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Caloric restriction, a reduction in calorie intake without malnutrition, retards age-related degeneration

and extends lifespan in several organisms. CR induces multiple changes, yet its underlying

mechanisms remain poorly understood. In this work, we first performed a meta-analysis of

microarray CR studies in mammals and identified genes and processes robustly altered due to

CR. Our results reveal a complex array of CR-induced changes and we re-identified several genes and

processes previously associated with CR, such as growth hormone signalling, lipid metabolism and

immune response. Moreover, our results highlight novel associations with CR, such as retinol

metabolism and copper ion detoxification, as well as hint of a strong effect of CR on circadian

rhythms that in turn may contribute to metabolic changes. Analyses of our signatures by integrating

co-expression data, information on genetic mutants, and transcription factor binding site analysis

revealed candidate regulators of transcriptional modules in CR. Our results hint at a transcriptional

module involved in sterol metabolism regulated by Srebf1. A putative regulatory role of Ppara was

also identified. Overall, our conserved molecular signatures of CR provide a comprehensive picture of

CR-induced changes and help understand its regulatory mechanisms.

Introduction

Caloric restriction (CR) consists of reducing the caloric intake of

organisms without malnutrition. CR can extend mean and

maximum lifespan in a wide range of organisms from yeast to

worms and flies to rodents.1 Results from rhesus monkeys

suggest that CR delays mortality.2 In addition to extending

lifespan, CR has been shown to delay signs of aging and the

onset and progression of age-related diseases like cardiovascular

disease, cancer, neurodegenerative diseases and diabetes.1

In mammals, CR induces numerous physiological alterations

across organ systems, though it is not clear which of these

changes are important for the life-extending effect of CR.3 One

important physiological change associated with CR is high

insulin-sensitivity, which is particularly noteworthy since aging

is generally accompanied by elevated insulin-resistance.4

A reduction of body weight under CR has been observed and

the tissue displaying most loss of weight is normally white

adipose tissue.4 This is accompanied by size-reduction of adipo-

cytes in mice. Due to the negative correlation of fat mass to

adiponectin levels the serum concentration of this hormone rises

during CR.5 This hormonal change comes along with increased

fatty acid oxidation in fat tissue and reduced lipid accumulation

in other tissues.6 A reduction in inflammation has also been

observed in CR animals.7

Decades of research have led to the identification of potentially

important genes and pathways as effectors of CR. Decreased

growth hormone/insulin/insulin-like signalling, decreased TOR,

increased AMPK signalling, and increased activities of sirtuins are

among the pathways linked to CR.8 Several genes that disrupt or

cancel out life-extending effects of CR have also been identified.1,8

In spite of progress in physiological and genetic studies of CR, its

underlyingmechanisms remain a subject of debate. In particular, it

remains unclear which mechanisms downstream of hormonal and

energy metabolism alterations lead to lifespan extension. Since

research on this topic so far has been largely knowledge-driven it

seems logical to also approach CR by unbiased high-throughput

studies. Several studies conducted so far used microarrays,4,9 but a

clear picture of CR mechanisms remains lacking.

Meta-analyses, quantitative syntheses of different studies on

a subject, are used to increase the sample size and therefore

the statistical power beyond that of individual studies.10,11

Applied to CR, meta-analyses have already demonstrated that

it is possible to identify significant transcriptional signatures of

CR not found in individual studies.11,12 These studies have

also shown that CR can oppose some (but not all) age-related

changes in gene expression, in particular at the level of genes
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associated with specific aging processes such as the age-related

upregulation of genes involved in immune response.11,12 Herein,

we performed a meta-analysis of microarray studies of CR

conducted in mammals, including studies in different organisms,

strains, tissues, CR protocols, and microarray platforms. We

expanded on previous meta-analyses of CR by employing a

meta-analysis method developed specifically for studying aging,10

by performing a CR meta-analysis across species and in an

unprecedented number of datasets, and by employing several

integrative and data-mining methods to identify candidate

regulators of CR-induced changes.

Biological research is increasingly more reliant on integrating

different types of data and studying pathways and networks as

an integrated system to improve statistical power and decipher

the underlying complex biological processes—the so-called

‘systems biology paradigm’. Therefore, in addition to identifying

genes robustly differentially expressed with CR, we performed

functional enrichment analyses and integrated our results with

co-expression data and data on genes previously shown to

disrupt CR life-extending effects. To shed light on transcriptional

modules underlying the differential expression of top genes we

employed transcription factor binding site algorithms. Our

results emphasize the importance of changes related to lipid

(especially sterol) metabolism, and suggest a number of differ-

entially expressed key regulators potentially responsible for the

observed changes in transcriptional modules activated or

repressed during CR.

Results

Detecting genes consistently over- and underexpressed in CR

To identify conserved molecular signatures of CR in mammals

we first obtained 61 microarray datasets from publicly available

databases: 48 frommouse, 12 from rat and 1 from pig (Table S1

in ESIw). In addition, 11 lists of genes differentially expressed in

CR, including 1 dataset from rhesus monkeys, were obtained

from the supplementary material of previous studies for which

we lacked the raw data. Then we employed a value counting

meta-analysis method10,23 to detect genes consistently differen-

tially expressed in CR. Succinctly, the number of datasets in

which each gene was found differentially expressed according to

a t-test p-value o0.05 and fold change of 1.5 was compared to

the number of studies in which the respective genes were tested

(see Materials and Methods). In other words, we identified

genes more often over- and underexpressed in the microarray

studies than expected by chance, akin to.10

Overall, 101 and 73 genes were found to be over- and

underexpressed, respectively, in more datasets than expected by

chance below a threshold of the binomial p-value of 0.0005

(FDR estimated by scrambling o0.05; see Materials and

Methods for details). Mt1a, Adh1 and Per2 were the genes most

significantly enriched for overexpression with Slc6a6, Car3 and

Cyp2j5 enriched for underexpression. The 10 most significant

over- and underexpressed genes are shown in, respectively,

Tables 1 and 2 with full lists of genes in Table S2 (ESIw) and
online (http://genomics.senescence.info/diet/).

