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André Macedo1, João Pedro de Magalhães1* & George M. Church3*
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Large-scale RNAi-based screens are a major technology, but require adequate prioritization and
validation of candidate genes from the primary screen. In this work, we performed a large-scale pooled
shRNA screen in mouse embryonic stem cells (ESCs) to discover genes associated with oxidative stress
resistance and found several candidates. We then developed a bioinformatics pipeline to prioritize these
candidates incorporating effect sizes, functional enrichment analysis, interaction networks and gene
expression information. To validate candidates, we mixed normal cells with cells expressing the shRNA
coupled to a fluorescent protein, which allows control cells to be used as an internal standard, and thus
we could detect shRNAs with subtle effects. Although we did not identify genes associated with
oxidative stress resistance, as a proof-of-concept of our pipeline we demonstrate a detrimental role of
Edd1 silencing in ESC growth. Our methods may be useful for candidate gene prioritization of
large-scale RNAi-based screens.

S
tem cell self-renewal is the process by which stem cells divide to create undifferentiated stem cells to
maintain their numbers, generate differentiated progeny and create a stem cell pool which can be used
throughout the organism’s lifetime1,2. Stem cells play an important role in response to injury, acting as a

repair system, and in the maintenance/turnover of various tissues, and therefore maintenance of stem cell pools is
essential3. It has, however, been observed, in several tissue types, that the stem cells’ numbers, ability to self-renew,
and cellular proliferation decrease with age, possibly resulting in reduced function and tissue regenerative
capacity1 and maybe even contributing to the aging process4,5. It is thought that various factors contribute to
this age-associated cell loss, such as oxidative damage and loss of genomic integrity6-8. Therefore, understanding
stem cell self-renewal may have implications for aging, regenerative medicine and stem cell treatments.

Embryonic stem cells (ESCs), characterized by their ability to proliferate indefinitely in vitro (self-renewal) and
differentiate into cells of all three germ layers (pluripotency), are derived from the inner cell mass of the
bastocyst9,10. An equilibrium between survival, self-renewal and differentiation signals is essential for the growth
of ESCs11. Several signal transduction pathways have demonstrated an important role in ESC self-renewal, for
example the leukemia inhibitor factor (LIF), bone morphogenetic protein (BMP), mitogen-activated protein
kinase (MAPK) and Wnt pathways12–14. Additionally, pluripotency-associated transcription factors aid the con-
trol of self-renewal; at the core of the self-renewal transcription network are the homeodomain proteins Nanog,
Oct4 and the SRY-related HMG box containing protein Sox212,13.

Long-lived mutant worms often exhibit increased resistance to oxidative stress. This led to the hypothesis that
stress resistance is a biomarker of organismal longevity15. Cells from long-lived mammalian species are also
resistant to some forms of stress, such as oxidative stress induced by hydrogen peroxide16. Therefore, screening for
genes that enhance oxidative stress resistance may lead to the identification of novel genes related to aging and
longevity. This approach has been successfully demonstrated in worms17 whereas in mammals such studies are
missing.

Large-scale RNAi-based screens are a major technology to study cellular processes, including stem cell bio-
logy12,18–21. However, such screens have several bottlenecks and difficulties19,21. Specifically, given their noisy
nature, large-scale loss-of-function screens require adequate prioritization of candidate genes from the primary
screen. For example, bioinformatics methods such as network-based approaches are an emerging technique to
prioritize candidate genes22. Appropriate methods for validation of promising candidates is also essential given
that many loss-of-function phenotypes can be subtle.
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In this work, our aim was to perform a genetic screen for genes
associated with oxidative stress resistance. By employing mouse ESC,
we also aimed to gain insights into the molecular mechanisms
involved in stem cell self-renewal, pluripotency and the signaling
pathways responsible for differentiation. Understanding these
mechanisms is crucial to develop viable stem cell therapies, as well
as giving an insight into development, cancer and aging1,14.
Therefore, we performed an RNAi-based screen in ESCs for oxid-
ative stress resistance using the Hannon-Elledge Library and iden-
tified several candidates. We then developed a bioinformatics
pipeline to prioritize these candidates that not only takes into
account effect sizes but also incorporates functional enrichment ana-
lysis, interaction networks and gene expression information. To val-
idate candidates with modest effects on cell growth we employed a
flow cytometry-based proliferation assay. Although we failed to val-
idate genes associated with oxidative stress resistance, as proof-of-
principle of our pipeline, we demonstrate a detrimental role of Edd1
silencing in ESC growth. Our methods may be useful for candidate
gene prioritization of large-scale RNAi-based screens.

