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Vulnerability of progeroid smooth muscle cells to
biomechanical forces is mediated by MMP13
Patricia R. Pitrez 1,2, Luís Estronca1,2, Luís Miguel Monteiro 1, Guillem Colell3, Helena Vazão1,

Deolinda Santinha 1,2, Karim Harhouri 4, Daniel Thornton5, Claire Navarro 4,6, Anne-Laure Egesipe7,

Tânia Carvalho 8, Rodrigo L. Dos Santos9, Nicolas Lévy4,10, James C. Smith 11, João Pedro de Magalhães1,5,

Alessandro Ori 12, Andreia Bernardo 11, Annachiara De Sandre-Giovannoli 4,10,13, Xavier Nissan 7,

Anna Rosell3 & Lino Ferreira 1,2✉

Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disease in children that

leads to early death. Smooth muscle cells (SMCs) are the most affected cells in HGPS

individuals, although the reason for such vulnerability remains poorly understood. In this

work, we develop a microfluidic chip formed by HGPS-SMCs generated from induced plur-

ipotent stem cells (iPSCs), to study their vulnerability to flow shear stress. HGPS-iPSC SMCs

cultured under arterial flow conditions detach from the chip after a few days of culture; this

process is mediated by the upregulation of metalloprotease 13 (MMP13). Importantly,

double-mutant LmnaG609G/G609GMmp13−/− mice or LmnaG609G/G609GMmp13+/+ mice trea-

ted with a MMP inhibitor show lower SMC loss in the aortic arch than controls. MMP13

upregulation appears to be mediated, at least in part, by the upregulation of glycocalyx. Our

HGPS-SMCs chip represents a platform for developing treatments for HGPS individuals that

may complement previous pre-clinical and clinical treatments.
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Hutchinson–Gilford Progeria Syndrome (HGPS) is caused
by a single mutation in the lamin A/C gene (LMNA),
resulting in the generation of an abnormal lamin A pre-

cursor named progerin1,2. One of the key reasons of premature
death is the loss of smooth muscle cells (SMCs) in the medial
layer of large arteries, followed by the appearance of collagen and
extracellular matrix (ECM) and the development of a severe
arteriosclerotic process that leads to increased arterial stiffness3–5.
The reasons of SMC loss remain to be determined. It has been
suggested that this may happen due to pathophysiological
changes inherent to prelamin A/progerin accumulation, such as
the acceleration of vascular calcification via the activation of the
DNA damage response and senescence-associated secretory
phenotypes in vascular SMCs6 or the downregulation of PARP17.
It has also been shown that the combined effect of progerin
accumulation and mechanical stress in mouse SMCs over-
expressing progerin promoted cell detachment and death, while
the disruption of the linker between nucleoskeleton and cytos-
keleton complex ameliorated the toxic effects of progerin8. Nei-
ther of these studies have fully addressed the reasons behind SMC
detachment and thus which therapeutic approach could be
effective to prevent SMC loss.

Induced pluripotent stem cells (iPSCs) offer an unlimited
source of SMCs to study HGPS. Recent studies have generated
iPSCs from fibroblasts obtained from individuals with HGPS
(hereafter referred to as HGPS-iPSCs)9–11. Strikingly, HGPS-
iPSCs show low lamin A/C and progerin protein expression in the
pluripotent state. However, the expression of progerin is reacti-
vated after HGPS-iPSC differentiation into SMCs7,9. The differ-
entiated cells show nuclear dysmorphology, cell growth
retardation, susceptibility to apoptosis, proliferation reduction,
and DNA-repair defects; however, SMC performance under flow
conditions has not been evaluated.

In this work, we develop an in vitro cell system comprising
SMCs derived from HGPS-iPSCs cultured under flow conditions
in a microfluidic device. We identify MMP13 as a mediator of
SMC detachment using chemical and genetic assays. The gener-
ated double-mutant LmnaG609G/G609GMmp13−/− mice show an
increase in SMCs in the aortic arch and a decrease in progerin-
positive cells. In addition, the inhibition of MMP13 in
LmnaG609G/G609G mice by Batimastat, a drug that has been pre-
viously tested in clinical trials in cancer patients, reduces SMC
loss. The results present here open perspectives for HGPS
treatment.

Results
SMCs derived from HGPS-iPSCs are functional and share
similar features to progerin-expressing cells. iPSCs were gen-
erated from HGPS skin fibroblasts and characterized as pre-
viously described10. iPSCs generated from non-disease cells (N-
iPSCs), HGPS skin fibroblasts, and non-disease somatic human
vascular smooth muscle cells (hVSMCs) were used as controls.
The mutation in the LMNA gene, both in HGPS skin fibroblasts
and HGPS-iPSCs, was confirmed by Sanger sequencing (Sup-
plementary Fig. 1). As expected, undifferentiated HGPS-iPSCs
expressed low levels of HGPS markers, such as progerin, as well as
low levels of SMC markers, such as α-SMA and SMα-2212,13

(Supplementary Fig. 2a). To induce the differentiation of HGPS-
iPSCs or N-iPSCs into SMCs, CD34+ cells were isolated by
magnetic-activated cell sorting from embryoid bodies (EBs) cul-
tured for 10 days in suspension (Fig. 1a)14. At this stage, HGPS-
CD34+ cells already express higher levels of progerin mRNA
transcripts relative to N-iPSCs but relatively low levels of SMC
mRNA transcripts compared with somatic hVSMCs (Supple-
mentary Fig. 2b). HGPS-CD34+ cells were then cultured in SMC

induction media (Supplementary Fig. 3) followed by SMC
maturation media (Supplementary Fig. 4) for an additional four
passages. Matured SMCs are referred to as HGPS-iPSC SMCs or
N-iPSC SMCs based on their phenotype, genotype, and func-
tional properties (see below). Both HGPS-iPSC SMCs and N-
iPSC SMCs have similar or higher expression of SMC mRNA
transcripts than somatic hVSMCs (Supplementary Fig. 4a).
Greater than 95% of both differentiated cells express α-SMA,
smooth muscle myosin heavy chain (SMMHC), and calponin
proteins (Fig. 1b). Moreover, HGPS-iPSC SMCs express progerin
mRNA transcripts (Fig. 1c) and progerin protein (Supplementary
Fig. 4b, c). Similar results were obtained for SMCs derived from
HGPS-iPSCs generated from a second Progeria individual; how-
ever, the differentiated cells showed higher progerin protein levels
than the first Progeria individual (Supplementary Fig. 5).
Importantly, HGPS-iPSC SMCs and N-iPSC SMCs are functional
as they respond to vasoactive agents such as histamine and
angiotensin (Supplementary Fig. 4d) and they contract after
exposure to carbachol (Supplementary Fig. 4e).

SMCs derived from HGPS-iPSCs share similar features to
progerin-expressing cells. Cell lines forced to express progerin
show the activation of several NOTCH signaling pathway
effectors15. Indeed, our results showed that HGPS-iPSC CD34+

cells had higher expression of NOTCH signaling pathway mRNA
transcripts than N-iPSC CD34+ cells (Supplementary Fig. 6).
Mature HGPS-iPSC SMCs also expressed higher levels of NOTCH
ligand and receptors than N-iPSC SMCs (Supplementary Fig. 6a).
In addition, HGPS-iPSC SMCs responded to farnesyltransferase
inhibitors, as has been shown in other Progeria cell models16–18.
In the current work, HGPS-iPSC SMCs treated with lonafarnib for
48 h accumulated nuclear prelamin A and showed a decrease in
nuclear shape abnormalities and nuclear blebbing (Supplementary
Fig. 7a–c). Taken together, the cells differentiated from HGPS-
iPSCs-expressed SMC and progeroid markers, are functional and
exhibit physiological responses.