Due to the large number of datasets from liver, we assessed

whether genes may be found significant even though only differ-

entially expressed in the liver. Indeed, from the genes enriched for

over- and underexpression, 13% and 16%, respectively, were

found only in the liver and 34% and 49% in less than three tissues

(mainly in liver and one other tissue) (Fig. S3, ESIw). Due to the

importance of the liver in regulating metabolism, we kept all liver-

specific genes in subsequent analyses, but full results are given in

the ESIw and online if researchers wish to redo our analyses.

Functional categories enriched for over- and underexpressed

genes

Using Gene Ontology (GO) categories and repeating the meta-

analysis at the level of GO-terms (see Materials and Methods),

Table 1 Top genes consistently overexpressed in CR

Gene symbol Gene name Function
Related
candidate GOs # Tissuesa Ref.b

Mt2 Metallothionein 2 Binds various metals Cellular copper
ion homeostasis

7

Adh1 Alcohol dehydrogenase
1 (class I)

Metabolizes besides ethanol
also retinol, etc.

5

Per2 Period homolog
2 (Drosophila)

Master regulator of
circadian clock

Circadian clock 6 13,14

Por P450 (cytochrome)
oxidoreductase

Transfers electrons from NADPH
to among others P450 and heme
oxygenase

Xenobiotic metabolism 4 15

Inmt Indolethylamine
N-methyltransferase

N-methylation of indoles
(endogenous and xenobiotic)

Xenobiotic metabolism 4

Dbp D site albumin promoter
binding protein

Transcription factor that
modulates clock-output genes

Circadian clock 4 16

Nat8 N-Acetyltransferase
8 (GCN5-related, putative)

Not yet clear 3

Ehhadh Enoyl-Coenzyme A,
hydratase/3-hydroxyacyl
Coenzyme A dehydrogenase

Part of the peroxisomal
beta-oxidation pathway

Lipid metabolism 4

Mt1 Metallothionein 1 Binds various metals Copper ion binding 4
Cyp2j6 Cytochrome P450, family 2,

subfamily j, polypeptide 6
Arachidonic and linoleic
acid and retinoid metabolism

Lipid metabolism,
retinol metabolism

4

a The number of different tissues in which the corresponding gene was found overexpressed. b Information about the genes was extracted from the

references given or www.genecards.org.17
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187 and 153 GO-terms were found to be enriched for genes over-

and underexpressed, respectively. A selection of non-redundant

top GO-terms (p o 0.0005; FDR estimated by scrambling

o0.05) enriched for genes over- and underexpressed is shown,

respectively, in Tables 3 and 4. The full results for GO-terms can

be found in Table S3 (ESIw) as well as online (http://genomics.

senescence.info/diet/).

The top GO category for overexpressed genes was ‘‘lipid

metabolic process’’ and other, more specific GO-terms related

to lipid metabolism like ‘‘acyl-CoA metabolic process’’ or ‘‘fatty

acid metabolic process’’ were found. For underexpressed genes

the top GO-term was ‘‘sterol biosynthetic process’’ with ‘‘choles-

terol biosynthetic process’’ and ‘‘lipid biosynthetic process’’

among the top GO-terms. Interestingly, ‘‘response to sterol

depletion’’ was significant. Note that also changes related to

steroid hormones appear among the significant GO-terms for

upregulated genes.

In addition, among the most significant GO-terms for upregul-

ated genes were ‘‘rhythmic process’’ and ‘‘circadian rhythm’’

(Table 3). The latter was also found to be significant for down-

regulated genes. As expected, several categories related to immune

response were found for downregulated genes. Furthermore,

categories related to collagen were associated with both over-

and underexpressed genes. In line with the hormesis hypothesis

that CR invokes a stress response that induces survival in cells,

upregulation of ‘‘response to stress’’ genes was also observed. The

findings of ‘‘growth hormone receptor activity’’ and ‘‘growth

hormone receptor signalling pathway’’ for downregulated genes

and ‘‘regulation of insulin secretion’’ for both up- and down- as

well as ‘‘insulin-like growth factor binding’’ for upregulated genes

support the involvement of the growth factor and insulin/IGF

signalling pathways in CR.

