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INTRODUCTION

AGEING is a universal human feature. It is
not surprising then that since the dawn of

civilization many have sought to avoid it. From
the Babylonian epic of Gilgamesh, to Ponce de
Leon seeking the “Fountain of Youth,” count-
less people have dreamed of finding a way to
avoid ageing, to no avail. In modern times, de-
spite major advances in technology, there con-

tinues to be no proven way of delaying human
ageing.1 Yet the search continues. In this re-
view, we present one of the latest candidates:
the enzyme telomerase, capable of elongating
the tips of chromosomes, the telomeres. We
first introduce the research that led to the sug-
gestion telomeres may be involved in ageing
and later discuss whether telomerase may or
not be a likely candidate for anti-ageing re-
search.
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ABSTRACT

Since ageing is a universal human feature, it is not surprising that, from the Babylonian epic
of Gilgamesh to Ponce de Leon seeking the “Fountain of Youth,” countless people have
dreamed of finding a way to avoid ageing, to no avail. Yet the search continues. In this re-
view, we present one of the latest candidates: the enzyme telomerase, capable of elongating
the tips of chromosomes, the telomeres. Research into the causes of cellular ageing estab-
lished the telomeres as the molecular clock that counts the number of times cells divide and
triggers cellular senescence. Herein, we review arguments both in favor and against the use
of telomerase as an anti-ageing therapy. The importance of the telomeres in cellular ageing,
the low or non-existent levels of telomerase activity in human tissues, and the ability of telo-
merase to immortalize human cells suggest that telomerase can be used as an anti-ageing ther-
apy. On the other hand, recent experiments in mice have raised doubts whether telomerase
affects organismal ageing. Results from human cells expressing telomerase have also sug-
gested telomerase may promote tumorigenesis. We conclude that, though telomerase may be
used in regenerative medicine and to treat specific diseases, it is unlikely to become a source
of anti-ageing therapies.
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CELLULAR AGEING REGULATION BY
THE TELOMERES

In 1961, Leonard Hayflick and Paul Moor-
head discovered that human cells derived from
embryonic tissues can only divide a finite num-
ber of times in culture.2 They noticed that cell
cultures stopped dividing after an average of
fifty cumulative population doublings (CPDs).
This phenomenon is known as Hayflick’s limit,
phase III phenomenon, or, as it will be called
herein, replicative senescence (RS). RS demon-
strates how age changes may have a cellular
origin and so understanding the mechanisms
behind cellular ageing could help explain hu-
man ageing.

Hayflick and Moorhead worked with fibro-
blasts, a cell type found in connective tissue,
but RS has been described in other cell types:
keratinocytes, endothelial cells, lymphocytes,
chondrocytes, etc. In addition, RS occurs in
cells derived from either embryonic tissues or
from adults of all ages. RS is also witnessed in
cells taken from many animals, including mice,
chickens, and Galapagos tortoise.3 In fact, early
studies suggested a relation between the num-
ber of CPDs cells undergo in culture and the
longevity of the species from which the cells
were derived. For example, cells from the Gala-
pagos tortoise, which can live over a century,
divided about 110 times,4 while cells from the
short-lived mouse divided roughly 15 times.5,6

In addition, cells taken from patients with
progeroid syndromes—diseases resembling ac-
celerated ageing such as Werner’s syndrome
(WS)—endure far less CPDs than normal cells.7
Exceptions exist, and certain cell lines never
reach RS. As will be detailed ahead, these are
said to be “immortal” and include embryonic
stem cells and most cell lines derived from tu-
mours, such as HeLa cells.3