HGPS-iPSC SMCs are vulnerable to arterial shear stress. SMCs
differentiated from N-iPSCs or HGPS-iPSCs were seeded in a
microfluidics system and cultured under flow conditions for up to
7 days (Fig. 1d). Because SMCs from large arteries are the most
affected in blood vessels in HGPS, we used a flow of 20 dyne/cm2,
which is typically found in arterial blood vessels19. N-iPSC SMCs
(Fig. 1g), hVSMCs, or HGPS fibroblasts (80% of which express
progerin) (Fig. 1e, g) can be cultured in the microfluidics system
for at least 7 days without a visible loss in cell number. In con-
trast, HGPS-iPSC SMCs cultured under flow conditions formed
cell clumps overtime (Fig. 1f), and most of the cells detached from
the substrate at day 4 as confirmed by cell number (Fig. 1g) and
metabolic analyses (Fig. 1h). During this time period, the per-
centage of cells expressing progerin and displaying nuclear
abnormalities increased significantly until day 4 (Supplementary
Fig. 8). Our results indicate that SMC detachment is mediated by
progerin accumulation, as the inhibition of progerin by antisense
morpholinos20 significantly decreased HGPS-iPSC SMC detach-
ment (Supplementary Fig. 9). In addition, we showed that HGPS-
iPSC SMCs with high progerin expression (30% of the cells
express progerin at day 0) detached from the surface of the
microfluidics system in a short time (<12 h) (Supplementary
Fig. 5g). To confirm that progerin accumulation is responsible for
SMC loss, a frameshift mutant stem cell line was generated
(HGPSΔ2-iPSCs) to knockout the HGPS mutant allele and gen-
erated a disease cell line, as previously described in the mouse21

(Fig. 2a and Supplementary Fig. 10). Specifically, a two-base pair
deletion on exon 11, upstream of the HGPS point mutation
(1814C>T), was generated. Notably, HGPSΔ2-iPSCs expressed
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little or no progerin upon differentiation into SMCs as demon-
strated at the transcript and protein levels and did not detach
under flow culture conditions (Fig. 2).

HGPS-iPSC SMC detachment does not seem to be mediated by
cell apoptosis. Before cell detachment, HGPS-iPSC SMCs showed:
(i) poor proliferation (as monitored by Ki67 staining) confirming
their contractile phenotype (Fig. 1i), (ii) similar levels of apoptosis
as N-iPSC SMCs as confirmed by caspase-9 activity (Fig. 1j), (iii)
an osteogenic differentiation program (Supplementary Fig. 11a,
b), (iv) increased DNA damage6 (Supplementary Fig. 12), and (v)
downregulation of NOTCH15,22 (Supplementary Fig. 13) signal-
ing pathways. Because the in vivo shear stress from blood flow is
not directly sensed by SMCs but by endothelial cells (ECs), we co-
cultured SMCs differentiated from HGPS-iPSCs (directly
attached to the microfluidics substrate) with human umbilical

artery ECs (HUAECs, on top of the SMCs) under flow conditions.
Initially, we screened different culture conditions and we found
that endothelial growth media-2 (EGM-2) medium was a suitable
medium to support both cells (Supplementary Fig. 14). Then, we
co-cultured HUAECs and HGPS-iPSC SMCs at different ratios
(1.6, 1, and 0.6) under flow conditions. In all the ratios tested, we
had a monolayer of HUAECs (Supplementary Fig. 15a) and
HGPS-iPSC SMCs at time zero. After 6 days in flow conditions, a
significant percentage (>40%) of HGPS-iPSC SMCs was lost
(Supplementary Fig. 15b). For the highest ratio tested (1.6), the
loss of HGPS-iPSC SMCs occurred without visible loss of ECs.
Yet, for EC:SMC ratios below 1, part of ECs also detached from
the microfluidic chamber indicating that, a low ECs density,
may turn ECs vulnerable to flow conditions. Importantly, cell
vulnerability to flow conditions was only observed in co-cultures
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of HGPS-iPSC SMCs but not N-iPSC SMCs (Supplementary
Fig. 15c).

It has been shown that a knock-in mouse line carrying a
homozygous Lmna c.1827C>T;p.Gly609Gly mutated allele
(LmnaG609G/G609G) recapitulates most of the described alterations
associated with HGPS, including the loss of SMCs20. Thus, to
validate the results obtained for the HGPS-iPSC SMCs, we
isolated SMCs from wild-type (WT mSMC) and homozygous
LmnaG609G/G609G (HOZ mSMC) mice. Both cells expressed
calponin and α-SMA, while HOZ mSMCs, but not WT SMCs,
showed dysmorphic nuclei and nuclear blebbing (Fig. 3a, b). WT
mSMCs were cultured under flow conditions (120 dyne/cm2 to
mimic mice arterial flow shear stress23,24) for up to 26 days
without visible loss of cells (Fig. 3c). In contrast, HOZ mSMCs
detached from the substrate after 8–9 days. These results confirm
that HOZ mSMCs are vulnerable to flow shear stress similar to
HGPS-iPSC SMCs. Overall, our results indicate that HGPS-iPSC
SMCs are vulnerable to flow shear stress, as in the case of SMCs
isolated from mice carrying a HGPS-like mutation in the Lmna
gene.

HGPS-iPSC SMCs have significant changes in extracellular
matrix (ECM) secretion and MMP expression. To gain insights
into the mechanism behind SMC detachment, we performed
microarray analyses on HGPS-iPSC SMCs and N-iPSC SMCs at
days 0 and 4 (before cell detachment). At day 0, 2084 genes were
differentially expressed (Log2FC ≥ 1; p < 0.05) in HPGS-iPSC
SMCs vs. N-iPSC SMCs. Of these genes, 51 genes were associated
with cell senescence, as determined by the intersection of all the
differentially expressed genes with the CellAge database25 (279
genes) (Supplementary Data 1). At the protein levels, HGPS-iPSC
SMCs expressed higher levels of p21 and SA-β-galactosidase than
N-iPSCs-SMCs and the level of senescence markers increased
after culture of HGPS-iPSC SMCs in flow conditions (Supple-
mentary Fig. 16a and Supplementary Data 5). We next performed
pathway analysis on the differentially expressed genes from
HGPS-iPSC SMCs at day 0 vs. day 4 (Supplementary Fig. 17 and
Supplementary Data 2, 3). In general, ECM activation, secretion,
and cell adhesion pathways were upregulated, whereas cell cycle
and DNA replication pathways were downregulated under
arterial flow conditions at day 4. Among the fifty-seven genes that
were at least threefold down- or upregulated compared with day 0
(p < 0.001) (Fig. 4a), five were related to ECM secretion (COL6A3,
IBSP, BGN, SGCG, and EPPK1) and one to metalloproteases
(MMP13). The expression of these genes, as well as others, was

confirmed by qRT-PCR (Fig. 4a), and the molecular network of
genes that were differentially expressed between days 0 and 4 in
the HGPS-SMCs was examined by Ingenuity Pathway Analysis
(Supplementary Fig. 17). Interestingly, pathway analysis sug-
gested that MMP13 is either a direct or indirect target of multiple
genes upregulated at day 4. Moreover, MMP13 transcript levels
are elevated in HGPS-iPSC SMCs when compared with SMCs
generated from the attenuated disease version of this line
(HGPSΔ2-iPSC SMCs), specially post shear stress (Fig. 2g).