Results
Initial RNAi-based pooled screen for genes affecting resistance to
oxidative stress. An initial screen was performed to identify
candidate genes involved in the ability of ESC to survive under
oxidative stress. The screen employed the Hannon-Elledge whole-
genome shRNA library23; more specifically we used a fraction of the
library with 6,796 shRNAs. These shRNAs are integrated into the
genome, expressed from a promoter, and recognized as miRNAs in
the miRNA pathway, resulting in gene silencing of a desired gene23.
Since the library we used contained more than one shRNA per gene,
around 2,000 to 3,000 genes were targeted.

Mouse ESCs from the CCE line were virally transduced in triplic-
ate by adding a mixture of lentiviruses as vectors for the shRNAs
which integrated into the cells’ genome, approximately one copy per
cell. Following antibiotic selection, cell pellets were frozen to serve as
the initial time point. Then, for each replicate, cells were cultured for
two weeks with and without regular exposure to oxidative stress (see
Materials and Methods). The use of a control where cells proliferate
without being exposed to oxidative stress is necessary to eliminate
genes selected due to proliferation effects from the screen for oxid-
ative stress resistance. Genomic DNA was extracted from cells at the
end of the experiment and at the start (Figure 1). The DNA inte-
grated shRNA encoding sequences which were then PCR amplified
and gel extracted. The DNA isolated at the start of the experiment
was labeled with the Cy3 dye, and the Cy5 dye was used for the DNA
isolated at the end of the experiment. Both were hybridized to a
microarray using matching samples from the beginning and end of
the experiment.

The green and red signals were quantified from the microarray
and ratios ln(red signal/green signal) calculated. As such, the ln(red
signal/green signal) ratio of shRNAs knocking-down genes that have
a positive effect on cell growth will diminish due to this effect, while
shRNAs knocking down genes with a negative effect on cell growth
will increase. Similarly, for the experiment focused on oxidative
stress, the ln(red signal/green signal) ratio will indicate genes increas-
ing or decreasing susceptibility to oxidative stress. An outline of the
experiment is shown in Figure 1.

Prioritizing genes for experimental validation. A value counting
method was used to identify and rank significant genes, as this avoids
problems with outliers and minimizes the noise intrinsic to the
pooled screen. There will be considerable noise in the experiment,
resulting in fluctuations in the results across replicates, and our value
counting method for selecting candidates minimizes the impact of
such noise by not taking into account the effect sizes. As such, to
identify significant genes, for each probe we counted the number of

times the ln(red signal/green signal) exceeds a certain positive or
negative threshold and calculated the probability that this is a higher
number than expected by chance. A false discovery rate (FDR) was
estimated by scrambling (see Materials and Methods). Using this
approach, the results were not statistically significant for identifying
genes affecting susceptibility to oxidative stress (not shown). We
therefore decided to focus on testing candidate genes for association
with stem cell growth instead of for association with stress response.
Our results for stress resistance are given in the Supplementary
Dataset 1 if other researchers wish to further explore them.

For identifying candidate shRNAs with effects on cell growth, the
microarray results from all six experiments (three replicates where
cells proliferate and three where cells proliferate with stress expo-
sures; Figure 1) were combined in order to increase the statistical
power. Using the above value counting method, a cutoff of 5 (out of
6) significant replicates above or below the threshold yielded statist-
ically significant results at FDR , 0.05 (Table 1). In total, 23 over-
and 60 under-represented genes were identified as significant; 1–2
false positives would be expected at FDR , 0.05 which we think is
appropriate.