The difference between “mortal” and “im-
mortal” cells appears to lie in the telomeres:
non-coding regions at the tips of chromosomes
composed, in vertebrates, of repeated se-
quences of TTAGGG.8 Telomeres appear to
form duplex loops, called t-loops, that stabilize
or cap the telomeres. Initially, it was shown that
telomere shortening occurs as cells divide in
culture.9 A complex machinery maintains telo-
mere length and structure, of which a pivotal

player is telomerase. Telomerase is a reverse-
transcriptase enzyme that elongates the telo-
meres,10 thus counteracting the normal telomere
erosion. It has two components: an RNA com-
ponent11 and a catalytic subunit.12 Previously,
an association between telomere shortening,
telomerase, and the immortality of tumour cell
lines was already apparent.13 Yet the definitive
breakthrough came when it was shown that ex-
pression of the catalytic subunit of human telo-
merase (hTERT) in both retinal pigment ep-
ithelial cells and foreskin fibroblasts avoids
RS.14 Human cells immortalized with hTERT
divide vigorously, do not display biomarkers
of senescence, and do not show signs of trans-
formation.15,16 Even expression of hTERT in old
cells appears to reverse the loss of function
characteristic of senescent cells.17 It appears
that ectopic hTERT expression is sufficient to
restore telomerase activity in human cells18 and
that telomere length, not hTERT expression, is
the key in avoiding RS.19

All known immortal cell lines must stabilize
their telomeres.20 Tumour development, in
particular, is dependent on telomere stabiliza-
tion, normally by telomerase.21 In contrast,
telomerase inhibition can induce senescence in
cancer cells.22 Defects in telomere replication
have also been shown to trigger senescence in
unicellular organisms such as yeast23 and the
protozoan Tetrahymena.24 Telomere shortening
is now considered the main causal mechanism
of RS and telomere length appears to be the mo-
lecular clock that counts the CPDs cells endure
and triggers RS.25

TELOMERASE AS AN 
ANTI-AGEING THERAPY

Most, not all, human somatic tissues have no
detectable telomerase activity.26 For example,
in the bone marrow, hematopoietic cells ex-
press telomerase. Telomerase activity is higher
in primitive progenitor cells and then down-
regulated during proliferation and differentia-
tion.27 Other reports associate, normally low,
levels of telomerase activity with human stem
cells.28 On the other hand, human embryonic
cells and adult germ cells have been found to
express hTERT.29 Since normal somatic human
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tissues have low or no telomerase activity, it is
not surprising that telomere shortening has
been reported in vivo.30–32

hTERT expression immortalizes most, though
probably not all,33,34 human cell types.14 Even so,
the principle is that if telomerase can prevent
RS, it may also prevent cellular ageing in vivo
and serve as an anti-ageing therapy by increas-
ing the capacity for renewal. One study found
that the telomeric repair efficiency is lower in
cells from an old than in cells from a young
donor; and a slightly lower efficiency was also
reported in WS cells.35 It has been previously
reported that cells from WS patients have a
higher rate of telomere shortening.36 In addi-
tion, a recent study found a correlation between
telomere length and mortality in people over 60
years of age.37 As such, telomere dysfunction
may play a role in age-related debilitation.

The importance of the telomeres in RS, the
low or non-existent levels of telomerase activ-
ity in human tissues, and the ability of telo-
merase to immortalize human cells led to the
suggestion that telomerase will be used as an
anti-ageing therapy.38,39

RELATION BETWEEN REPLICATIVE
SENESCENCE AND AGEING

It is known that cells from older donors have
a slower proliferative capacity.3,40 This effect,
known as the latent period, appears to occur
because fewer cells are in the replication cycle,
not because they take longer to divide.41 There-
fore, changes occur with age at a cellular level.
In some tissues, such as the immune system,
decreased proliferative ability may play a role
in age-related degeneration.42 Even if RS is not
a faithful model of changes occurring in vivo,43

if similar mechanisms operate to limit cell func-
tion then RS may yield insights into ageing. For
instance, a small percentage of senescent cells
may interfere with tissue homeostasis and
function.44

Although it is clear that human ageing has,
at least in part, a cellular origin, the connection
between ageing and RS is not obvious. At least
post partum, there is no correlation between the
number of CPDs cells can endure and the age
of the donor.45 Studies in centenarians failed to

find differences in the CPDs cells from cente-
narians could endure.46 In addition, they raised
doubts on whether telomere shortening occurs
in vivo and whether senescence-associated
genes in vitro are also differentially expressed
in vivo.47 In fact, gene expression patterns show
differences between in vitro senescent cells and
cells from old donors.48 In addition, some types
of rat cells have also been claimed as capable
of evading RS.49,50