To further explore the gene array results, we evaluated whether
the presence of ECM secreted by hVSMCs could prevent the
detachment of HGPS-iPSC SMCs under arterial flow conditions.
Thus, we cultured HGPS-iPSC SMCs on decellularized ECM
deposited by hVSMCs or directly on top of mitotically inactivated
hVSMCs (Supplementary Fig. 18). Both conditions were unable
to prevent HGPS-iPSC SMC detachment. Next, we tested whether
conditioned media collected from HGPS-iPSC SMCs in flow
conditions for 4 days could induce the detachment of flow shear
stress-insensitive hVSMCs (Fig. 4b). Surprisingly, hVSMCs
detach after perfusion with HGPS-iPSC SMC-conditioned media
but not with N-iPSC SMC-conditioned media (Fig. 4c). Following
these results and given that MMP13 appears to be the
downstream effector for the genes misregulated at day 4
(Supplementary Fig. 17b) we decided to quantify the concentra-
tion of MMP13 in HGPS-iPSC SMC and N-iPSC SMC culture
media after flow shear stress. Remarkably, MMP13 levels
increased 30-fold in the HGPS-iPSC SMC culture media, but
not in the control cell culture media (Fig. 4d). Similarly, higher
MMP13 levels were observed in media collected from HOZ
mSMCs under flow shear stress, when compared with media from
WT mSMCs (Fig. 3d). Because MMP13 is produced by cells as an
inactive form (proMMP13), which is then activated by cell
membrane MMPs, namely MMP14 (also called MT1-MMP) and
MMP2 (also called gelatinase A)26, the catalytic activity of
MMP13 secreted by HGPS-iPSC SMCs was analyzed (Supple-
mentary Fig. 19). The concentration of proMMP13 and active
MMP13 increased approximately eight- and five-fold, respec-
tively, in culture media of HGPS-iPSC SMCs cultured in flow
conditions from day 0 to day 4. Moreover, the concentration of
proMMP13 and active MMP13 in cell culture media collected
from N-iPSC SMCs cultured in flow conditions for 4 days was
more than fourfold lower than the one observed with HGPS-iPSC
SMCs. Altogether, our results indicate that HGPS-iPSC SMCs
cultured under flow conditions showed increased cell senescence,
ECM activation, secretion, and cell adhesion pathways upregula-
tion and dysregulation in the expression of MMP13.

Fig. 1 Vulnerability of HGPS-iPSC SMCs to arterial flow conditions. a Schematic representation of the methodology used to differentiate iPSCs into
SMCs. b Expression of SMC markers on iPSC-derived SMCs. Percentage of positive cells expressing SMC markers as evaluated by immunofluorescence (at
least 100 cells were counted per each marker). Results are mean ± SEM (n= 3 independent experiments). c Expression of progeria markers on iPSC-
derived SMCs. Gene expression by qRT-PCR (gene expression was normalized by the housekeeping gene GAPDH). HGPS fibroblasts were used as control.
Results are mean ± SEM (n= 4 technical replicates from a pool of three independent experiments). *, **, ***, **** denote statistical significance (p < 0.05,
p < 0.01, p < 0.001, p < 0.0001). Statistical analyses were performed by one-way ANOVA followed by Newman–Keuls’s post test. d Schematic
representation of the protocol used. Cells were cultured for 6–8 days in arterial flow conditions (20 dyne/cm2). e Light microscopy images of HGPS
fibroblasts, hVSMCs, or HGPS-iPSC SMCs (10% of the cells accumulate progerin protein) at different culture days. Only HGPS-iPSC SMCs detached from
the microfluidic system at day 4. Scale bar is 50 μm. f Number and area of cell clumps in HGPS-iPSC SMCs at different times (at least two images (×10)
have been quantified per time). For area of cell clumps n > 2 images examined over three independent experiments; for cell clumps, n= 3 independent
experiments. g Number of cells per surface area (mm2) during cell culture under arterial flow (at least three images (×10) have been quantified per time;
n= 3–7 independent experiments). Cell number was normalized by the number of cells present at day 0. h Cell metabolism evaluated by the Presto Blue
assay. Absorbance at 570 nm was measured and normalized to the 600-nm values for the experimental wells. n= 3 independent experiments. i Expression
of nuclear proliferation marker, Ki67 (at least three images (×10) have been quantified per time). The percentage of Ki67 positive cells was evaluated by
immunofluorescence. n > 3 images examined over three independent experiments. j Cell apoptosis evaluated by caspase-9 activity. Results were
normalized by cell number. n= 3 independent experiments. From c to g, results are mean ± SEM. *, **, ***, **** denote statistical significance (p < 0.05, p <
0.01, p < 0.001, p < 0.0001). Statistical analyses were performed by a two-tailed unpaired Student’s t test i and j.
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MMP13 mediates HGPS-iPSC SMC loss under flow conditions.
Next, we tested whether the chemical inhibition of MMPs could
prevent HGPS-iPSC SMC detachment. For this purpose, we used
Batimastat (BB-94)27, a broad spectrum matrix metalloprotease
inhibitor (IC50= 33 nM for MMP1328), and a specific MMP13
inhibitor pyrimidine-4,6-dicarboxylic acid, bis-(4-fluoro-3-
methyl-benzylamide) (IC50= 8 nM)29. Remarkably, both inhi-
bitors significantly decreased the detachment of HGPS-iPSC
SMCs cultured under arterial flow conditions (at least until day
12) (Fig. 4e), and this effect was much superior to that of lona-
farnib (Supplementary Fig. 7d) or inhibition through the pyr-
ophosphate calcification process30 (Supplementary Fig. 11c). To

confirm these results, HGPS-iPSC SMCs were subjected to siRNA
knockdown of MMP13 and cultured under arterial flow condi-
tions for 10 days (Fig. 4f, g). Our results show that the knock-
down of MMP13 in SMCs increased the stability of HGPS-iPSC
SMCs in flow culture conditions compared with non-treated
cells. We also analyzed the effects of MMP13 and BB94 inhibition
in HOZ mSMCs (Fig. 3e). Similar to what was observed with
HGPS-iPSC SMCs, the detachment was significantly delayed
when one of the inhibitors was used. To further demonstrate the
importance of MMP13 in HGPS-iPSC SMC detachment, we
enforced the expression of MMP13 in somatic SMCs (hVSMCs)
and cultured the modified cells in flow culture conditions
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Fig. 2 Expression of progeria and SMC markers in HGPSΔ2-iPSC SMCs. a gRNA directs Cas9 nuclease against mutated exon 11 of LMNA gene, upstream
the HGPS mutation, disrupting progerin, without altering lamin A and lamin C. Sanger sequencing for LMNA (NM_170707.4 transcript) exon 11 was
performed for: N-iPSCs, HGPS-iPSCs and HGPSΔ2-iPSCs, confirming the deletion of two-base pairs in the HGPSΔ2-iPSCs. b Expression of lamin A,
progerin, and SMC proteins monitored by immunofluorescence. Scale bar is 100 μm. n= 6 independent experiments. c Expression of progerin (LMNA
G608G gene) in HGPS and HGPSΔ2 cell lines. Results are mean ± SEM (n= 4 technical replicates from a pool of three independent experiments).
Statistical analyses were performed by a two-tailed unpaired Student’s t test. d Quantification of lamin A, progerin, dysmorphic nuclei, and nuclei blebbing.
Results are mean ± SEM (n= 6 independent experiments). **** denotes statistical significance (p < 0.0001). e Percentage of cells that have been
differentiated from HGPSΔ2-iPSCs that express SMC markers at protein level. Results are mean ± SEM (n= 5–6 independent experiments). f Number of
cells per surface (mm2) as quantified by high-content microscopy (at least three images (×10) have been quantified per time). The number of cells was
evaluated after 6 days under arterial flow and was normalized by the number of cells present at day 0. n > 3 images examined over three independent
experiments. g MMP13 mRNA transcripts quantified by qRT-PCR analyses in HGPS-iPSC SMCs or HGPSΔ2-iPSC SMCs cultured under flow conditions.
MMP13 mRNA transcripts were normalized by GAPDH. n= 4 technical replicates from a pool of three independent experiments. **, *** denote statistical
significance (p < 0.01, p < 0.001). Statistical analyses were performed by a two-tailed unpaired Student’s t test.
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(Supplementary Fig. 19). Notably, the number of cells observed at
day 7 is lower than the one observed in WT cells indicating that
some of the modified cells were lost during the flow culture
conditions.

