2.3 52.5
T7 45.3 � 3.1 70.1 � 2.3 56.4 46.3 � 1.7 75.7 � 2.5 59.2 46.3 � 2.7 79.2 � 2.0 60.6 41.6 � 2.7 71.9 � 3.0 54.7
T8 41.6 � 4.3 68.6 � 3.2 53.4 46.8 � 4.0 73.9 � 3.2 58.8 44.2 � 3.7 76.3 � 3.4 58.1 41.6 � 4.0 72.8 � 3.8 55.0
T9 41.1 � 4.1 68.6 � 2.4 53.1 48.4 � 4.2 74.6 � 2.1 60.1 41.6 � 5.1 75.3 � 2.0 56.0 40.5 � 4.6 71.8 � 1.8 53.9
T10 42.6 � 4.8 67.9 � 2.2 53.8 43.7 � 3.8 72.8 � 2.3 56.4 46.8 � 3.2 74.9 � 2.7 59.2 38.9 � 3.1 72.5 � 2.2 53.1
Ave. 42.7 � 3.7 69.4 � 2.3 54.4 42.8 � 3.7 75.3 � 2.3 56.7 44.6 � 3.6 76.3 � 2.5 58.3 40.7 � 3.8 73.2 � 2.8 54.6

Saccharomyces cerevisiae

Standard-1NN HIP-1NN MR-1NN HIP-MR-1NN
Thre. Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean

T3 35.0 � 8.5 88.0 � 2.7 55.5 40.0 � 7.6 90.4 � 1.6 60.1 35.0 � 10.7 89.9 � 1.8 56.1 30.0 � 7.3 93.3 � 1.5 52.9
T4 32.5 � 6.5 89.4 � 1.6 53.9 37.5 � 9.3 91.3 � 2.6 58.5 37.5 � 10.7 91.3 � 1.8 58.5 27.5 � 5.8 93.2 � 2.0 50.6
T5 27.5 � 7.9 89.8 � 2.4 49.7 40.0 � 6.7 89.8 � 2.3 59.9 40.0 � 7.6 85.9 � 2.9 58.6 17.5 � 3.8 91.3 � 2.2 40.0
T6 35.0 � 8.5 89.8 � 2.5 56.1 50.0 � 8.3 89.8 � 2.2 67.0 42.5 � 6.5 88.3 � 3.2 61.3 35.0 � 6.7 92.7 � 2.5 57.0
T7 30.0 � 6.2 90.8 � 2.8 52.2 42.5 � 6.5 90.8 � 1.7 62.1 35.0 � 8.5 88.8 � 3.1 55.7 30.0 � 5.0 94.7 � 1.5 53.3
T8 35.0 � 9.3 87.2 � 3.2 55.2 45.0 � 6.2 90.1 � 1.7 63.7 45.0 � 9.0 90.1 � 2.2 63.7 35.0 � 6.7 92.6 � 1.3 56.9
T9 32.5 � 6.5 85.6 � 3.1 52.7 42.5 � 7.5 84.1 � 2.3 59.8 35.0 � 6.7 84.1 � 2.1 54.3 22.5 � 4.5 89.6 � 2.8 44.9
T10 32.5 � 8.4 87.6 � 2.3 53.4 42.5 � 7.5 88.6 � 2.3 61.4 37.5 � 6.7 85.6 � 2.3 56.7 25.0 � 6.5 88.6 � 2.2 47.1
Ave. 32.5 � 7.7 88.5 � 2.6 53.6 42.5 � 7.5 89.4 � 2.1 61.6 38.4 � 8.3 88.0 � 2.4 58.1 27.8 � 5.8 92.0 � 2.0 50.3

Drosophila melanogaster

Standard-1NN HIP-1NN MR-1NN HIP-MR-1NN
Thre. Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean

T3 66.3 � 7.2 56.4 � 6.3 61.1 73.8 � 6.6 56.4 � 6.9 64.5 76.3 � 3.9 53.8 � 2.8 64.1 77.5 � 6.4 51.3 � 7.6 63.1
T4 68.8 � 3.4 59.0 � 8.5 63.7 73.8 � 6.0 56.4 � 6.5 64.5 71.3 � 4.6 66.7 � 7.5 69.0 68.8 � 4.7 51.3 � 6.7 59.4
T5 66.3 � 2.7 53.8 � 10.0 59.7 75.0 � 4.6 53.8 � 9.6 63.5 62.5 � 6.5 61.5 � 8.2 62.0 70.0 � 7.0 53.8 � 10.0 61.4
T6 67.5 � 8.6 59.0 � 9.3 63.1 73.8 � 6.6 51.3 � 10.0 61.5 72.5 � 5.5 46.2 � 11.3 57.9 70.0 � 6.8 53.8 � 10.3 61.4
T7 67.5 � 4.2 56.4 � 11.2 61.7 75.0 � 3.7 56.4 � 10.6 65.0 72.5 � 4.5 48.7 � 9.9 59.4 72.5 � 4.5 53.8 � 9.0 62.5
T8 71.3 � 2.7 51.3 � 4.9 60.5 71.3 � 4.2 48.7 � 10.0 58.9 73.8 � 2.9 53.8 � 8.4 63.0 70.0 � 3.8 56.4 � 8.7 62.8
T9 68.8 � 4.3 56.4 � 6.3 62.3 73.8 � 5.7 53.8 � 6.0 63.0 70.0 � 5.3 51.3 � 4.9 59.9 67.5 � 4.2 53.8 � 7.6 60.3
T10 68.8 � 5.4 53.8 � 7.1 60.8 72.5 � 4.5 53.8 � 8.2 62.5 65.0 � 5.2 38.5 � 10.0 50.0 68.8 � 5.7 56.4 � 9.2 62.3
Ave. 68.2 � 4.8 55.8 � 8.0 61.6 73.6 � 5.2 53.8 � 8.5 62.9 70.5 � 4.8 52.6 � 7.9 60.7 70.6 � 5.4 53.8 � 8.6 61.6

Mus musculus

Standard-1NN HIP-1NN MR-1NN HIP-MR-1NN
Thre. Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean Sen. Spe. Gmean

T3 69.8 � 4.8 57.7 � 11.1 63.5 82.5 � 5.1 61.5 � 5.7 71.2 73.0 � 5.9 50.0 � 12.2 60.4 85.7 � 4.2 38.5 � 10.3 57.4
T4 74.6 � 5.1 61.5 � 10.1 67.7 73.0 � 5.6 50.0 � 12.2 60.4 68.3 � 7.9 57.7 � 9.7 62.8 81.0 � 3.0 46.2 � 8.4 61.2
T5 74.6 � 5.6 61.5 � 7.4 67.7 88.9 � 3.5 50.0 � 11.2 66.7 66.7 � 5.5 65.4 � 10.5 66.0 87.3 � 5.5 42.3 � 10.9 60.8
T6 79.4 � 4.9 57.7 � 6.6 67.7 84.1 � 6.0 57.7 � 9.6 69.7 79.4 � 5.6 57.7 � 9.9 67.7 85.7 � 4.6 50.0 � 8.4 65.5
T7 77.8 � 4.4 65.4 � 8.2 71.3 77.8 � 3.7 46.2 � 6.5 60.0 63.5 � 7.9 50.0 � 8.6 56.3 84.1 � 4.1 50.0 � 6.8 64.8
T8 73.0 � 5.1 65.4 � 8.9 69.1 81.0 � 3.2 53.8 � 9.6 66.0 76.2 � 5.7 50.0 � 11.1 61.7 82.5 � 5.4 46.2 � 4.2 61.7
T9 76.2 � 4.9 65.4 � 6.9 70.6 81.0 � 3.7 46.2 � 11.1 61.2 76.2 � 5.0 50.0 � 9.8 61.7 79.4 � 5.7 42.3 � 10.9 58.0
T10 73.0 � 5.1 65.4 � 9.8 69.1 74.6 � 5.5 50.0 � 6.8 61.1 66.7 � 7.3 42.3 � 9.4 53.1 76.2 � 6.1 50.0 � 4.3 61.7
Ave. 74.8 � 5.0 62.5 � 8.6 68.3 80.4 � 4.5 51.9 � 9.1 64.5 71.3 � 6.4 52.9 � 10.2 61.2 82.7 � 4.8 45.7 � 8.0 61.4
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method, among the set of terms whose predictive power
was considered statistically significant (p-value < 0.05). Sta-
tistical significance was measured using a hypothesis test
based on the binomial distribution, similarly to the test used
in [13]. This test essentially works as follows. The classifica-
tion of each gene (instance) based on any given GO term is
considered a random trial with the outcome ‘success’ (if the
gene has the class predicted by the GO term) or ‘failure’ oth-
erwise. For each GO term, the number of trials for the bino-
mial test is the number of genes annotated with that GO
term; the number of successes is the number of genes that
are annotated with that GO term and belong to the class pre-
dicted by that GO term (i.e. the class with the largest num-
ber of genes annotated with that GO term in the dataset);
and the null hypothesis was represented by a binomial dis-
tribution where the probability of occurrence of the class
predicted by that GO term is the relative frequency of that
class in the dataset. The terms discussed in the remainder of
this section are shown in Table 5, whilst the full ranking of
all GO terms, for each model organism, is included in a sup-
plementary file. The first three columns of Table 5 are self-
explained. The fourth column shows the number (and per-
cent) of instances (in the dataset of the corresponding model
organism) for which the GO term was selected by MR. The
fifth column shows the rank of the GO term (the lower the
rank, the better), among the set of GO terms whose p-value
was deemed significant. The rank is based on the number of
instances for which the GO term is related by MR. The sixth
and seventh columns show the p-value and the relevance
value (computed by Equation (4)) of the GO term. The
eighth column shows the class predicted by each GO term.