‘‘Retinol metabolism’’, which was found to be enriched for

upregulated genes, had been linked to CR in a broader sense

Table 2 Top genes consistently underexpressed in CR

Gene symbol Gene name Function Related candidate GOs # Tissuesa Ref.b

Slc6a6 Solute carrier family
6 (neurotransmitter transporter,
taurine), member 6

Transports both taurine and
beta-alanine

2

Car3 Carbonic anhydrase 3 Catalyze the reversible
hydration of carbon dioxide

Only in liver

Cyp2j5 Cytochrome P450, family 2,
subfamily j, polypeptide 5

Arachidonic acid epoxygenase Lipid metabolism 2

Dhcr7 7-Dehydrocholesterol
reductase

Production of cholesterol by
reduction of the C7–C8 double
bond of 7-dehydrocholesterol

Lipid metabolism;
cholesterol metabolism

3

Arntl Aryl hydrocarbon receptor
nuclear translocator-like

Heterodimerize with Clock which
together regulate Per1 and other
clock output genes

Circadian clock 4 18

Zfp64 Zinc finger protein 64 Coactivator of Notch;
regulates differentiation

4 19

Srebf1 Sterol regulatory element
binding transcription factor 1

Transcription factor that regulates
genes involved in sterol biosynthesis

Lipid metabolism,
sterol metabolism

2 20–22

Es31 Esterase 31 Hydrolysis of esters and amide
bonds; involved in detoxification
of xenobiotics and maybe in
lipid metabolism

Xenobiotic metabolism 2

Gck Glucokinase Catalyzes the initial step of
glucose utilization by the
beta-cell and liver; effective
when glucose is abundant

Only in liver

Col15a1 Collagen, type XV, alpha 1 Structural protein, especially
stabilizing microvessels and
muscle cells

4

a The number of different tissues in which the corresponding gene was found underexpressed; if only in one tissue the name of the tissue is given.
b Information about the genes was extracted from the references given or www.genecards.org.17

Table 3 Top GO-terms enriched for overexpression in CR

GO-terma GO ID Total # overexp. p-Value

Lipid metabolic process GO:0006629 8255 352 8.01 � 10�24

Rhythmic process GO:0048511 899 73 6.52 � 10�19

Monooxygenase activity GO:0004497 2803 147 8.69 � 10�18

Circadian rhythm GO:0007623 1025 72 2.15 � 10�15

Detoxification of copper ion GO:0010273 181 26 3.77 � 10�13

Retinol metabolic process GO:0042572 298 33 5.46 � 10�13

NADPH-hemoprotein reductase activity GO:0003958 149 22 1.34 � 10�11

Acyl-CoA metabolic process GO:0006637 749 51 6.73 � 10�11

Oxidoreductase activity GO:0016491 20 263 630 1.21 � 10�10

Nitric oxide mediated signal transduction GO:0007263 307 30 1.35 � 10�10

a Very broad and cellular component GO-terms are not shown.
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by a study reporting the decrease of retinol during fasting in

humans.24 Also changes in nitric oxide mediated signalling, a

category enriched for upregulated genes, were previously

associated with CR; it was found that calorically restricted

mice show overexpression of eNOS (endothelial nitric oxide

synthase) and its knock-out largely reduced CR-induced

effects.25 Of the top 10 categories enriched for overexpressed

genes, to our knowledge no functional link has been reported

between CR and ‘‘copper ion detoxification’’.

In a complementary approach, we used the DAVID functional

analysis tool to determine the overrepresented functional categories

in the genes significantly enriched for over- and underexpression.

The results obtained in this way (Benjamini–Hochberg corrected

FDR o 0.05; note that FDR estimation by scrambling is not

feasible with this tool) represent subsets of those obtained by

the meta-analysis at the functional level (see Table S3, ESIw).
The significant functional clusters found for overexpressed genes

were related to sulfotransferase-activity, NAD(P)+ involving

processes, oxidoreductases and biological rhythms and for under-

expressed genes associated with the endoplasmic reticulum. One

significant Biocarta pathway, ‘‘Nuclear Receptors in Lipid

Metabolism and Toxicity’’, and three KEGG26 pathways, ‘‘PPAR

signaling pathway’’, ‘‘Arachidonic acid metabolism’’ and ‘‘Retinol

metabolism in animals’’ were found for genes overexpressed; none

were found for genes underexpressed in CR.

Inferring regulatory modules from CR signatures

Co-expression analysis of CR-associated genes. To under-

stand regulatory modules underlying the observed differential

expression patterns, we employed a transcriptome-wide

co-expression map to extract genes more strongly co-expressed

with genes over- and underexpressed during CR than expected

by chance (see Materials and Methods). Genes identified in

this way may serve as further candidates involved in CR and

combining them with differentially expressed genes improves

the statistical power for the detection of underlying functional

categories. Moreover, transcription factors (TFs) among

co-expressed genes that are themselves differentially expressed

in the same direction as the genes they are associated with may

be candidate transcriptional regulators.

A large number of genes (1075 for over- and 410 for under-

expression) were found to be co-expressed and we performed a

functional enrichment analysis using DAVID. Interestingly, we

found that many of the genes that are co-expressed with the

upregulated genes overlap with the genes that are co-expressed

with the downregulated genes (Fig. S4, ESIw), and that func-

tional categories obtained for upregulated genes were by and

large the same as for downregulated genes. Some of the most

significant functional categories retrieved for both up- and

downregulated genes were related to lipid metabolism, circadian

clock, inflammation/immunity, steroid/sterol/cholesterol meta-

bolism, response to hormones, mitochondria, and xenobiotic

metabolism/cytochrome P450 (Table S4, ESIw). This could

indicate that as particular pathways and processes are altered

by CR, some of its genes are overexpressed while others are

underexpressed.