We then asked whether the modulation of MMP13 activity
could affect progerin expression associated with the vulnerability
of HGPS-iPSC SMCs to flow shear stress. Interestingly, chemical

inhibition of MMP13 in HGPS-iPSC SMCs cultured for 7 days in
flow conditions reduced the percentage of progerin-positive cells
(Fig. 4h); however, it did not decrease progerin expression in cells
with high levels of progerin, such as HGPS fibroblasts. In
addition, the chemical inhibition of MMP13 did not reduce the
activity of alkaline phosphatase in HGPS-iPSC SMCs cultured for
7 days in flow conditions (Fig. 4i). Overall, the results obtained

0 12 24 36 48
0

25

50

75

100

125

150

Time (h)

%
 o

f a
dh

er
ed

 h
V

S
M

C
s

HGPS-iPSC SMC CM

N-iPSC SMC CM

Non
-tr

ea
te

d
BB94

M
M

P13
i

BB94

M
M

P13
i

0.0
0 40 40 40 4

0.5

1.0

1.5

2.0
N

or
m

al
iz

ed
 c

el
l n

um
be

r
to

 d
ay

 0

d7 d12

****
****

****
****

0

50

100

150

%
 o

f c
el

ls
 w

ith
 p

ro
ge

rin

HGPS fibroblasts

HGPS-iPSC SMCs 

MMP13 inhibition
– + – +

****
p < 0.0001

0.00

0.01

0.02

0.03

0.04

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n ***

No transfection 
siRNA control
siRNA MMP13

***

0

2

4

6

8

C
on

ce
nt

ra
tio

n 
of

M
M

P
13

 (
x1

0–4
, p

g/
ce

ll)

****

*
*

Time (days)

HGPS-iPSC SMCs
N-iPSC SMCs
hVSMCs
HGPS fibroblasts

p < 0.0001

p = 0.0156

p = 0.0417

EPS8

NR4A
3

PXK

OLF
M

L2
A

LI
PH

AM
TN

TNFAIP
6

ANGPTL4

EPPK1

SESN2

SGCG

M
M

P13
IB

SP
HAS3

COL6
A3

BGN

–4
–2
0
2
4
6
8

10

12
14

F
ol

d 
ch

an
ge

HGPS-iPSC SMCs

N-iPSC SMCs

***

****

***

**
***

****

**

*

**

** ***

**

****

*

****

p = 0.0023

–6 –4 –2 0 2 4 6

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

Log2 (fold change)

4 days Concentration of MMP13
Effect of media in the detachment of hVSMCs

MMP13 inhibition

4 – 12 days

Cell detachment
Progerin accumulation
Alkaline phosphatase activity

ec

b

d

f

7 10
0

10

20

30

40

Time (days)

F
ol

d 
of

 c
on

tr
ol

(t
ra

ns
fe

ct
ed

 w
ith

 c
on

tr
ol

 s
iR

N
A

) 

h i

0

1

2

3

4

5

A
lk

al
in

e 
ph

os
ph

at
as

e 
ac

tiv
ity

no
rm

al
iz

ed
 b

y 
ce

ll 
nu

m
be

r

MMP13 inhibition
+–

a

p
-v

al
ue

g

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17901-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4110 | https://doi.org/10.1038/s41467-020-17901-2 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


after chemical and genetic inhibition, the increase of MMP13
after flow shear stress and the effect of HGPS-iPSC SMC-
conditioned media on cell detachment, indicate that MMP13
mediates SMC loss.

Inhibition of MMP13 in LmnaG609G/G609G mice significantly
increased the number of SMCs in aortic arch. To confirm the
importance of MMP13 dysregulation in progeroid animal models,
we quantified MMP13 in the plasma of LmnaG609G/G609G and WT
mice (Fig. 5a). The results showed that the levels of MMP13 were
higher in mutant mice (Fig. 5b). Then, we asked whether the
inhibition of MMP13 in LmnaG609G/G609G mice could decrease
SMC loss. For this purpose, we generated double-mutant lines,
LmnaG609G/G609GMmp13−/− and LmnaG609G/G609GMmp13+/−

(Supplementary Fig. 20), and evaluated the heart rate and SMC loss
in the aortic arch20 of these mice at week 10 (Fig. 5a). Heart rate
was chosen as a measure of the overall health status of the HGPS
model and the derived double-mutant lines, given that bradycardia
was a clinical abnormality evidenced in both LmnaG609G/G609G

mouse as well as Zmpste 24−/− progeria mouse models20,31.
Both double-mutant mice showed higher heart rates (Fig. 5d)
and numbers of SMCs (Fig. 5c, e) in the aortic arch than
LmnaG609G/G609G Mmp13+/+ mice. Interestingly, LmnaG609G/G609G

Mmp13−/− and LmnaG609G/G609GMmp13+/− mice showed a lower
number of progerin-positive cells in the aortic arch than non-
mutated mice (Fig. 5c, f). In addition, LmnaG609G/G609GMmp13+/−

mice (but not LmnaG609G/G609GMmp13−/− mice) showed an
increase of the aortic media thickness being similar to the non-
mutated mice (Fig. 6a), as confirmed by orcein staining. We
performed proteomic analyses of aortic arches from mutated and
non-mutated mice (n ≥ 5 mice per strain) using data independent
acquisition mass spectrometry32,33. Principal component analysis
based on 2260 proteins detected showed that the proteome profiles
of aortic arches from LmnaG609G/G609GMmp13+/− mice were more
closely related to the profile of WT mice to that of LmnaG609G/
G609G Mmp13+/+ mice (Fig. 6c). From the 161 proteins differen-
tially expressed between the mutant and WT mice aortic arches (q
< 0.05 and abs(log2 fold change) > 0.58), ~25% of the proteins had
similar expression in LmnaG609G/G609GMmp13+/− mice and WT
mice (Fig. 6c and Supplementary Data 4).

Motivated by these results, we then tested a therapeutic
approach to reduce SMC loss in LmnaG609G/G609G Mmp13+/+

mice. For this purpose, we used Batimastat because human
safety has been previously demonstrated in clinical trials34.

LmnaG609G/G609G Mmp13+/+ mice at week 5 were intraperitoneal
(IP) injected five times a week (Fig. 7a). At week 10, Batimastat-
treated LmnaG609G/G609G Mmp13+/+ mice had similar heart rates
to non-treated animals (Fig. 7c); however, they showed higher
SMCs in the aortic arch than non-treated mice, as confirmed by
cell nuclei counts and verified by the increase levels of SMC
markers determined by qRT-PCR analyses (Fig. 7b, d, e). No
differences were observed between non-treated and Batimastat-
treated mice regarding progerin accumulation in the aortic arch
(Supplementary Figs. 20c). Overall, our data shows that the
in vivo inhibition of MMP13 by genetic or chemical interventions
yielded mice having significantly higher numbers of SMCs in the
aortic arch.