Broadly speaking, the top ranking GO terms not only
reflect our understanding of biological processes associated
with ageing and life-extension in model organisms, but may
help identify new putative associations suitable for further
studies. As the organism in which single genes were

initially associated with ageing, the roundworm C. elegans is
arguably the best studied model in the context of ageing,
with multiple pathways associated with the regulation of
longevity [2]. It is the organism in which more gene manip-
ulations have been shown to extend longevity [8] and
unsurprisingly several top ranking GO categories in our
results are known to impact on ageing. The top ranking
term is “translation” with a strong association with anti-lon-
gevity. This is not surprising, since it is well-established
that an inhibition of translation extends lifespan in C. elegans
[2]. Other top categories like “autophagy”, “apoptotic
process”, metabolism (“generation of precursor metabolites
and energy”) and maintenance of protein homeostasis
(“response to topologically incorrect protein”) have been
linked to ageing [35]. Various top-ranked terms also relate
to growth and development, which is not surprising given
that developmental pathways in worms can significantly
impact on ageing [2], [36]. While all these results fit well
with our current understanding of ageing, some categories
may point towards novel mechanisms and warrant further
investigation like “regulation of protein localization” and
“transmembrane transport” associated, respectively, with
pro- and anti-longevity.

A similar trend is observed in other model organisms. In
yeast, which after worms is the model with most genes
associated with ageing [8], top-ranked categories include
“chromatin silencing at rDNA”, “telomere organization”
and “double-strand break repair”, all of which have been
associated with longevity [35]; in addition to the expected
“replicative cell aging” and “death”.

In flies, as in worms, some top terms are related to devel-
opment, including the top category “developmental process
involved in reproduction” associated with anti-longevity,
and growth including cell division-related categories.
Another top category associated with anti-longevity is
“sensory perception”, which fits well with recent results

TABLE 5
Information about 20 GO Terms Very Frequently Selected by the MR Method

Model
Organism

GO Term ID GO Term Name Selection
Frequency

Rank P-Value Relev. Predicted
Class

GO:0006412 translation 478 (100 %) 1 1.15 E-6 0.30 Anti
GO:0006914 autophagy 478 (100 %) 3 1.57 E-3 0.50 Pro

Caenorhabditis GO:0006915 apoptotic process 478 (100 %) 5 4.41 E-3 0.08 Anti
elegans GO:0006091 generation of precursor metabolites and energy 478 (100 %) 7 1.05 E-2 0.20 Anti

GO:0032880 regulation of protein localization 478 (100 %) 8 1.82 E-2 0.30 Pro
GO:0035966 response to topologically incorrect protein 478 (100 %) 9 2.41 E-2 0.23 Pro
GO:0055085 transmembrane transport 435 (91.0 %) 24 5.26 E-5 0.21 Anti