Another criterion for candidate gene prioritization was the asso-
ciation of a gene to Gene Ontology (GO) terms enriched among top

Figure 1 | Outline of the pooled screen to find genes associated with
susceptibility to oxidative stress. A. Mouse ESCs are transduced with

shRNAs and allowed to proliferate for two weeks in triplicate plus allowed

to proliferate for two weeks while being exposed to oxidative stress at

regular times in triplicate. B. Genomic DNA is extracted from cells at the

start and end of the experiment, shRNAs are PCR amplified and gel

extracted. C. Samples are labeled with dyes and hybridized to a microarray.

shRNAs enriched during the screen give a red spot while those depleted

give a green spot.
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hits from the screen (see Materials and Methods). The GO identifiers
and terms at a P-value of 0.005 (FDR 5 0.08 and 0.06 for over- and
under-represented genes respectively) are shown in the Supplemen-
tary Material Table 1. Briefly, for over-represented genes we obtained
categories related to phosphate, ATP and phosphorylation and for
under-represented the proteasome. To exclude any biases from a
pre-selection of genes for inclusion in the shRNA library, we also
employed the Database for Annotation, Visualization and Integrated
Discovery (DAVID)24 using default parameters and the genes on the
microarray as background. Searching for enriched pathways below a
FDR of 5%, MAPK signaling was found for over-represented genes,
the proteasome again for under-represented.

We used STRING to derive a network view of our top cell growth
results (see Supplementary Material Figure 1). While many proteins
were not or weakly connected, there were two distinct dense parts of
the network, one built around Tcf4, Pparg and including edges to
Hdac2 and Hdac3 and another around Psma1 and Psma5, strongly
linked to Pak1. We assumed that a gene with a high degree of con-
nectivity in the network strengthens evidence for the importance of
that gene in mechanisms related to stem cell growth.

To further select candidates to be experimentally tested, we took
into account if a gene was also significant at the 6of6 criterion (i.e.,
significant in 6 of the 6 replicates) or significant at the 5of6 criterion
with more than one probe and if it was associated with meaningful
GO-categories. As a meaningful GO-category we defined one that
describes a distinct cellular process, not a function that can be found
in many different pathways. Enriched meaningful functional cat-
egories were ‘‘cell differentiation’’, ‘‘apoptosis’’ and those related to
proteasome function (see Supplementary Material Table 1).

For over-represented candidates we selected Rnf31, Pkn2,
Map4k5, Csnk1a1 and Ppp3r2 since they all fulfilled the 6of6 cri-
terion, Clk1 because it was found significant by two probes and
Map3k1 for its central role in the network (6 connections) and its
functional association with ‘‘apoptotic mitochondrial changes’’.
Candidates for which the shRNA was under-represented after
2 weeks we chose Edd1, Hdac3, Phf17, Sqstm1, Mbd2 and Zxda since
they all were significant at the 6of6 criterion and were associated with
meaningful functional categories. Psma5 was chosen because it was
found significant by two probes and for its role in proteasome func-
tion and high degree (7 connections) in the network. Interestingly,
there was only a modest overlap with top genes from simply ranking
genes by average log changes (not shown).

We also checked the expression of the selected candidates in early
embryonic stages and stem cell lines in public datasets. If the express-
ion of a gene (more precisely: its percentile rank within the sample)
was at a low level for t 5 0 in a differentiation time course/for
undifferentiated cells and the level at other time points/in the embry-
oid body were clearly higher this raised doubts about whether the
gene is expressed in stem cell lines; if it was at background level for
most of the time points/also for the embryoid body we did not
directly assume this gene to be not expressed in embryonic stem cells
without further hints from other analyses. The results are shown in
the Supplementary Material Table 2. For all genes except Ppp3r2 and

Zxda there was at least one type of evidence for expression in embry-
onic stem cells; in other words, results from at least one of the data-
bases consulted suggested that the gene was expressed. Even though
the data do not unambiguously prove that Ppp3r2 and Zxda are not
expressed in stem cells, we excluded these genes from further valid-
ation. The final list of candidate genes is given in the Supplementary
Material Table 3.