Activation of MMP13 is mediated by the activation of the
glycocalyx. The glycocalyx is a surface layer of proteoglycans and
glycosaminoglycans that are immobilized in the cell membrane.
Glycocalyx components have been shown to be involved in flow
shear stress sensing by SMCs35,36. To identify the mechanism
underlying the upregulation of MMP13 in HGPS-iPSC SMCs
cultured under arterial flow, we analyzed glycocalyx gene mRNA
transcripts (Fig. 8b). Interestingly, glycocalyx transcripts were
upregulated in HGPS-iPSC SMCs cultured under flow conditions
for 4 days (Fig. 8b). From these upregulated genes, syndecan 2
gene (SDC2), which encodes the transmembrane (type I) heparan
sulfate proteoglycan, was also upregulated in hVSMCs or N-iPSC
SMCs cultured for 4 days in flow conditions (Supplementary
Fig. 21). Because not all the glycocalyx mRNA transcripts were
upregulated in hVSMCs and N-iPSC SMCs, the results suggest
that the composition of glycocalyx is likely different in these cells
when compared with HGPS-iPSC SMCs. Next, we analyzed the
expression of heparan sulfate at the protein level. In contrast to
control cells, the expression of heparan sulfate increased when
HGPS-iPSC SMCs were cultured under flow conditions (Fig. 8a).
Importantly, the enzymatic cleavage of heparan sulfate by
heparinase III (Supplementary Fig. 22) decreased MMP13 con-
centration in the cell culture media (Fig. 8c) and significantly
decreased the detachment of HGPS-iPSC SMCs cultured under
flow conditions (Fig. 8d). Moreover, the enzymatic cleavage of
heparan sulfate slightly decreased alkaline phosphatase activity
(Fig. 8e).

To further investigate a potential ECM target of MMP13 in
SMCs, we monitored the expression of ECM components in
hVSMCs, HUAECs, N-iPSC SMCs, and HGPS-iPSC SMCs. Our

Fig. 4 MMP13 activity in HGPS-iPSC SMCs cultured under flow shear stress. a Volcano plot representing differentially expressed genes in HGPS-iPSC-
SMC cultured under flow conditions at day 0 and 4. Each point represents one of 53,617 genes. 26 and 31 genes were upregulated (red; fold change≥ 3;
p < 0.001) and downregulated (yellow; fold change≤ 3; p < 0.001), respectively. Graph shows qRT-PCR validation for 16 genes with fold changes >3. Fold
change was between days 0 and 4. Gene expression was normalized by the housekeeping gene GAPDH. Results are mean ± SEM, n= 4 technical replicates
from a pool of three independent experiments. Statistical analyses were performed by a two-tailed unpaired Student’s t test. b Schematic representation of
the experimental protocol used. c Effect of HGPS-iPSC SMC or N-iPSC SMCs conditioned media (in both cases obtained after 4 days under flow
conditions) on hVSMCs cultured under flow conditions. n= 1–5 images examined over three independent experiments. d Quantification of MMP13 activity
(cell culture media) by ELISA. Cells were analyzed at days 0 and 4 under flow. Fluorescence signal was normalized by cell number. n= 3 independent
experiments. Statistical analyses were performed by a two-tailed unpaired Student’s t test. e Effect of MMP13 or BB94 inhibition in HGPS-iPSC SMC
detachment. The number of cells was evaluated after 7 and 12 days under arterial flow and was normalized by the number of cells present at day 0. n= 3–5
images examined over three independent experiments. Statistical analyses were performed by one-way ANOVA followed by Newman–Keuls’s post test.
fMMP13 knockdown by siRNA in HGPS-iPSC SMCs. MMP13 mRNA transcripts were quantified by qRT-PCR and normalized by GAPDH. Mean ± SEM (n= 4
technical replicates from a pool of three independent experiments). Statistical analyses were performed by one-way ANOVA followed by Newman–Keuls’s
post test. g Number of cells per microfluidic area during culture under flow shear conditions normalized by the number of cells in control experimental
groups (i.e., cells transfected with control siRNA). n= 7 independent experiments for day 7 and n= 6 independent experiments for day 10. h Percentage of
progerin-positive cells after 7 days under flow conditions with SmGM-2 media supplemented or not with MMP13 inhibitor. n= 1–5 images examined over
three independent experiments. Statistical analyses were performed by a two-tailed unpaired Student’s t test. i Activity of alkaline phosphatase in HGPS-
iPSCs-SMC normalized by cell number per mm2, in cells cultured 4 days under flow conditions. Cells were treated or not with MMP13 inhibitor. n= 3
independent experiments. In graphs a–h, results are mean ± SEM. *, **, ***, **** denote statistical significance (p < 0.05, p < 0.01, p < 0.001, p < 0.0001).
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Fig. 5 MMP13 inhibition significantly increases SMC number in aortic arch of LmnaG609G/G609G mice. a Schematic representation of the animal protocol.
WtWt, KiWt, KiHt, and KiKo mice (age: 10 weeks) were evaluated. b Quantification of MMP13 activity (plasma from WtWt, n= 9, and KiWt, n= 6, mice)
by ELISA. Fluorescence signal was normalized by mice weight. Statistical analyses were performed by a two-tailed unpaired Student’s t test. c
Immunofluorescence analyses in the aortic arch for α-SMA, progerin, and heparan sulfate (HS). Cell nuclei were stained with DAPI. Scale bar is 100 µm for
α-SMA staining and 50 µm for progerin and heparan sulfate staining. For α-SMA staining, n= 5 animals, except for KiHt (four animals). For progerin
staining, n= 5 animals, except for KiHt (three animals). For heparan sulfate n= 6 WtWt, n= 6 KiWt, n= 4 KiHt, and n= 5 for KiKo. d Heart rates in mice
(n= 8 WtWt, n= 6 KiWt, n= 7 KiHt, and n= 5 KiKo). Statistical analyses were performed by one-way ANOVA followed by Newman–Keuls’s post test.
e Number of SMC nuclei in aortic arch per tissue area (mm2) (n= 2–3 slides examined over five animals, except for KiHt (four animals)). Statistical
analyses were performed by a two-tailed unpaired Student’s t test. f Percentage of progerin-positive cells in SMCs. n= 5 animals, except for KiHt (three
animals). Statistical analyses were performed by one-way ANOVA followed by Newman–Keuls’s post test. g Expression of heparan sulfate as evaluated by
immunofluorescence. Intensity of heparan sulfate was calculated in each picture (at least 16 pictures per condition) and normalized by cell number mice
(n= 6 WtWt, n= 6 KiWt, n= 4, KiHt and n= 5 KiKo). In b, d–g, results are mean ± SEM. *, **, ***, **** denote statistical significance (p < 0.05, p < 0.01,
p < 0.001, p < 0.0001).
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results indicate that hVSMCs express higher levels of mRNA that
encode collagen 1A1, collagen 3A1, collagen 4A2, and collagen
6A3 than HUAECs (Supplementary Fig. 21c). It has been shown
that MMP13 degrades very efficiently the native helix of all
fibrillary collagens, including collagen type I37. Our proteomic
results indicate that indeed collagen 1A1 is upregulated in HGPS-
iPSC SMCs exposed to flow conditions (Supplementary Fig. 16b)
and thus it may be a potential target for MMP13. Overall, our

results indicate that activation of MMP13 is mediated, at least in
part, by glycocalyx activation.

Discussion
In this study, we developed a microfluidic chip formed by a
monoculture or a co-culture of HGPS-SMCs (generated from
iPSCs) with ECs to study the reason underlying HGPS-SMC
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vulnerability to flow shear stress. To generate the chip, we (i)
developed a protocol to differentiate HGPS-iPSCs into functional
HGPS-SMCs, (ii) demonstrated that HGPS-iPSC SMCs shared
similar properties with other known progerin-expressing cells,
(iii) confirmed that HGPS-iPSC SMCs were vulnerable to arterial
flow shear stress, and (iv) validated the results in ex vivo SMCs
isolated from LmnaG609G/G609G mice. Using the chip, we have
identified MMP13 upregulation as an important mediator of
HGPS-SMC vulnerability to flow shear stress and we confirmed
MMP13’s role in vivo in LmnaG609G/G609G mice (Fig. 8f). MMP13
is upregulated in a number of pathological states including
atherosclerosis and rheumatoid arthritis38. The upregulation of
MMP13 in HGPS-SMCs cultured under arterial flow conditions
is in line with examples in the literature showing that enzymatic
ECM remodeling is significantly altered in HGPS cells39–41.