To identify possible regulators of transcriptional changes

with CR we looked for TFs among co-expressed genes. Inter-

estingly, Ppara, the TF most significantly co-expressed with

overexpressed genes, is itself a member of the genes enriched for

overexpression. Similarly, Dbp, Klf17 and Nr1i3 were found to

be both enriched for overexpression and co-expressed with

overexpressed genes. Of the 17 TFs co-expressed with down-

regulated genes, 14 were also among the 42 co-expressed with

upregulated genes. However, one of the TFs which was solely

co-expressed with the down-regulated seed list, Irf7 (interferon

regulatory factor 7), was the only one to be also underexpressed

itself. Lists of genes co-expressed with genes enriched for over-

and underexpression are shown in Table S5 (ESIw).

Transcription factors regulating expression of differentially

expressed genes

To gain a better understanding of which genes regulate and are

regulated in response to CR, we analyzed transcription factor

binding sites (TFBS) in the signatures. The complete list of TFs

with binding sites enriched (p o 0.01) in the [�500, 100 bp]

region of the genes determined by the meta-analysis according

to the Biobase ExPlain tool is shown in Table S6 (ESIw).
Overall, we found 29 TFs with binding sites enriched among

overexpressed genes and 40 TFs among underexpressed genes.

In line with results from our co-expression analysis, some TFs

were found to be enriched among both over- and under-

expressed genes (Table S6, ESIw). It is also noteworthy that

Foxa TFs (Foxa1, Foxa2 and Foxa3) were significant among

overexpressed genes (Table S6, ESIw) as Foxa has been linked

to CR.27 We then looked for TFs overlapping with significant

genes from the meta-analysis as these are more likely to be

biologically important. The only TF with its binding site

Table 4 Top GO-terms enriched for underexpression in CR

GO-terma GO ID Total # underexp. p-Value

Sterol biosynthetic process GO:0016126 1091 59 5.57 � 10�10

Beta-alanine transmembrane transporter activity/taurine:sodium symporter activity GO:0001761 60 12 6.32 � 10�9

Cholesterol biosynthetic process GO:0006695 1022 53 1.59 � 10�8

Innate immune response GO:0045087 3356 125 1.80 � 10�8

Response to sterol depletion GO:0006991 68 12 2.80 � 10�8

Steroid biosynthetic process GO:0006694 2298 93 2.97 � 10�8

7-Dehydrocholesterol reductase activity GO:0047598 49 10 9.43 � 10�8

Response to virus GO:0009615 1706 73 1.06 � 10�7

Positive regulation of transcription via sterol regulatory element binding GO:0035104 92 13 1.17 � 10�7

Pheromone binding GO:0005550 164 17 1.52 � 10�7

a Very broad and cellular component GO-terms are not shown. Different GO-terms related to taurine and beta-alanine transport significant due to

the underexpression of one gene (Slc6a6) in 12 datasets were collapsed.
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enriched that was also significantly enriched for underexpression

itself was Srebf1. For genes enriched for overexpression, we only

found overlapping TFs with binding sites enriched at the more

relaxed cutoff of p o 0.2 and these were Nr1i3 and Ppara, two

TFs co-expressed with overexpressed genes.

Overlap with CR-essential genes, their orthologues and

interaction partners

Top hits were evaluated in light of previous knowledge by

searching for overlaps with genes that alter the life-extending

effect of CR when mutated. This list of CR-essential genes is

largely based on homologs from non-mammalian model

organisms (see Materials and Methods) since the only mouse

gene known to be essential for CR-induced lifespan extension

is Ghr, the growth hormone receptor.28

Four of our hits have significant sequence similarity to

CR-essential genes in lower model organisms. Sc5d (sterol-

C5-desaturase), enriched for underexpression, may be a

functional homologue of the CR-essential gene ERG3 in

Saccharomyces cerevisiae. Gck (glucokinase), enriched for

downregulation, is homologous to CR-essential HXK2 in

S. cerevisiae.Mat1a (methionine adenosyltransferase I, alpha),

enriched for upregulation, is homologous to sams-1 in

Caenorhabiditis elegans. Irs2 (insulin-receptor substrate 2),

enriched for upregulation, displays homology to chico in

Drosophila melanogaster.29 Sc5d and Gck appear to be func-

tional homologs, while in the case of Mat1a and Irs2 a

functional conservation is not proven.29–32

In addition, 42 of our hits were direct protein interaction

partners of murine CR-essential gene orthologues, which

were significantly enriched for ‘‘circadian rhythm’’, ‘‘oxido-

reductase’’, ‘‘glucose metabolic process’’ and ‘‘positive regula-

tion of apoptosis’’-related terms when using DAVID. Among

these 42 proteins that interact with CR-essential genes are

Ppara and Srebf1. The complete list of these genes with their

specificity measure and p-values is shown in Table S7 (ESIw).
Moreover, three of the genes in the network of CR-essential

genes overlapping with the meta-analysis hits have been

implicated in aging according to the GenAge database:33 the

genes are Ghr, Irs2 and Arntl, the latter being an important

circadian clock transcription factor.18

Discussion

A meta-analysis approach to CR gene expression profiles

CR is the most promising non-genetic intervention to extend

lifespan and delay aging-associated diseases in a range of

organisms. To understand the genetic and molecular basis of

CR in a data-driven way we determined robust changes in

gene expression linked to CR by meta-analyzing microarray

data in a variety of experimental variables, e.g. species, tissue,

age, duration and extent of CR, diet composition and micro-

array platform. We employed a value counting approach for

our meta-analysis that emphasizes sensitivity and has been

previously shown to outperform other methods in the context

of aging studies.10 Another advantage of using a value counting

approach is that we could include datasets for which only lists of

differentially expressed genes were available.10,23 The inclusion of

such lists of genes increases our signal and number of significant

genes, though it does not significantly alter our results; full results

are provided in the ESIw with (Tables S2 and S3) and without

(Tables S8 and S9) additional lists of genes.

