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Mammalian organ and body growth slows and finally terminates because of a progressive suppression of
cell proliferation, however little is known about the genetic regulatory mechanisms responsible. A meta-
analysis of genome-wide association studies using growth and development-related traits revealed that
two genes, HMGA?2 and LIN28B, had multiple associations. Altered HMGA2 expression has been shown to
result in both overgrowth and pygmy phenotypes in mice and overgrowth in humans. These genes are
members of the MYCN/LIN28B/Let-7|[HMGA2 pathway and homologs of LIN28B and let-7 are known to

gzg:;dS: regulate developmental timing in Caenorhabditis elegans. Strikingly, expression levels of let-7 and Hmga2
LIN2SB in murine stem cells continue to increase and decrease, respectively, after growth terminates, suggesting

that this pathway may contribute to regulating the pace of both development and age-related

Suppression of proliferation |
degenerative phenotypes.

Pace of development

Aging

© 2013 Elsevier Ireland Ltd. All rights reserved.

Mammalian somatic growth progressively slows postnatally
primarily due to a progressive decline in cell proliferation (Chang
et al, 2008), however the genetic regulatory mechanisms
responsible remain largely obscure (Kennedy and Norman,
2005). Consistent with the antagonistic pleiotropy theory (Wil-
liams, 1957), recent results suggest the existence of a multi-organ
genetic program suppressing proliferation (PSP) which progres-
sively down-regulates many growth-promoting genes (Lui et al.,
2010a) and persists into adulthood, thereby potentially contribut-
ing to aging (Lui et al., 2010b).

To identify potential regulatory components of the PSP, a meta-
analysis of genome-wide association studies (GWAS) from the
National Human Genome Research Institute GWAS catalog
(Hindorff et al., 2009) was performed. The 9217 SNPs in the
GWAS catalog were filtered for growth and development-related
traits resulting in a dataset with 428 SNPs from 45 studies
associated with 11 traits. Genes reported in the studies as
associated with the SNPs were employed.

Permutation testing is commonly used to determine signifi-
cance (Johnson et al., 2010) and was employed to estimate the
false-discovery rate. In each of 10,000 iterations, all SNPs were
randomly and independently assigned to the estimated 22,333
human protein-coding genes retrieved from NCBI Entrez (Pruitt
et al., 2009), and the gene with the maximum number of SNPs was
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identified. Genes with more than two SNPs occurred in 2.43% of the
iterations, establishing genes with three or more SNPs as
significant. Sixteen reported genes reached this threshold and
those with the most associations with multiple developmental
traits were HMGA2 and LIN28B with 14 and 7 associated SNPs,
respectively (Table 1). In an additional control analysis using 428
randomly selected SNPs, a gene with more than six SNPs was
observed in 1.9% of 10,000 iterations, confirming the significance of
these two genes.

HMGA?2 is a member of the high-mobility group A family that
can modulate transcription by altering chromatin structure
(Reeves, 2001). Supporting the validity of the association with
postnatal proliferation and growth is the case of an individual with
a chromosomal inversion truncating this gene, resulting in slightly
elevated expression of 1.4 times that of a control (Ligon et al.,
2005). Notable phenotypes at 8 years of age were extreme
overgrowth in terms of height, weight and head circumference,
advanced bone age (~13.5 years) and arthritis. In addition, this
individual developed premature dentition, and a panoramic dental
X-ray at 4 years indicated advanced dental age. Similarly,
expression of a truncated Hmga2 induced gigantism in transgenic
mice (Battista et al., 1999). By contrast, Hmga2-null mice
demonstrate the “pygmy” phenotype characterized by dramatic
reductions in body fat and small stature (Zhou et al., 1995).

LIN28B is a homolog of the Caenorhabditis elegans lin-28 gene
(Guo et al., 2006) which controls developmental timing (Moss
et al., 1997). LIN28B negatively regulates let-7 (Piskounova et al.,
2011) which in turn is a negative regulator of HMGA2 (Lee and
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Table 1

The developmental traits used in the meta-analysis and results for the top two genes. The remaining statistically significant genes are: ADAMTSL3, CDK6, DLEU7, DYM, EFEMP1,

GNA12, GPR126, HHIP, HMGA1, LCORL, LTBP1, MSRB3, PLAG1 and ZBTB38.

Trait HMGA2 LIN28B
Number Number Context(s) Number Number Context(s)
of SNPs of studies of SNPs of studies
Height 8 8 UTR-3 (6) Intergenic 2 2 Intron (2)
Intron
Head circumference (infant) 1 1 UTR-3 -
Brain structure 1 1 Intron -
Normalized brain volume - -
Hippocampal volume - -
Primary tooth development 1 1 Intergenic -
(number of teeth)
Primary tooth development 1 1 Intergenic -
(time to first tooth eruption)
Permanent tooth development 1 1 Intergenic -
Aortic root size 1 1 Intergenic -
Menarche (age at onset) - 4 4 Intron (2)
Intergenic (2)

Menarche and menopause (age at onset) -

Intron

Dutta, 2007). Let-7 was the second microRNA discovered and has
also been shown to regulate developmental timing in C. elegans
(Reinhart et al., 2000). Furthermore, let-7 and the DAF-12 nuclear
hormone receptor engage in reciprocal direct feedback regulation
(Hammell et al., 2009), and it was recently shown that upon
induction by DAF-12, let-7 can stimulate DAF-16/FOXO signaling to
extend life by targeting lin-14 and akt-1 (Shen et al., 2012). This is
particularly significant because of the impact of daf-12 on insulin/
IGF-1 signaling (Cypser et al., 2006), which plays a well-established
regulatory role in both development and aging (Cohen and Dillin,
2008). In humans, LIN28B and HMGA2 are members of the
oncogenic MYCN/LIN28B/Let-7|[HMGA2 pathway (Helland et al.,
2011).