Multiple protocols have been described in the literature for the
differentiation of iPSCs into SMCs, either via an intermediate
progenitor stage or directed differentiation14,42–44. These proto-
cols are highly variable in terms of SMC differentiation efficiency,
timescale, and functionality (nondividing contractile phenotype
vs. proliferative phenotype, secretory profile), likely due to the
choice of precursor population to derive the SMC subtypes, the
chemical composition of the differentiation medium, as well as
the choice of inductive SMC factors (e.g., PDGF-BB, TGF-β1,
retinoic acid). Three previous studies have reported the differ-
entiation of HGPS-iPSCs into SMCs7,9,45 by direct differentia-
tion7 or by using an intermediate progenitor (i.e., mesenchymal
stem cells45 or CD34+ cells9). In some cases, SMCs were not
terminally differentiated (as confirmed by the expression of
SMMHC)7, in others the percentage of SMCs was relatively low

Fig. 6 Proteins differentially expressed in the aortic arch at week 10 on wild-type and mutant (LmnaG609G/G609GMmp13−/− and LmnaG609G/
G609GMmp13+/−) mice. a Orcein-stained ascending aorta (elastic fibers stain in dark brown/black). Black arrow defines the internal elastic lamina while
the white arrow defines the adventitial border. Images illustrate morphological changes rather than aortic media thickness differences. KiWT mice show
less compact elastic lamellae and higher irregular profiles of the elastic lamellae (labeled with *) than the other mice. Scale bar is 50 µm. In graph, aortic
media thickness was measured from the internal elastic lamina to the adventitial border. Black arrow defines the internal elastic lamina while the white
arrow defines the adventitial border. Results are mean ± SEM, n= 3 animals, except for KiHt (four animals). * denotes statistical significance (p < 0.05).
Statistical analyses were performed by one-way ANOVA followed by Newman–Keuls’s post test. b Principal component analysis (PCA) of proteome
profiles obtained from aortic arches of wild-type (WtWt) and mutant (KiWt, KiHt, KiKo) mice. c Heatmap based on 161 protein groups differentially
expressed between KiWt and WtWt mice, in aortic arch, at week 10 (q < 0.05 and abs(log2 fold change) > 0.58). Progerin is a mutated protein and thus
not identified by the mass spectrometry. MMP13 is a secreted protein and the levels in cells were not detectable by mass spectrometry. For comparison
purposes, the protein fold changes of WtWt vs. KiHt and WtWt vs. KIKo were included in the heatmap. Blue color indicates proteins downregulated in
KiWt, KiHt, or KiKo as compared with WtWt, whereas red color corresponds to proteins upregulated in KiWt, KiHt, or KiKo as compared with WtWt. n= 6
for KiWt and n= 5 for WtWt, KiHt, and KiKo; age: 10 weeks.
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(i.e., only 50–60% of the differentiated cells showed specific SMC
markers including α-SMA, calponin, and SMMHC)45 and no
indication of SMC functionality9 (e.g., contractility, intracellular
accumulation of calcium after exposure to vasoactive agents) was
reported. In the present study, we showed that the differentiation
of HGPS-iPSCs induces the activation of the NOTCH signaling
pathway, a hallmark of progerin-expressing cells15. This is
observed in the CD34+ progenitor cells and after their differ-
entiation into SMCs. The CD34+ cells have been reported to
express KDR and CD3143 and, thus, are likely of lateral plate
mesoderm origin42,44. Importantly, the differentiated cells express
high levels of all the SMC markers analyzed (α-SMA, calponin
and SMMHC), are contractile in response to the muscarinic
receptor agonist, carbachol, as observed in typical human aortic
SMCs, and, when matured in culture for ~30 days, they express
progerin. Therefore, our differentiation protocol compares
favorably to other protocols in term of SMC yield and func-
tionality. Interestingly, HGPS-iPSC SMCs express lower levels of
calponin than in N-iPSC SMCs but the reason and possible

implications behind this phenotypic difference remain to be
determined. Nevertheless, most of the HGPS-iPSC SMCs
expressed calponin at the protein level, both at the induction and
maturation steps (Supplementary Figs. 3, 4). A previous study has
reported heterogeneous sized calponin 1-staining inclusion bodies
in the cytoplasm of HGPS-SMCs9; however, such structures were
not observed in the current study.

It has been reported that in WT animals the aorta was one of
the tissues with the highest expression of lamin A, while in
progeroid animals the aorta was the first place where progerin
was detected8. This explains the highest susceptibility of HGPS-
SMCs located in the aorta to biomechanical forces. It has been
reported that mouse SMCs overexpressing progerin exposed to
biomechanical forces detach from the culture vessel after sub-
strate stretching and die8. Yet, the mechanism of SMC detach-
ment is still poorly understood. Our study indicates that MMP13
mediates SMC detachment as chemical or genetic inhibition of
MMP13 reduces significantly SMC loss. In addition, we found
that the accumulation of progerin is a mediator and not the cause
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Fig. 8 MMP13 expression in SMCs is triggered by an increase in heparan sulfate. a Cells were cultured under flow conditions for 4 days and the
expression of heparan sulfate was evaluated by immunofluorescence. Intensity of heparan sulfate was calculated in each picture and normalized by cell
number. The normalized fluorescence intensity at day 4 was divided with the one at day 0. Scale bar is 10 μm. n > 4 images examined over six independent
experiments. Statistical analyses were performed by one-way ANOVA followed by Newman–Keuls’s post test. b Gene expression of glycocalyx markers
(SDC1: syndecan 1, SDC2: syndecan 2, SDC4: syndecan 4, GPC: glypican, PLC: perlecan), as evaluated by qRT-PCR, in HGPS-iPSC SMCs cultured under flow
conditions. Gene expression was normalized by the housekeeping gene GAPDH, and the normalized gene expression at day 4 divided by day 0. n= 3
technical replicates from a pool of three independent experiments. c HGPS-iPSCs-SMC cultured under flow condition were treated or not with heparinase
III and the number of cells per microfluidic area during culture was calculated and normalized by the number of cells present at day 2. n= 3 independent
experiments. Statistical analyses were performed by a two-tailed unpaired Student’s t test. d Quantification of MMP13 activity (cell culture media) by
ELISA. Cells were analyzed at day 4 under flow. Fluorescence signal was normalized by cell number and then by control experimental group. n > 9 images
examined over six independent experiments. Statistical analyses were performed by a two-tailed unpaired Student’s t test. e Expression of alkaline
phosphatase in HGPS-iPSCs SMC, normalized by cell number per mm2, in cells cultured 4 days under flow conditions. Cells were treated or not with
heparinase III. n= 2 technical replicates over three independent experiments. Statistical analyses were performed by a two-tailed unpaired Student’s t test.
In a–e, results are mean ± SEM. *, **, ***, **** denote statistical significance (p < 0.05, p < 0.01, p < 0.001, p < 0.0001). f Summary of the results.
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of SMC detachment because HGPS fibroblasts accumulate high
levels of progerin and do not detach in flow conditions. Yet, both
inhibition of progerin by morpholinos and the knockout of the
HGPS mutant allele in HGPS-SMCs decreased or prevented SMC
detachment in flow culture conditions.