In addition to the meta-analysis method, our study is also

unique in that, contrary to some previous works, we excluded

genes we suspected were only found differentially expressed

with CR in old animals due to the lack of the normal

expression change with age (see Materials and Methods), as

we reason that these are more likely to be an effect than a cause

for changes induced by CR (Fig. S2, ESIw). Moreover, our

study includes a larger number of datasets than previous CR

meta-analyses and, to our knowledge, is the first to focus on

data from mammals other than mice, though our study still

had a high prevalence of mouse datasets. Lastly, the integration

of additional types of data, and in particular information on

genetic mutants that we systematically collected, means that our

study is in a unique position to identify key regulators of CR.

Interestingly, 10 genes overexpressed and 9 underexpressed

from our meta-signature have been validated experimentally in

different tissues of mice and rats, mostly by direct measure-

ment of mRNA levels by qRT-PCR (Table S10, ESIw). Of

note, both Ppara and Srebf1 TFs have been validated in

accordance with our predictions.5 This demonstrates that

our method can detect biologically meaningful results.

Genes and functional categories overrepresented for differential

expression

Our meta-analysis of microarray data reveals candidate genes

and functional categories for a role in CR. The fact that we

re-discovered a large number of genes and categories already

related to CR further demonstrates that our method can detect

biologically-relevant findings and supports the role of these genes

as a conserved signature of CR. Besides their use as biomarkers,

the novel genes and processes detected could serve as new foci for

future studies. Due to the overrepresentation of liver datasets in

our analysis we cannot claim that all genes found in the meta-

analysis over all tissues are associated with CR in a tissue-

independent manner. However, it seems safe to assume that

out of these genes those found to be over-/underexpressed in at

least three different tissues are truly tissue-independent. The

complete results are provided in Tables S2 and S3 (ESIw) as well
as online (http://genomics.senescence.info/diet/).

The presence of many lipid metabolism and sterol bio-

synthesis related GO-terms among the ones with highest

significance fits well with the idea of different metabolic states

of ad libitum (AL) level and CR animals and is in agreement

with previous meta-analyses on CR.12 It confirms the idea that

there is a hormone-driven shift from glycolysis to lipolysis and

gluconeogenesis in CR. There is a large literature linking lipid

metabolism to CR (for a review see ref. 34). It has also been

reported that CR prevents age-related changes in cholesterol

metabolism.35 Moreover, one of the major effects of CR is the

repression of immune functions and an important physiological

change with aging is increased inflammation and alterations in

collagen deposition. It has been shown previously that CR

prevents to a certain degree collagen accumulation and collagen

aging.36 Therefore it is noteworthy that our meta-analysis also
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established relations between CR and these functional

categories.

Our functional analysis detected categories related to the

growth hormone and insulin/IGF-signalling pathways, mutations

in which have effects on longevity and the lifespan-extending

effect of CR. Ghr, enriched for underexpression in our analysis, is

the only known mouse gene that when mutated favours longevity

and cancels out the lifespan extending effect of CR.28 This argues

for the biological meaningfulness of our results. Another gene

enriched for underexpression is Airn (antisense Igf2r RNA) which

might function as an important ncRNA in the regulation of

insulin/IGF-signalling. Note that this gene until recently was

annotated as a RIKEN cDNA gene and that therefore other

of our top genes with unknown function might also be promising

new candidates for further studies. Irs2 (insulin-receptor sub-

strate 2) was found to be enriched for overexpression and is a

homologue of chico inD. melanogaster, which was experimentally

associated with aging and CR.29 An association between hormonal

alterations involving insulin/insulin like growth factor 1 (IGF1)/

growth hormone (GH) and aging is well-known and these are

likely involved in CR mechanisms.

We detected categories related to circadian rhythm and mono-

oxygenase activity/xenobiotic metabolism both for over- and

underexpressed genes. Although both these processes have been

associated with CR37–40 a deeper understanding of their role in

CR remains elusive. The results for circadian rhythm changes in

CR are in agreement with previous observations in mice (for an

overview see ref. 41). Two of our top genes, Arntl and Dbp, are

important circadian clock TFs of which the former has already

associated with the aging process.18 Alterations of the circadian

rhythm are often considered side effects of CR, caused by changed

times of food consumption. However it cannot be ruled out that

this effect is at least partially causal for the life extending effect of

CR. Notably, also the circadian clock master regulator Per2 was

among the genes most significantly enriched for overexpression.

Transcriptional levels of Per2 oscillate diurnally in the supra-

chiasmatic nucleus (SCN) of the hypothalamus and are suppo-

sedly set by light.13 The timing of oscillators in peripheral

tissues is controlled by the SCN when food is available AL. If

feeding is, however, temporally limited, the time of feeding is a

more important regulator for peripheral oscillators.14 If addi-

tionally the level of food intake is altered also the timing of

clock gene expression in the SCN changes, possibly impacting

metabolic regulation. Therefore both the changed amount of

food, and also the fact that CRmight change the timing of food

availability compared to AL might have an important influence

on altered expression levels of clock genes.

To our knowledge no reports on copper ion detoxification

exist in respect to CR, which we found among the categories

most significantly enriched for genes overexpressed with CR.