GO:0001302 replicative cell aging 248 (100 %) 1 5.84 E-6 0.35 Pro
Saccharomyces GO:0000183 chromatin silencing at rDNA 248 (100 %) 2 5.67 E-4 0.73 Pro

cerevisiae GO:0006302 double-strand break repair 248 (100 %) 3.5 7.71 E-3 0.45 Pro
GO:0016265 death 244 (98.4 %) 6 1.48 E-2 0.53 Pro
GO:0032200 telomere organization 243 (98.0 %) 7.5 2.95 E-3 0.64 Pro

GO:0003006 developmental process involved in reproduction 119 (100 %) 1 3.48 E-3 0.30 Anti
Drosophila GO:0007600 sensory perception 119 (100 %) 2.5 1.15 E-2 0.55 Anti
melanogaster GO:0006629 lipid metabolic process 119 (100 %) 7 1.89 E-2 0.15 Pro

GO:0055085 transmembrane transport 119 (100 %) 12 4.26 E-2 0.33 Anti

GO:0040018 positive regulation of multicellular organism growth 89 (100 %) 2.5 7.28 E-3 0.65 Anti
Mus GO:0051093 negative regulation of developmental process 89 (100 %) 5 2.24 E-2 0.14 Pro

musculus GO:0010948 negative regulation of cell cycle process 78 (87.6 %) 19.5 2.24 E-2 0.14 Pro
GO:0097190 apoptotic signaling pathway 75 (84.3 %) 21 4.04 E-2 0.10 Pro
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linking sensory perception, and olfactation in particular, to
ageing [37]. Metabolism, with “lipid metabolic process” as
the top category associated with pro-longevity, is in line
with our understanding of life extension pathways medi-
ated by diet, such as caloric restriction [38]. Intriguingly,
“transmembrane transport” is, like in worms, also associ-
ated with anti-longevity, which merits further studies.

The top categories from mice partly reflect those found in
lower model organisms, such as categories related to devel-
opment and growth, like “positive regulation of multicellu-
lar organism growth” associated with anti-longevity and
“negative regulation of developmental process” associated
with pro-longevity. These results further emphasize the rela-
tionship between developmental processes and ageing, and
further strengthen the idea that retarding development and
growth can extend lifespan [36]. Also present in mice, as in
invertebrates, are terms related to apoptosis (“apoptotic sig-
naling pathway”) and cell cycle (“negative regulation of cell
cycle process”). Although this likely results from researcher
biases, i.e. studying pathways in mice known to be associ-
ated with ageing in other model organisms, it highlights
the evolutionary conservation of pathways associated with
ageing [2].

6 CONCLUSIONS

This work proposes two novel hierarchical feature selection
methods (HIP and MR) that have been used to select fea-
tures for the Na€ıve Bayes and 1-NN classsifiers, in the task
of predicting the pro-longevity or anti-longevity effect of
genes of the four most widely used biomedical model
organisms. These hierarchical feature selection methods
were designed to exploit information in hierarchical rela-
tionships among Gene Ontology terms (used as features) in
order to reduce redundancy in the set of selected features.
The use of the lazy learning approach allowed us to select a
subset of GO terms specifically for each testing instance
(gene) being classified by Na€ıve Bayes and 1-NN.

The experimental results showed that both the proposed
hierarchical feature selection methods (HIP and MR)
improved the predictive accuracy of Na€ıve Bayes, and the
HIP method improved the predictive accuracy of 1-NN;
compared with using Na€ıve Bayes and 1-NN without fea-
ture selection. We also discussed the biological relevance of
a number of very frequently selected GO terms in the con-
text of the biology of ageing literature.

Concerning future research, the hierarchical feature
selection methods proposed here could be applied to other
types of hierarchical features; as long as the feature hierar-
chy is a kind of generalization-specialization hierarchy—
where the occurrence of a feature in an instance implies the
occurrence of the features’ ancestors in that instance—
and the classification algorithm follows a lazy learning
approach. In addition, our current feature selection methods
have two parts: a relevance measure and a feature hierar-
chy-processing procedure that uses the feature hierarchy to
decide which features should be removed. In the future, it
would be interesting to design a more complex relevance
measure that directly considers the feature hierarchy, which
would avoid the need for a separate feature hierarchy-
processing procedure. Another research direction would be

to use some class imbalancing technique to cope with imbal-
anced class distributions, which could potentially increase
the predictive accuracy in some datasets.