The relation between a species’ longevity
and the CPDs its cells can endure in vitro may
also be unrelated to ageing. Optimal culture
conditions vary from species to species. For in-
stance, O2 partial pressure can affect cellular
proliferation and recent results show that O2
limits the replicative capacity of murine fibro-
blasts.51 These results show that comparisons
between different species may be biased due to
inter-species differences in O2 sensitivity; in-
stead of showing maximum cellular proliferate
capacity, these results show O2 sensitivity.52 In
addition, since there is a positive correlation be-
tween body size and longevity,53 perhaps cells
taken from long-lived animals endure more
CPDs because of the difference in size, not due
to the difference in longevity.

TELOMERES AND ORGANISMAL
AGEING

Telomerase expression has been found in
lobsters and trout, two species in which ageing
remains undetected.54,55 On the other hand, in
the frog Xenopus laevis, an animal with a slow
rate of ageing,56 not only a great variation in
telomere length exists,57 but telomere length
can diminish from parents to offspring, despite
telomerase activity in germ cells, with no de-
tectable consequences.58 Chicken somatic tis-
sues express telomerase,59 but, overall, our
knowledge of telomere biology is limited re-
garding other species.60

No connection exists between mean telomere
length and mammalian ageing. Of all studied
primates, humans appear to have the shortest
telomeres and the longest lifespan.61 Mice also
have long telomeres and feature high telomer-
ase activity in many organs, in contrast to hu-
mans.62 Interestingly, inbred mice have longer
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telomeres than wild mice, suggesting telomere
length does not affect organismal longevity in
mice.63 Therefore, telomere length and/or telo-
merase activity do not explain why humans age
slower than other primates and mice.

Dyskeratosis congenita is an inherited dis-
ease involving skin and bone marrow failure.64

It is caused by a mutation in the DKC1 gene.
Intriguingly, the protein encoded by DKC1,
dyskerin, is a component of telomerase. Muta-
tions in the RNA component of telomerase are
associated with the autosomal dominant form
of dyskeratosis congenita.65 Families with this
form of the disease are more severely affected
in later generations, suggesting telomere short-
ening mechanisms are involved. Features of
dyskeratosis congenita include bone marrow
failure, which is the most usual cause of death,
abnormal skin pigmentation, leukoplakia, and
nail dystrophy.66

As judged from the phenotype of dysker-
atosis congenita and the telomerase knockout
mouse (see below), telomeres are crucial in
rapidly proliferating tissues but it is unclear
whether telomere shortening is involved in hu-
man ageing. It is possible, however, that telo-
mere shortening is involved in age-related de-
terioration. Despite having active telomerase,
the telomeres of lymphocytes shorten with
age.67 A decline in telomerase activity was also
found in blood mononuclear cells with age.68

Though mean telomere length at birth does not
correlate with longevity in birds, telomere
shortening in erythrocytes inversely correlates
with bird longevity. Telomere shortening in a
variety of tissues also correlates, though to a
lesser extent, with mammalian longevity.69,70

In fact, a correlation between erythrocyte
longevity and organismal longevity was pre-
viously shown, suggesting a decrease in the 
number of required cell divisions in long-lived 
animals.6 It is, of course, impossible to tell
whether increased telomere shortening is a
cause rather than a sign of pathology and age-
related debilitation.

Mice lacking telomerase were viable up to six
generations. Telomeres gradually shortened
leading to a number of pathologies, most no-
tably affecting highly proliferative tissues, and
cells from animals of generation four displayed
aneuploidy and other chromosomal aberra-

tions. Knocking out telomerase in mice through
deletion of its RNA component from the germ-
line, while not preventing cancer,71,72 appears
to increase cancer resistance73,74; alternative
telomere-lengthening mechanisms are likely
operating to stabilize the telomeres in these
cancer cells. On the other hand, telomerase
overexpression in mice promoted cancer de-
velopment but did not delay ageing or promote
longevity.75,76 Of course mice and humans may
feature different mechanisms of ageing, but
these results show that, at least in mice, telo-
merase does not delay ageing.