Another process less well established as to its role in CR is

retinoic acid/retinol metabolism. Also note that 9-retinoic acid

is a ligand of RXR which forms a complex with peroxisome

proliferator activators (PPARs) and therefore establishes a link

between retinol metabolism and regulation of lipid meta-

bolism.26 It is interesting to note that anti-inflammatory effects

of retinoic acid are known.42

By bringing together, analyzing and interpreting as a whole

multiple large-scale gene expression studies using CR animals,

our work provides an integrated picture of CR-induced altera-

tions. Fig. 1 summarizes our CR-induced signatures together with

current theory of CR-induced physiological changes.

Transcriptional regulation of CR-induced changes and candidate

regulators

In addition to identifying processes and genes altered

during CR, our goal was to identify candidate regulators of

CR-induced changes, for which we employed a whole-genome

co-expression map, data on gene mutations that disrupt CR

effects plus their interaction partners and TFBS analysis.

Srebf1, a TF regulating sterol metabolism, is a candidate for

regulating CR-suppressed gene expression changes. Notably

this was not just one of the genes most significantly enriched

for underexpression, but also the only TF with binding sites

enriched upstream of genes enriched for underexpression.

Among the Srebf1 regulated genes are CR-essential ortho-

logous Gck43 and Sc5d44,45 as well as ATP citrate lyase (Acly)46

all of which are themselves enriched for downregulation in our

results. Gck is an orthologue of HXK2 in S. cerevisiae which

catalyses the phosphorylation of glucose prior to glycolysis and

was previously associated with CR.30 Likewise, Sc5d (sterol-

C5-desaturase), another gene enriched for downregulation,

encodes an enzyme involved in sterol metabolism and is a

homologue of ERG3, which is important for lifespan extension

by CR in S. cerevisiae.35 Acly is the primary enzyme responsible

for the generation of cytosolic Acetyl-CoA out of citrate, which

was found to be crucial in CR-induced metabolic changes.47

Interestingly, Srebf1 expression is induced by insulin, via the

activation of the phosphatidylinositol 3-kinase (PI3K) pathway,

in hepatocytes.43 In Drosophila, Srebf1 is induced by Akt

activation but this is blocked by glucose starvation, inhibition

of glycolysis, or AMPK activation and requires TOR activity.48

Moreover, silencing Srebf1 in flies was shown to block the

induction of cell growth by dPI3K. CR could, therefore, reduce

TOR signalling and/or reduce insulin/IGF1 signalling and Akt

activity with a resulting reduced nuclear accumulation of

Srebf1. Srebf1 is also involved in lipogenesis across metazoans

and its activation has been suggested to contribute to human

metabolic disorders.49 These results place Srebf1 at the heart of

CR-induced signalling and warrant further studies, for example

of whether silencing Srebf1 (e.g., in flies) induces CR responses.

Another gene that called our attention was Ppara, a member

of the steroid hormone receptor superfamily and a TF that

plays a key role in the regulation of lipid metabolism.21 Ppara

was enriched for overexpression in CR animals, co-expressed

with genes enriched for overexpression and interacting with

CR-essential orthologs. Ppara binding sites were significantly

enriched in the promoter of upregulated genes, even though

only at FDR o 0.2. Our results therefore suggest that an

alteration of steroid hormone signalling and the effect of this

alteration on cells is an important mechanism of CR with Ppara

as a candidate regulator.

Lastly, a TF significantly co-expressed with genes enriched

for both over- and underexpression, Cebpa, is a regulator of

lipid metabolism50 even though not itself significantly enriched

for up- or downregulation. A summary of top hits with strong

evidence for a role in CR in this study is depicted in Fig. 2 with
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suggestive (albeit not comprehensive) links to other CR-

related players and pathways.

Concluding remarks and future prospects

Overall, our meta-analysis allowed us to obtain conserved

molecular signatures of CR that may be used as biomarkers

of CR as well as help identify genes and pathways mediating

CR life-extending effects. Our results emphasize that changes to

metabolism play an important role in CR, which to some extent

might be attributed to hormonal alterations, e.g. of adiponectin,

GH, insulin/IGF and glucagon levels, described previously.4,5

Based on our comprehensive picture of CR-induced changes we

suggest a model for CR-induced changes (Fig. 1). Furthermore,

the results of this meta-analysis hint at an involvement of

circadian rhythm pathways in CR.

One important aspect of our study is that we integrate

additional types of data to gain insights into transcriptional

regulation under CR. In particular, we suggest the regulation of

modules of differential expression by steroid hormone receptors.

Other examples of TFs potentially central to CR are given

(Fig. 2). We believe that further studies of our top genes

and the discovery of their relation to hormonal and other

physiological changes in CR will significantly contribute to the

understanding of CR.

Materials and methods

Microarray studies used in the meta-analysis

Microarray data on CRwere obtained from the Gene Expression

Omnibus (GEO),51 ArrayExpress52 and Gene Aging Nexus

(GAN).53 Non-deposited datasets were also requested from

authors. Only data from mammals were employed, as these are

more likely to be relevant to humans. Datasets were not used if

the experiment was accompanied by the application of drugs or

infection of the animals. Only microarray platforms that were an

unbiased representation of the transcriptome were used.