Another research direction consists of integrating the
proposed hierarchical feature selection methods with a lazy
version of a Bayesian Network-Augmented Na€ıve Bayes
(BAN) classifier, which could increase predictive accuracy
in some datasets, but this could lead to overfitting.

APPENDIX

STATISTICAL SIGNIFICANCE OF GO TERMS

This appendix gives more details about how we evaluated
the statistical significance of GO terms for the purposes of
the analysis of the most frequently selected GO terms
reported in Section 5.2. Recall that the proposed hierarchical
feature selection methods select a different set of features
(GO terms) for each testing instance. Hence, when produc-
ing a ranking of GO terms in descending order of their use-
fulness, it is natural to calculate the ranking based on the
number of instances where each GO term is selected to be
used as input by Na€ıve Bayes. MR and HIP are the best fea-
ture selection methods in terms of predictive performance
in this work, with no significant difference in their perfor-
mance. However, HIP considers only the redundancy
among hierarchically-related GO terms, whilst MR consid-
ers both that redundancy and the GO terms’ relevance val-
ues. Hence, for the purpose of ranking the GO terms in
decreasing order of frequency of selection, intuitively the
ranking produced when using MR as the selection method
is more appropriate, and this ranking criterion is used here.

For each model organism, we produced a ranking of all
GO terms occurring in the dataset version with GO term fre-
quency threshold 3 for that organism, since that dataset con-
tains the largest number of GO terms. Note that the ranking
criterion based on the frequency of selection when using the
MR method does not directly take into account the statisti-
cal significance of selected GO terms. Some GO terms may
be selected very often by MR due to their high relevance
(predictive power), regardless of their statistical signifi-
cance. Hence, to complement the ranking of GO terms based
on their frequency of selection by MR, we also computed,
for each GO term, its p-value associated with a statistical
significance test, based on the following rationale.

If we had to predict the class of a gene based on a given
GO term alone (without using any other feature), we would
assign that gene to the class with the largest number of
genes (instances) annotated with that GO term. We refer to
that class as the class predicted by that GO term. The predic-
tive accuracy associated with the use of that GO term as a
predictor is the ratio of the number of instances that are
annotated with that GO term and have the class predicted
by the GO term divided by the number of instances that are
annotated with that GO term.

To evaluate the statistical significance associated with a
GO term used as a predictor, we use a significance test
based on the binomial distribution, which has two parame-
ters: n, the number of trials, and p, the probability of success
in each trial. When applying the significance test, the assign-
ment of the class predicted by the GO term to any given
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instance annotated with that term is regarded as a random
trial with two possible results: success (the class predicted
by the GO term equals the true class of that instance) or fail-
ure otherwise. The instances classified by the GO term are
assumed to be independent from each other, and the num-
ber of trials n is the number of instances classified by the
GO term—i.e. instances annotated with the GO term. Under
the null hypothesis that the value “yes” of the GO term fea-
ture is irrelevant for predicting the class of an instance, the
probability of observing a successful result is given by the
relative frequency of the class predicted by the GO term in
the dataset – i.e. the ratio of the number of instances of that
class in the dataset divided by the total number of instances
(of any class) in the dataset.

Hence, to set up a test of hypothesis for the statistical sig-
nificance of the predictive power of a givenGO term,we con-
sider the observed number of instances that are correctly
classified by the GO term, denoted k. That is, k is the number
of instances that are annotated with the GO term and belong
to the class predicted by the GO term. LetX be a randomvar-
iable representing the number of successes in a binomial dis-
tribution with probability of success p and number of trials
n. Under the null hypothesis that the GO term has no predic-
tive power, for each model organism dataset version, the
probability of observing exactly k successes, according to the
binomial distribution, is given by Equation (5),

PrðX ¼ kÞ ¼ Cn
kp

kð1� pÞn�k; (5)

where Cn
k is the number of combinations of k elements out

of n elements. Finally, for the test of hypothesis, we use
Equation (5) to calculate the probability PrðX � kÞ. If the
null hypothesis that the GO term has no predictive power
can be rejected at the significant level of 5 percent, then the
GO term’s ability to predict its associated class can be con-
sidered as statistically significant.
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