TELOMERASE ALTERS THE NORMAL
CELLULAR FUNCTIONS

Previously, experimental evidence raised
questions on whether telomerase could help tu-
morigenesis.77,78 Namely, telomerase stabilizes
the telomeres which promotes tumorigene-
sis.21,22,79 In addition, some reports suggest
telomerase favours tumorigenesis by a telo-
mere length-independent mechanism.80 For ex-
ample, a recent study found that hTERT ex-
pression in HDFs leads to an upregulation of
epiregulin, a potent growth factor involved in
tumorigenesis.81 Another recent study found
that telomerase modulates the expression of
growth-controlling genes to enhance cellular
proliferation,82 and thus hTERT-immortalized
cells may not be functionally equivalent to nor-
mal cells. In addition, recent results demon-
strate that hTERT-immortalized cell cultures
accumulate changes as they proliferate, sug-
gesting caution in the use of such cell lines for
tissue engineering.83 Taken together, these re-
sults suggest that telomerase activity promotes
tumorigenesis and so using hTERT for thera-
peutic purposes must be approached with
great caution.

DISCUSSION

The connection between the telomere sig-
nalling pathways and cancer is obvious.84 In
fact, telomerase activation has been associated
with skin malignancy as a result of exposure to
UV.85 Telomere shortening is most likely a tu-
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mour suppressor mechanism. Telomerase-neg-
ative mice are normal up to four generations,74

and telomerase overexpression does not alter
ageing in mice.76 On the other hand, telomer-
ase dysfunction in humans causes dyskeratosis
congenita.65 It is clear telomere dysfunction is
pivotal in RS86 and telomerase important in cel-
lular proliferation, but there is no evidence that
the telomeres are a causal mechanism in mam-
malian ageing.

As with replicative potential, telomere length
in vivo is very heterogeneous.87 Telomere short-
ening in vivo has been reported in skin cells,31

blood,68 and colon mucosa.30 Other studies
found weak correlations between donor age
and telomere length,32 while some studies
found no correlation.47,87,88 Moreover, long
telomeres have been found in cells from cente-
narians.89 Taken as a whole, these results indi-
cate that telomere length varies widely
amongst individuals and between different tis-
sues. Although telomere shortening appears to
occur in some tissues in vivo, there is little evi-
dence linking telomere shortening to ageing.
One hypothesis is that increased telomere
shortening in vivo is associated with age-related
pathologies because telomere shortening is a
biomarker of DNA damage.90 If so, then telo-
mere shortening witnessed in vivo would be an
effect rather than a cause of pathology.

As mentioned before, the relation between
RS and organismal ageing is unproven. Cellu-
lar immortality just means a cell population can
divide indefinitely but it does not mean that the
functional capacity and differentiation of cells
is preserved. In fact, many non-dividing cells
are essential to the organism. Thus, whether
telomere shortening plays a role in human age-
ing is debatable. Not only is it unproven that
telomerase can be used as an anti-ageing ther-
apy but some evidence suggests that hTERT
transient expression can occur in human cell
lines when necessary for regeneration,91 and
there is little evidence to suggest that further
hTERT expression is necessary in human tis-
sues.92,93 Importantly, telomerase may alter
the normal cellular functions and promote can-
cer. One possibility is using a transient telo-
merase activation in certain diseases—dysker-
atosis congenita being the most obvious
example—or cell lines with telomerase ex-

pression stringently controlled.94 In regenera-
tive medicine, telomerase expression may be
necessary95 and may be useful to treat a num-
ber of pathologies. For instance, cardiac mus-
cle regeneration may be fostered by telomer-
ase expression.96

In conclusion, telomerase is a dubious can-
didate for Fountain of Youth: though it may be
used in regenerative medicine or to treat spe-
cific diseases (e.g. dyskeratosis congenita or
even WS), we think telomerase is unlikely to
become a source of anti-ageing therapies.
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