For 21 studies expression datasets could be obtained (Table S1,

ESIw). That means the preprocessed (i.e. background subtracted

Fig. 1 Overview of CR-induced changes based on the results from our meta-analysis integrated with current theory. It is widely accepted that CR

induces systemic changes at the level of various hormones, and growth hormone (GH) in particular. These changes may be due to the impact of CR

on energy metabolism and its interplay with tissues responsible for endocrine changes, such as the pituitary where GH is produced. Systemic effects

then drive multiple changes that tend to be conserved across different organs. Displayed are the major alterations across organs inferred from our

meta-analysis. One crucial axis of CR-induced changes involves alterations in metabolic processes. These changes in metabolism appear in turn to

trigger mitochondrial changes at the level of, for instance, oxidation/reduction and electron transport chain. Some important doubts remain, for

example in regards to the specific mechanisms triggering the activation of detoxification pathways and nitric oxide signal transduction.
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and normalized) microarray signals for the conditions of interest

were given for all probes on the array except when excluded for low

quality. From each study one to fifteen datasets were extracted.

Data in each dataset consisted of ad libitum (AL) and CR samples

from animals of the same age, CR setup and the same tissue. All

studies employed single-color chips. The only co-variate for which

we did not split data into different datasets was sex, since we did

not want to reduce replicate numbers of each dataset more than

necessary. This yielded a total of 61 datasets. Of these, 48 were

from mouse (Mus musculus), 12 from rat (Rattus norvegicus) and 1

from pig (Sus scrofa). In total, datasets came from 19 different

tissues with themost frequent tissue being the liver. The duration of

CR ranged from less than one day (5 datasets) to 23.5 months and

the ages at which tissues were obtained from 1.5 to over 30 (exact

age unknown) months for mouse and 1.5 to 24 months for rats.

The reduction in calorie intake in the CR group was in most cases

between 10 and 40% (for details see Table S1, ESIw).
Eleven lists of genes differentially expressed with CR according

to the statistical procedure used in the original study were created

for which the raw microarray data were not available.54–58

Among these was one study focussing on rhesus monkeys. The

distribution of the number of datasets over different co-variates

after including these gene lists is shown in Fig. S1 (ESIw).

Processing datasets

To be able to integrate the different datasets we annotated the

probes in all datasets with their corresponding mouse Entrez

ID; since most datasets were from mouse and Entrez IDs were

expected to facilitate matching between homologous genes of

different organisms. Matching tables between different identi-

fiers were obtained from Ensembl Genes 57.59 If a probe

matched to more than one Entrez ID it was represented by a

list of all of them. Probes targeting transcripts of the same gene

(and i.e. having the same Entrez ID) were collapsed by using

the mean over each probe. However, if a given probe was

mapped to more than one Entrez ID we discarded its effects on

a given Entrez ID for which other probes existed which only

mapped to it. For organisms other than mouse the Entrez ID

of the homologous mouse gene according to HomoloGene

(08/2009)60 was used. Non-mouse genes homologous to more

than one mouse gene were discarded. Probes not matching

mouse Entrez IDs were lost during this procedure, which was

especially a problem for poorly annotated Sus scrofa genes.

In each individual microarray, probes that contained more

than 30% missing values or for which no Entrez ID annotation

was found were eliminated. All remaining missing values were

Fig. 2 Summary of genes enriched for differential expression with CR, the importance of which is emphasized by the fact that they are either CR-

essential (CE), orthologues of CR-essential genes (CEO) or transcription factors with binding sites enriched in up- or downregulated genes (TF).

Important downstream functions are depicted; green indicates enrichment for underexpression while red represents enrichment for overexpression. Ghr=

Growth hormone receptor; Gck =Glucokinase; Irs2 = Insulin receptor substrate 2; Sc5d = Lathosterol oxidase (sterol-C5-desaturase); Srebf1= Sterol

regulatory element-binding protein 1 (sterol regulatory element-binding transcription factor 1); Ppara= Peroxisome proliferator-activated receptor alpha;

Mat1a = S-adenosylmethionine synthase isoform type-1 (methionine adenosyltransferase 1); Nr1i3 = Nuclear receptor subfamily 1, group I, member 3;

DG = D-Glucose; DG6P = D-Glucose 6-Phosphate; Me = Methionine; SAMe = S-Adenosyl-L-Methionine; Pi = Phosphate, ionic; PPi =

diphosphate, ionic; FA = Fatty acid; FAD = Flavin Adenine Dinucleotide; FMN = Flavin Mononucleotide; SRE1 = Sterol Regulatory Element-1.

The structure of Irs1 is shown instead of Irs2. Note that the diagram is not comprehensive and thus only suggestive and there may be other important

factors that are not shown.
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replaced using the row average method. The datasets were

processed using customized Perl and R scripts.61

Since CR is a mechanism that counteracts the effects of

aging, some of the gene expression changes induced by CR in

older organisms when compared to age-matched AL animals

may be due to the retardation of changes normally occurring

with age. Since our work focused on the mechanisms of CR,

we removed all genes found to be differentially expressed

between older and younger AL animals from the genes

differentially expressed with CR in the opposite direction in

the older animals, if possible. The number of genes excluded

from each dataset in this procedure was generally o5%.