Experimental validation of candidate genes by assaying for long-
term cell growth effects. Our initial analyses comparing the number
of cells plated to the number of cells after 3–5 days of growth were
unsuccessful (not shown). Briefly, the growth rates of cells for the
shRNA-transduced lines over this period was compared to that of
un-transduced cells using 3 replicates for each. These lines included
one expressing Firefly (FFL) shRNAs as a negative control and Oct4
and Psma1 shRNAs as positive controls. No significant changes in
the proliferation rate between the lines could be detected, and though
effects in positive controls were noticeable by visual inspection, often
the differences were not statistically significant (not shown).

A limitation of standard cell proliferation assays is that for mean-
ingful results the cells have to be in their exponential proliferation
phase when counted and splitting the cells is not possible without
considerably increasing variation. If sub-culturing was to be avoided,
rapidly growing cells like ESC could not be allowed to proliferate
longer than 3 or 4 days, even though a longer proliferation time
would lead to more significant results if cells could be kept in expo-
nential growth. Therefore we decided to optimize and employ an
assay where shRNA lines are mixed with wild-type (wt) cells as an
internal standard and monitor their ratio over a longer time. When
having an internal standard, splitting becomes possible since any
errors or variations in cell numbers between plates during splitting
will affect both cell lines.

We employed a construct containing the shRNA linked to
turboRFP. This way un-transduced cells were used as an internal
standard as these could be distinguished from cells expressing the
shRNA by means of fluorescence. In mixtures of transduced and un-
transduced cells the proliferation ratios between them are therefore
comparable even if different replicates are not plated at exactly the
same density or any factors (e.g. trypsinization) affect proliferation
or cell death.

Some shRNAs were not successfully cloned or were not available
from the Hannon-Elledge library and thus were excluded. For the
five remaining candidate genes (Map3k1, Pkn2, Edd1, Map4k5, and
Hdac3) and a positive control (Oct4), we mixed equal numbers of
cells expressing the shRNA with un-transduced cells and allowed
cells to proliferate for two weeks, taking regular measurements via
flow cytometry to estimate the ratio of cells expressing or not expres-
sing RFP. Cells transduced with FFL were used as negative control.
Apart from Oct4, our results showed a much stronger decrease of
fluorescent cells in the cell line transduced with the Edd1 shRNA
than in all other cell lines (Figure 2). After one week of proliferation
there is a 54% 6 17% SD decrease in fluorescent cells while after two
weeks a decrease in 81% 6 17% SD was observed.

Further validation and silencing of Edd1 determined by qPCR.
The finding that Edd1 silencing affected cell growth was then
repeated in triplicate by following the fluorescence loss of cells
expressing the Edd1 shRNA compared to the FFL line using fluo-
rescence microscopy. Clearly, fluorescence-positive cells become
depleted after only one week of proliferation (Figure 3). This result
was highly reproducible and Su et al., (2011) recently reported
similar results25. Taken together, these results provide proof-of-
principle that our pipeline can detect biologically-relevant results.

qPCR was then used to determine that Edd1 was indeed being
silenced in cells expressing the Edd1 shRNA. Robust silencing
(nearly 10-fold) of Edd1 was observed, though it should be noticed

Table 1 | FDRs of candidate shRNAs found over- or under-repre-
sented at different criteria. See text for details and Supplementary
Material Dataset 2 for full results

# candidates FDR

overrep.: 4of6 117 0.158
overrep.: 5of6 23 0.050
overrep.: 6of6 6 0.005
underrep.: 4of6 216 0.100
underrep.: 5of6 60 0.024
underrep.: 6of6 10 0.003

www.nature.com/scientificreports
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that a modest, but significant, silencing of Edd1 was also observed in
FFL cells (see Supplementary Material Figure 2).