It was recently observed that there are dramatic changes in the
expression of the Lin28/let-7 axis in the rat hypothalamus during
postnatal maturation (Sangiao-Alvarellos et al., 2013), and LIN28B
over-expression was also shown to increase MYCN levels and
induce neuroblastoma by suppressing let-7 (Molenaar et al., 2012).
Mycn was identified as a transcription factor that is consistently
down-regulated during development in multiple mouse and rat
organs (Lui et al, 2010a). Similarly, Hmga2 expression is
significantly higher in fetal than young-adult stem cells (Kiel
et al., 2005), and it is required to maintain stem cell self-renewal in
multiple tissues (Nishino et al., 2008). Furthermore, Hmga2 levels
inversely correlate with expression of let-7 (Mayr et al., 2007).
While it is possible that additional mechanisms influence
phenotypes, perhaps via early life effects, Hmga2 was not found
to be required for stem cell formation during embryonic
development (Nishino et al., 2008).

These findings indicate that the MYCN/LIN28B/Let-7|[HMGA2
pathway may be an important regulatory component of the PSP.

Because body size is maintained following growth termination,
it might be expected that let-7 and Hmga2 levels in stem cells
would stabilize. Therefore it is particularly notable that, to the
contrary, they continue to increase and decrease in expression,
respectively, coinciding with increasing expression of p16™4? 3
potent tumor suppressor (Nishino et al., 2008). p16"™4® and p19"7
levels in stem cells are negatively regulated by Hmga2 (Nishino
et al., 2008) and over-expression of p16™4® with age has been
reported to decrease stem cell self-renewal in mice (Molofsky et al.,
2006). This suggests that the PSP continues to progress into
adulthood, which has been hypothesized to contribute to aging
(Lui et al., 2010b). Further supporting this hypothesis is gene
expression data showing that many of the changes that occur
during aging originate during development and that cell-cycle-
related genes are strongly over-represented among genes that

persistently decline in expression throughout postnatal life (Lui
et al., 2010b). In addition, increasing expression of let-7 has been
shown to contribute to declining germ-line stem cell self-renewal
in Drosophila (Toledano et al., 2012) and human neurodegenera-
tion (Lehmann et al., 2012). A QTL encompassing Hmga2 has also
been associated with longevity in mice (Klebanov et al., 2001).

Because continuation of the PSP after growth terminates will
ultimately cause deleterious degenerative phenotypes, it could be
assumed that it would have been strongly selected against. One
possibility is that it escaped further selective pressure once
manifestation of these phenotypes was delayed until the end of the
typical reproductive lifespan (de Magalhaes, 2012), during which it
might also have a fitness-enhancing effect by slightly reducing
cancer risk and energy requirement. It could also be expected that
a steady decrease in body size would be observed due simply to net
cell loss, which clearly conflicts with reality. Conversely it has been
demonstrated that senescent cells accumulate in mammalian
tissue from early adulthood (Herbig et al., 2006). However not
enough is currently known to support firm conclusions about
mechanisms maintaining organ and body size.

Taken together, these results link this pathway to a growth-
regulation process potentially relevant to aging, hence it merits
further studies. Hmga2-null mice have been proposed as a model to
test if cell divisions contribute to aging (de Magalhdes and
Faragher, 2008). While their increased suppression of stem cell
proliferation could in isolation be expected to decrease lifespan, a
probable confounding factor is their small body size which likely
results in reduced demand on stem cell pools. Indeed, these
opposing effects suggest a possible explanation for the puzzling
observation that the correlation of longevity with body size is
negative intra-species but positive inter-species (Miller et al.,
2002).In larger species such as humans relative to mice, the greatly
increased chronological delay in the induction of p16™“¢ (Kim and
Sharpless, 2006) suggests that the rate of change in expression of
its regulators HMGA2 and let-7 has correspondingly been
significantly reduced, with a positive effect on longevity. However
if this discount rate of stem cell self-renewal is intra-specifically
consistent, it appears plausible that smaller individuals would
experience a slower rate of tissue degeneration due simply to a
lower total cellularity representing a reduced cell replacement
burden on stem cell pools. Therefore while the net impact on the
lifespan of Hmga2-null mice is difficult to predict, it seems
improbable that no longevity effects would be observed. The
timing of growth termination in these animals relative to wild type
may indicate which effect is dominant. An alternative experiment
would be to maintain expression of one or more members of this
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pathway at growth termination levels, perhaps using transgenic
Drosophila and in particular the known orthologs lin-28 and let-7. It
could reasonably be anticipated that a modest increase in energy
requirement and hyperplasia together with a significant attenua-
tion of age-related degenerative phenotypes would be observed.
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