Although LmnaG609G/G609GMmp13+/− and LmnaG609G/G609G

Mmp13−/− mice showed similar amelioration of SMCs loss in the
aortic arch, our proteomic analyses in the same tissue showed that
LmnaG609G/G609GMmp13+/− mice had a closer protein profile to
WT than LmnaG609G/G609GMmp13−/− mice. This was consistent
with the media thickness size, which was more similar between WT
mice and LmnaG609G/G609G Mmp13+/− than to LmnaG609G/G609G

Mmp13+/+ mice. Previous studies have shown that Mmp13−/−

mice had defects in vascularization46 and thus the full deficiency of
MMP13 in the aortic arch might not be desirable to establish a
phenotype closer to the normality.

The accumulation of proteoglycans in Progeria mouse mod-
els47 as well as in atherosclerotic lesions in HGPS individuals5 has
been demonstrated. According to our results, the upregulation of
MMP13 in HGPS-SMCs under flow conditions is mediated by
the upregulation of glycocalyx components, which have been
previously implicated as flow shear stress sensors35. The inhibi-
tion of components of glycocalyx by enzymatic treatment
decreases significantly the MMP13 levels, the osteogenic program
of SMCs and SMCs detachment. Although the connection
between MMP13 and glycocalyx has been shown previously for
non-disease SMCs, we show here that the accumulation of gly-
cocalyx is responsible for the MMP13 expression under shear
stress conditions, which subsequently leads to the loss of HGPS-
SMCs. It is possible that the activation of MMP13 expression
triggered by an upregulation of glycocalyx is mediated by the
phosphorylation of ERK and FAK and the activation of c-Jun
signaling pathway35 or mediated via NOTCH signaling path-
way48. Our in vivo results indicated that the expression of
heparan sulfate proteoglycans in the aortic arches at week 10 on
LmnaG609G/G609GMmp13+/+ mice was not statistically different
from the expression profile found in WT mice. It is possible
that further time is needed to see this upregulation as seen in
other progeroid animal models3,16 or in HGPS individuals5. Since
the upregulation of heparan sulfate was not observed in
LmnaG609G/G609GMmp13+/+ mice, it is not surprising that we
could not observe a statistical decrease in heparan sulfate in
LmnaG609G/G609GMmp13−/− mice.

The in vivo treatment results presented here using the MMP
inhibitor Batimastat open possibilities for the treatment of HGPS
and vascular aging49,50. Batimastat acts as an inhibitor of
metalloproteinase activity by binding the zinc ion in the active
site of MMPs. Batimastat has been used previously for the
treatment of human cancer (e.g., malignant ascites51 and
malignant pleural effusions34) with demonstrated results and few
side-effects in phase I/II clinical trials. Therefore, the current
study proposes Batimastat as a drug to be considered for future
Progeria trials. It should be noted that most of the compounds
identified so far in preclinical tests to treat Progeria have been
focused: (i) in the reduction of progerin quantities, by either
reducing its production or increasing its degradation; (ii) in the
reduction of progerin toxicity by targeting its aberrant prenyla-
tion: or (iii) in the identification of compounds capable of
restoring pathological phenotypes downstream of progerin
accumulation. Although these treatments showed encouraging
results in preclinical studies and, in some cases in clinical trials,
they do not address SMC loss over time. The administration of a
drug that prevents SMC loss in early stages of disease combined
with drugs that further reduce accumulation of progerin and
progerin toxicity could be of added value to extend the lives of
HGPS individuals.

Future studies should address the effect of SMC preservation
in large vessels in the lifespan of the animals. It is possible that
the prevention of SMC loss from the large arteries might be
insufficient to lead to a significant increase in animal lifespan.
Evidence collected at week 128 (before the LmnaG609G/G609G died
of progeria disease) in a therapy that ameliorated SMC loss
showed no significant alterations in terms of body weight (which
is correlated with lifespan20). Our study performed for 10 weeks
showed also no significant changes in body weight (Supple-
mentary Fig. 20d) between LmnaG609G/G609GMmp13+/− mice
and LmnaG609G/G609GMmp13+/+ mice. Therefore, it is possible
that therapies which ameliorate SMC loss should be combined
with therapies that further reduce the level of progerin in cells of
the major organs, in particular the heart, which seems to present
electrical defects31. Another issue that deserves further investi-
gation is the relationship between MMP13 and progerin. Both
in vitro and in vivo results indicate that the silencing of MMP13
leads to a significant reduction of progerin in SMCs and the
reason for this pattern is presently not known. Overall, our study
demonstrates that the control of MMP13 expression decreases
the vulnerability of SMCs in large vessels and this strategy may
be of potential value to reduce the impact of the disease in
Progeria individuals.

Methods
iPSCs culture and differentiation. iPSCs were generated from HGPS skin fibro-
blasts provided by Coriell Institute and characterized according to Nissan et al.10.
iPSCs were derived using the Yamanaka’s original method with OCT4, KLF4,
SOX2, c-MYC, transferred using retroviral vectors. All HGPS cells were obtained
from Coriell Institute for Medical Research, which in turn were collected under
Institutional Review Board approval and individual informed consent (https://
www.coriell.org/0/Sections/Support/NIA/Model.aspx?PgId=351). HGPS-iPSCs
clone 1 (passages 43-51); HGPS-iPSCs clone 2 (passages 35-42), and N-iPSCs
(passages 30-35) were maintained on mitotically inactivated mouse embryonic
fibroblast (MEF) feeder layer, according to Ferreira et al.43. Culture medium for the
present work consisted of 80% KO-DMEM (Life Technologies), 0.5% L-glutamine
(Life Technologies), 0.2% β-mercaptoethanol (Sigma), 1% nonessential amino acids
(Invitrogen), and penicillin-streptomycin (50 U/mL:50 mg/mL) (Lonza), supple-
mented with 20% KnockOut™ Serum Replacement (Gibco®) and 10 ng/mL of b-
FGF (Peprotech). Colonies were expanded by routine passage every 3/4 days with
1-mg/ml collagenase type IV (Life Technologies). To induce EBs formation, the
iPSCs were treated with collagenase IV (1 mg/mL, Gibco) for 1 h and then trans-
ferred (2:1) to low attachment plates (Corning) containing 10 mL of differentiation
medium (80% KO-DMEM (Life Technologies), 20% fetal bovine serum (FBS,
Invitrogen), 0.5% L-glutamine (Life Technologies), 0.2% β-mercaptoethanol
(Sigma), 1% nonessential amino acids (Invitrogen), and penicillin-streptomycin
(50 U/mL:50 mg/mL) (Lonza)). EBs were cultured for 10 days at 37 °C, 5% CO2 in
a humidified atmosphere, with media changes every 2 days. CD34+ cells were
isolated from EBs at day 10 using MACS (Miltenyi Biotec). The percentage of
CD34+ cells in EBs was between 0.4 and 1.5%. Isolated cells were grown on 24-well
plates (~3 × 104 cells/cm2) coated with 0.1% gelatin in the presence of EGM-2
(Lonza) supplemented with PDGFBB (50 ng/mL, Prepotech). After four passages,
the medium was replaced by Smooth Muscle Growth Medium-2 (SmGM-2)
(Lonza CC-3182) (maturation medium), for additional four passages. hVSMCs
(Lonza) were used as controls for the differentiation studies. Cell cultures were
maintained at 37 °C, 5% CO2 in a humidified atmosphere, with media changed
every 2 days. A step-by-step protocol can be found at Protocol Exchange52.