Discussion
RNAi-based screens in mammalian cells are an increasingly popular
tool for the identification of new genes involved in a number of
processes. Our experimental design entailed a drug selection step
to minimize noise from un-transduced cells, yet this means that
shRNAs with dramatic effects on cell proliferation may be depleted
by the time the experiments starts and will be missed. Initially, our
aim in this work was to identify genes associated with oxidative stress
resistance, with the ultimate aim of obtaining stress-resistant mouse
ESCs from which to make mice resistant to oxidative stress.
Unfortunately, the results for oxidative stress when eliminating cell
proliferation effects were not statistically significant, suggesting that
more replicates or a larger experimental scale are necessary for this
type of approach. It is possible that changes on a system level might
be caused by relatively small changes in individual genes. Another
hypothesis is that our initial library targeting genes relevant to cancer
research may be a contributing factor to our lack of hits related to
oxidative stress; a library focused on stress responses and metabolic
processes might have been more adequate.

Although our initial goal of identifying genes that affect suscept-
ibility to oxidative stress was not achieved, by treating all six micro-
arrays as replicates we found several candidate genes affecting cell
growth. From our shRNA library pooled screen we identified 23
over-represented and 60 under-represented shRNAs significantly
(FDRs , 0.05) altered in their abundance during cell proliferation
and whose respective target genes are candidates for cell growth
effects, respectively, by hindering and promoting cell growth. An
advantage of using a value counting method for selecting candidate
genes for validation is the insensitivity of this test to outliers. There
will be considerable noise in the experiment, resulting in fluctuations
in the results across replicates, and our value counting method for
selecting candidates minimizes the impact of such noise by not tak-
ing into account the effect sizes. We also employed GO categories
and network analyses to further prioritize candidate genes and tested
if genes were expressed at embryonic stages or in stem cells to further
refine our list of candidates.

By their association to (enriched) functional categories, the num-
ber of probes by which they were found and their degree in the
network of all genes targeted by these 83 shRNAs, we selected 10
candidates for which to validate their role in ESC growth. To assay
for modest proliferation effects, we employed a method using flow
cytometry to validate our shRNAs, similar to a multi-color competi-
tion-based assay previously reported26,27. The advantage of this flow
cytometry method over standard cell counting experiments is that it
combines control and experimental lines, which are under exactly
the same culture conditions and can be trypsinized. This in turn
allows cells to proliferate for a longer time, resulting in a better
signal-to-noise ratio. One potential caveat, however, is that trans-
duced cells might affect un-transduced cells secreting factors or other
cell-cell interactions.

Using the above method, we observed a marked decrease in fluor-
escence in our positive control (Oct4) and in Edd1 cells. Edd1 silen-
cing effects on cell growth were highly reproducible and cells with
Edd1 silenced clearly became depleted with continuing passaging.
The ortholog of the Drosophila hyperplastic disc gene (hyd), crucial
for cell proliferation during development in flies, Edd1 has been
found overexpressed in several cancers and is involved in regulation
of DNA damage responses, possibly via Chk228. Studies in other cell
types have shown that Edd1 regulates DNA damage checkpoints and

Figure 2 | Fluorescence ratio (log2-transformed) of Edd1 (green), Oct4 (red) and FFL (blue) cell lines over time (in hours); each symbol represents a
replicate.