Statistical analyses

The datasets were meta-analyzed using the following value

counting approach (see Ramasamy et al.23 for an overview

of meta-analysis approaches): for each gene in each study, the

p-value of an unpaired Student’s t-test was calculated between CR

and AL samples. As an effect size measure we calculated the fold

change by dividing the mean of CR by the mean of AL values. To

determine if a gene was found differentially expressed in more

studies than expected by chance we first counted for each gene in

how many studies its expression was measured (n) and in how

many it was found over- or underexpressed (k) at a p-value of

o0.05 and a fold-change of at least 1.5 or lower than 1/1.5. For

the two datasets with only one AL and one CR sample, where no

t-test could be performed, a stricter effect size threshold was

applied. For studies for which only lists of genes were available

only the effect-size threshold was applied, where possible.

We obtained the probabilities of finding a gene over- or

underexpressed in the observed number of studies from the

cumulative binomial distribution:

P ¼
Xn
x¼k

n
x

� �
� pxs � ð1� psÞðn�xÞ

For this we used the success probability (ps) calculated by

dividing the number of genes appearing over-/underexpressed

in all studies by the total number of appearances of genes in all

studies.

To find an appropriate cutoff for the binomial p-value we

repeated the binomial test 100 times on scrambled data. By

dividing the mean of the number of genes found with scrambling

below a certain binomial p-value by the number of genes found

below it on the real data we obtained a false discovery rate

(FDR) estimate. A cutoff of p= 0.0005 corresponds to an FDR

of about 0.05 for both over- and underexpressed genes.

An overview of the meta-analysis approach is given in

Fig. 3.

Functional enrichment analyses

In an analogous approach to that described above, we compared

the number of times a Gene Ontology (GO) category was found

associated with an over- or underexpressed gene in the datasets

to the number of times it is found associated with any gene. A file

mapping each Entrez ID to the corresponding GO-IDs was

downloaded from the NCBI FTP (ftp://ftp.ncbi.nih.gov/gene/

DATA/gene2go.gz; 07/2010).

Fig. 3 Overview of the meta-analysis approach. Expression profiles were obtained from public databases and genes differentially expressed in

each dataset selected by a Student’s t-test. Further lists of genes differentially expressed with CR were obtained from original publications and

added to the datasets. Genes were annotated with mouse Entrez IDs. The number of datasets in which a gene was differentially expressed

(separately for over- and underexpression) was compared to the number of datasets in which the gene was tested and a binomial test used both on

the original data and in 100 simulations using scrambled data. The FDR was calculated as the number of genes found on the original data (#a)

divided by the mean number on simulated data (#b) at the corresponding p-value. The cutoff p-value for significant genes was chosen so that the

corresponding FDR was below 0.05.
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The Database for Annotation, Visualization and Integrated

Discovery (DAVID)62 was also employed to detect enriched

functional categories in the top over- and underexpressed genes.

Transcription factors regulating expression of differentially

expressed genes

To determine transcription factor binding sites enriched in the

[�500, 100 bp]-region of top differentially expressed genes we

employed Biobase ExPlain.63 The F-Match tool was used with a

cutoff of p o 0.01 and otherwise default conditions. Transcrip-

tion factors (TFs) corresponding to these binding sites were

extracted. We determined the overlap of these TFs with the top

hits from the meta-analysis. To identify further potential

regulators we also compared TFs with binding sites enriched

at the more relaxed cutoff of p o 0.2 with the top genes.

Co-expression analysis of CR-associated genes

A whole-genome mouse co-expression map from 1678 experi-

ments was employed that assigns expression similarity scores

between pairs of genes (van Dam et al., in preparation). The

top 5% of genes with highest similarity for each gene were

considered co-expressed with a query gene. Each mouse gene

gi was then tested for overrepresentation in the number of

times it was found co-expressed (i.e. in the top 5%-list) with

each gene over- or underexpressed with CR compared to the

number of times it was co-expressed with all mouse genes.

A binomial test was performed with the number of tests (n)

being the number of genes in the subset and the number of hits

(k) being the number of times gi is co-expressed with genes of

this subset. The success probability (ps) of gi being co-expressed

with any gene was the number of times gi was co-expressed with

any gene divided by the number of all genes.

Genes were ranked by their p-values from the binomial test

and FDR values were calculated using a Bonferroni correction

by multiplying the p-values by the number of tests, in this case

corresponding to the 20 677 genes in the co-expression map.

Genes with a p-value ofo10�6 (FDRo 0.02) were considered

significant. Transcription factors among these genes were

extracted as they are potential upstream regulators of the

differentially expressed genes. DAVID was employed under

default settings to detect functional enrichment.

Detecting overlap with CR-essential genes, their orthologues and

interaction partners

Over 100 genes experimentally identified to be essential for the

effect of CR to induce lifespan extension in different model

organisms were retrieved from the literature (Wuttke et al., in

preparation) and mouse orthologues derived. A CR-essential

gene is defined as a gene in which genetic manipulation

significantly reduced or canceled the life-extending effect of

CR. A network around CR-essential genes was built according

to information on physical protein–protein and genetic inter-

actions retrieved from multiple databases, extended by direct

interaction partners and analyzed using Cytoscape.64 The

creation of such networks and definition of CR-essential genes

will be described in another work (Wuttke et al., in preparation).

Interaction partners significantly overlapping with results of the

meta-analysis were extracted.
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and F. Foufelle, Biochem. J., 2000, 350(Pt 2), 389–393.
44 T. Sugawara, Y. Fujimoto and T. Ishibashi, Biochim. Biophys.

Acta, Mol. Cell Biol. Lipids, 2001, 1533, 277–284.
45 J. Fernø, S. Skrede, A. O. Vik-Mo, B. Håvik and V. M. Steen,
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