Cell culture under arterial flow conditions. A suspension of HGPS-iPSC SMCs
(clone 1), HGPS-iPSC SMCs (clone 2), N-iPSC SMCs, hVSMCs, or HGPS fibro-
blasts between 5 × 104 and 1.3 × 105 cells/cm2 was applied to the entry port of an
IBIDI channel (µ-Slide I 0,4 Luer, or µ-Slide VI 0,4 Luer, IBIDI) and allowed to flow
inside by capillary force. After 4 h, a confluent cell layer was formed, which was
then perfused with SmGM-2 medium or fibroblasts medium (DMEM supple-
mented with FBS (20%, v/v, Gibco), sodium pyruvate (Sigma, 1 mM) and
penicillin-streptomycin (50 U/mL:50 mg/mL)) at physiological flow rate (20 dyne/
cm2). Unless specified, all tests were performed at days 0 and 4 on flow culture
conditions. Cell number and cell clumps were determined on slides stained with
DAPI (20×) and normalized by image area (0.3524 mm2). Cell clumps areas were
evaluated by ImageJ software.

MMP activity. MMP activity was quantified on cell extracts by a fluorometric
red assay kit (Abcam). Cell extracts were obtained by incubating the cells with
Triton X-100 (0.5%, v/v, in PBS, Sigma) for ~15 min, the cells were centrifuged
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and the supernatant collected. Part of cell extract (25 µL) was added to 4-
aminophenylmercuric acetate (25 µL, 2 mM) and incubated for 40 min at 37 °C.
Then, a MMP red substrate (50 µL) was added to the mixture and the fluores-
cence intensity measured in a fluorimeter (Ex/Em= 540/590 nm) after 1 h, at
room temperature. An ELISA kit was used to quantify the expression of MMP13
protein. Cell culture media collected from different experiments and plasma from
WtWt and KiWt mice was used for MMP13 quantification (MMP13 human
ELISA kit from Abcam and Mmp13 mouse ELISA kit from USCN) according to
manufacture recommendation. Briefly, standard or sample (100 µL) was added to
each well and incubated for 1 h at 37 °C. Then, solutions were aspirated and
detection reagent A (100 µL) was added and incubated for 1 h at 37 °C. After
washing three times, detection reagent B (100 µL) was added, incubated 30 min at
37 °C and washed five times. Substrate solution (90 µL) was then added and left to
incubate for 10–20 min at 37 °C. Finally, stop solution was added to the wells (50
µL) and the absorbance of the solution monitored at 450 nm.

Glycocalyx analyses. To quantify the intensity of heparan sulfate, cells were
stained with heparan sulfate (1:50 for staining, 10E4 Epitope, USBiological) as
described in supplementary information. ImageJ software was used to quantify the
overall intensity of each image, which was then normalized for cell number.
Heparinase III from Flavobacterium heparinum (Sigma), was used for the enzy-
matical degradation of heparan sulfate. Briefly, HGPS-iPSC-SMCs cultured under
flow condition during 4 days were subjected to heparinase III treatment (0.5 U/ml
for 30 min at 37 °C), and the number of cells per microfluidic area during culture
was calculated.

Treatment of LmnaG609G/G609G mice with Batimastat. Sixteen LmnaG609G/G609G

mice (male and female) were used. After sex and body weight randomization,
animals were allocated in different groups and treated with vehicle (eight
LmnaG609G/G609G control mice) or BB94 inhibitor (eight LmnaG609G/G609G mice
treated with Batimastat in vehicle solution). IP injections were used to administrate
30 mg/kg/day of BB94 at 3 mg/mL in PBS containing 0.01% Tween 80. The
treatment was administered five times per week during 6 weeks (from week 5 to
week 10). The treatment duration was reduced from 10 to 6 weeks due to intra-
abdominal accumulation of BB94 (precipitate). At the end of week 10 the mice
were sacrificed, and the selected parameters were evaluated.

Double mutant generation and heart rate monitoring. LmnaG609G/G609G mice
present infertility as described by Osorio and colleagues, therefore the LmnaG609G/
G609G Mmp13−/− mice (KiKO) were generated from LmnaG609G/+ and Mmp13−/+

heterozygous (in a C57BL/6 background) as our colony founders (F0). The off-
spring presenting the LmnaG609G/+ Mmp13−/+ (F1) were used for further back-
crossing to generate the Progeria double mutants (KiKO) and Progeria control
(KiWT) genotypes used in the present study. All mice were bred in-house in
ventilated cages in a temperature and humidity-controlled room with a 12-h light/
dark cycle. The founder LmnaG609G/+ mice were a kind gift from Dr Lopez-Otin20.

Genotyping analyses were performed to select those mice carrying the
LmnaG609G mutation in homozygosis and the MMP13 deficiency or WT genes.
Briefly, DNA was obtained from tails using the PureLink® Genomic DNA Mini Kit
(Invitrogen) and DNA yields used for the PCR reaction using the Platinum®Taq
DNA Polymerase (Invitrogen) and a combination of custom-designed
oligonucleotides for the amplification of the Lmna and Mmp13 genes. PCR
products were run in agarose gels with RedSafe Nucleic Acid Staining Solution
(Labotaq) for detecting the amplified Lmna DNA fragments (G609G allele at 240
bp and WT at 100 bp) and Mmp13 fragments (KO at 1485 bp and WT at 1300 bp).

For heart rate monitoring mice were anesthetized with isoflurane (5% induction
and 2% maintenance in oxygen) and a mouse paw pulse sensor (Kent Scientific
Corporation) placed in the hindlimb paws until stable heart beats were detected
and recorded by the PhysioSuiteTM noninvasive monitoring system (Kent
Scientific Corporation). During the procedure and until mice recovered from
anesthesia body temperature was controlled with a heating pad.

All procedures were approved by the Ethics Committee of Animal
Experimentation (CCEA 57/16) of the Vall d'Hebron Research Institute and were
conducted in compliance with Spanish legislation and in accordance with the
Directives of the European Union.

Proteomic analysis of aortic arches from WT and mutant mice. Formalin-fixed
and paraffin-embedded slices of aortic arch (4 um) were processed for mass
spectrometry analysis as described in the Supplementary Material Information and
according to Heinze et al.33. The obtained peptides were analyzed using Data
Independent Acquisition53 on an Orbitrap Fusion Lumos mass spectrometer
(Thermo Fisher) connected online with a Waters nanoAcquity UPLC system
(details regarding instrument settings and data acquisition parameters can be
found in the Supplementary Information). Spectral library generation, data pro-
cessing, and differential expression analysis were performed in Spectronaut 11
(Biognosys AG) using default settings. PCA analysis based on the protein report
table exported from Spectronaut was performed using R version 3.5.0. Data are
available via ProteomeXchange with identifier PXD011652.

Statistical analysis. Statistical analyses were performed with GraphPad Prism
software. Statistical significance was analyzed using two-tailed unpaired Student’s t
test between two different groups. For multiple comparisons, a one-way ANOVA
analysis followed by Newman–Keuls post test was performed. Results were con-
sidered significant when p < 0.05. Data are shown as mean ± SEM unless other
specification.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The microarray datasets generated during and/or analyzed during the current study are
available in the GEO/NCBI (GEO accession: GSE108368). The mass spectrometry
proteomics data that support the findings of this study have been deposited in the
ProteomeXchange Consortium via the PRIDE54 partner repository with the dataset
identifier PXD011652. The mass spectrometry proteomics (Tandem Mass Tags—TMT)
data have been deposited to the ProteomeXchange Consortium via the PRIDE54 partner
repository with the dataset identifier PXD019316. Databases used: Uniprot database
(Swissprot entry only, release 2016_01, 16,747 entries); CellAge database (http://
genomics.senescence.info/cells/). The authors declare that the data supporting the
findings of this study are available within the paper and its supplementary information
files. All the figures have associated source data. No restriction is applied to the data
presented. Source data are provided with this paper.
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