Figure 3 | ESC expressing FFL and Edd1 shRNAs (together with RFP) in
bright field and fluorescence microscopy. At day 8 the decrease in

fluorescence in the Edd1 cells but not in the FFL cells is obvious.

www.nature.com/scientificreports
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its disruption can affect cell proliferation and cell cycle, often increas-
ing the percentage of mitotic cells but also inducing cell death28,29.
Edd1-deficient mouse embryos exhibited delayed growth accompan-
ied by a decrease in cell proliferation30, in line with our results. More
recently, a genetic screen in mouse ESC showed that Edd1 deficiency
resulted in growth defects25. Therefore, while our results are mostly
confirmatory, they provide proof-of-principle that our pipeline can
generate phenotypically-relevant results.

In conclusion, we performed an RNAi-based screen for oxidative
stress resistance that, although failing to identify genes associated
with resistance to oxidative stress, revealed candidates for effects
on cell growth which we prioritized with functional, integrative ana-
lyses. We developed a flow cytometry method for testing candidates
with high sensitivity from which we identified Edd1 as being crucial
for cell growth of ESCs. Our methods could be useful for further
studies and the role of Edd1 in ESC self-renewal warrants further
investigation.

Methods
shRNAs and vectors. A subset of the Hannon-Elledge library23 with 6,796 shRNAs
was employed. The genes targeted by this so called ‘‘focus library’’ were chosen with a
focus on cancer research (i.e. targeting genes involved in signaling, cell cycle, etc.,
where a phenotype was more likely from their knock-down), as described18. As a
negative control FFL (firefly luciferase) was used since the shRNA targeting FFL does
not have a target in murine cells. As positive controls known to affect ESC self-
renewal, shRNAs targeting Oct4 and Psma1 were used. The mixture of plasmids
containing these different shRNAs was obtained from S. Elledge.

The shRNAs used in this study are second generation, shRNA-mir, designed to
silence the specific candidate genes. These are originally contained in the Hannon-
Elledge library within a pSM2 vector20. They were transferred into pHAGE-Mir, a
lentiviral vector designed for efficient gene silencing in ES cells; see Supplementary
Material Figure 3 for a map of the vector. The pHAGE-Mir vector uses the pHAGE
lentiviral backbone31 and expresses a fluorescence marker turboRFP and the shRNA
in the same transcript. The RFP expression allows easy monitoring of the amount of
transduced cells by FACS analysis. Detailed structure and sequence of the pHAGE-
Mir vector will be described elsewhere. pHAGE also contains genes for ampicillin and
puromycin resistance for selection in bacteria and eukaryotic cells, respectively.

The inserts of cloned plasmids selected for validation were Sanger sequenced by the
University of Sheffield Core Genomics Facility sequencing service. The primer
sequence used was 5’-CACGAGATGGCTGTGGCCAAG-3’. The resulting sequence
was compared to the expected sequence as provided by the Elledge group.

Transfection of packaging cell line. The 293T packaging cell line32 was transfected
with vectors encoding virus particles and pHAGE-shRNA by lipofection with the
TransIT-293 Transfection Reagent (Mirus) according to manufacturer’s instructions.
We transfected plasmids at ratios of pHAGE-shRNA 5 PM2 5 Rev 5 Tat 5 VSVG 5

10 5 1 5 1 5 1 5 2, where PM2, Rev, Tat and VSVG stand for expression plasmids
coding for viral Gag-Pol, Rev, Tat and G-protein of the vesicular stomatitis virus
(VSVG). pMD2.G and psPAX2 (Addgene plasmids 12259 and 12260, respectively)
were used as packaging plasmids. Medium was changed the next day to DMEM-F12
(Gibco) with 10% FBS, penicillin and streptomycin. One day later if cells appeared to
be red due to the expression of turboRFP and (nearly) confluent the supernatant was
collected and used for transfection of ESCs. The supernatant contained replication-
incompetent lentivirus, as described31.

Viral infection of embryonic stem cells. Polybrene (Millipore) was added to the viral
supernatant to a final concentration of 4.5 mg/ml. ESCs were trypsinized and
8 million cells, according to counting with Coulter Counter Z1 (Beckman Coulter),
were resuspended in the viral supernatant and transferred to a 100 mm plate; this
procedure was done in triplicate (i.e., three independent infections were performed).
The multiplicity of infection (MOI) was 0.5–1, which means that at least 4 million
cells were initially transduced, and thus on average each shRNA is represented in
.550 cells (assuming a Poisson distribution, no shRNA is expected to be represented
in fewer than 450 clones). The plate was centrifuged at 2000 rpm at 25uC for 50 min
and cells were incubated at 37uC overnight. The medium was changed to ES-DMEM
the next day and to ES-DMEM with 2 mg/ml puromycin the day after. Cells were then
cultured as described below, keeping them on ES-DMEM with 2 mg/ml puromycin
for about 3 days until sufficient fluorescence intensities were reached and uninfected
control plates exhibited widespread mortality. Cells were allowed to recover from the
stress induced by puromycin selection for 2 days before proceeding with the
experiments.

ESC culture. Feeder-independent mouse ESCs of the CCE line33 at around
50–70 passages were cultured on gelatin-coated plates in ESC-qualified Dulbecco’s
modified Eagle’s medium (ES-DMEM) in a 37uC and 5% CO2 incubator, as described
before12. ES-DMEM was made up from KO-DMEM (Invitrogen), 15% FBS
(HyClone), 2 mM GlutaMAX (Invitrogen), 1 mM non-essential amino acids

(Invitrogen), 50 U/ml Pen 1 50 mg/ml Strep (Invitrogen), 100 mMb-mercaptoetanol
(Invitrogen) and 1000 U/ml of LIF (Millipore). Cells were split at about 80%
confluence about every other day and medium changed every day in between. Cells
were regularly checked for signs of differentiation or infection under an inverted light
microscope.

Design of pooled screen. Day 0 was defined as 6 days after transduction, when
8.5 million cells were employed from each replicate, and cells were then allowed to
proliferate for two weeks. In the experiment for oxidative stress resistance, the same
procedure was performed, but during these two weeks, the cells were exposed every
other day to hydrogen peroxide (Sigma) at 1 mM for 2 hours, as previously
described34. Hydrogen peroxide was chosen because of its widespread use as a source
of oxidative stress; in fact, ES cells have been shown to be sensitive to oxidative stress
with hydrogen peroxide35. Oxidative stress with hydrogen peroxide was observed to
reduce cell numbers by 30% (1/2 7% SD) at 1 mM, 65% (1/2 4% SD) with 1.5 mM
and 91% (1/2 2% SD) with 2 mM; also see Supplementary Material Figure 4. An
oxidative stress with 1 mM hydrogen peroxide is therefore adequate because it results
in a moderate cell death; lower cell death would make it harder to detect resistant
clones while higher cell death would decrease the representation of each shRNA and
increase the noise in the experiment. Cells were grown in 100 mm plates. Both cell
proliferation and oxidative stress resistance experiments were done in triplicate.
Figure 1 provides an overview of the pooled screen.

Microarray to quantify shRNAs. Genomic DNA was extracted from cells at the start
and end of the pooled screen experiment and PCRs performed using primers binding
to the flanking regions of the shRNA; the primer sequences were TAGTGAA-
GCCACAGATGTA and TAATACGACTCACTATAGGGAGTGATTTAATTT-
ATACCATT. For each replicate, 80 mg of DNA were used by performing multiple
PCRs in parallel and later pooling the PCR products. Takara Hot-Start Taq DNA
Polymerase (Fisher Scientific) in a 100 ml reaction volume was used with: ,10 mg
DNA, 300 nM final concentration of each primer, DMSO 4% and Taq PCR buffer
and dNTP mixture at concentrations recommended by the manufacturer. The
amplification was performed as follows: 4 minutes at 95uC, followed by 36 cycles of
35 seconds at 94uC, 52 seconds at 52uC and 35 seconds at 72uC, followed by
10 minutes at 72uC. This amplified the different shRNA encoding sequences in
proportion to the amount this sequence was present in the cell population. Cy3 and
Cy5 were then incorporated to, respectively, DNA from cells at the start and end of the
experiment, hybridized to a custom-made microarray (Agilent), containing two
probes per shRNA in the library, and scanned using an Agilent microarray scanner,
according to the manufacturer’s instructions and as described18. Supplementary
Material Figures 5 and 6 show QC plots from the microarray data.

Processing of microarray data. Data from the two-color microarray was normalized
using Agilent G2567AA Feature Extraction software 9.1, following the
manufacturer’s instructions. Probes for which the signal of the green channel was
, 200 in at least 3 of 6 microarrays were removed to eliminate low confidence probes.
The maximum value for the green signal was around 295,000, the median around
1,300. After this selection, 8,845 of the original 12,288 probes were left.

The gene annotation and mappings were downloaded from Codex (http://
cancan.cshl.edu/cgi-bin/Codex/Codex.cgi). Probes for which annotation could not be
found (24 in total) were discarded from the analysis. Probes matching more than one
shRNA sequence were removed. The number of probes excluded during this pro-
cedure was 214.

Statistical analyses. Since there were two probes per shRNA on the microarray, the
two (if both passed the intensity threshold) were collapsed by calculating the mean for
each replicate. Mean value and standard deviation (STDEV) for the ln(red signal/
green signal) of each experiment over all probes were calculated. (Means were 20.09
to 20.04, standard deviations 0.98 to 1.16.) An shRNA was termed over-represented
if the ln(red signal/green signal) was above a certain threshold for a certain number of
replicates and under-represented if this number of replicates was below a certain
threshold. As threshold for each replicate mean 1 STDEV over all probes and mean
– STDEV respectively were chosen. Those probes for which (at least) 4, 5 or 6 of 6
(termed 4of6, 5of6 and 6of6 criterion) values for ln(red signal/green signal) were
above/below the mentioned thresholds were selected. (Microarrays from samples
subjected to stress and controls were treated as replicates for this purpose to increase
sample size). The occurrences of the number of different probes for shRNAs targeting
the same gene were also counted.

For all probes, 13% were above mean 1 STDEV, 14% were below mean - STDEV.
By chance the probability P of finding a probe at least 4, 5 or 6 times respectively
above/below mean 1/2 STDEV (called ‘‘4of6’’, ‘‘5of6’’ and ‘‘6of6’’ criterion) was
calculated using the cumulative binomial distribution:

P 5 12 Sx50
k21 (n

x)px* (12p)(n2x)

With p5 average probability over all probes to be above/below mean 1/2 STDEV;
k5 4, 5 or 6 respectively; n56.

By multiplying the probability of finding a probe at the given criterion by the total
number of probes one can estimate how many probes are expected to be found by
chance. Dividing the number of the found probes by those expected gives the false
discovery rate (FDR) which is shown on Table 1. The number of over- or under-
represented shRNA candidates closely resembles the number of candidate target
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genes, since only very few genes (7 for the 4of6 overrepresented, 8 for 4of6
underrepresented, 1 for 5of6 over- and under-represented each and 0 for the others)
met the criteria with more than one shRNA.

Functional enrichment analysis. Functional analysis was done by searching for GO
terms that were significantly more associated with over-/under-represented genes
than expected by chance. To add GO categories to the corresponding gene a list
mapping GO identifiers to all genes was downloaded from NCBI (ftp://
ftp.ncbi.nih.gov/gene/DATA/gene2go.gz; 25/08/2009) and all non-mouse genes were
discarded. All GO identifiers were added to the list of probes for over- and for under-
represented genes. It was counted how many over-represented and how many under-
represented genes were found for each GO identifier and how many for the complete
list of all genes after collapsing. Only GO identifiers with at least 3 corresponding
genes over-/under-represented were used for further analysis.

Significant GO terms were identified using a value counting approach, as prev-
iously described36. Briefly, the probability P that an equal or higher number of over- or
under-represented genes is found associated with a given GO identifier more often
than expected by chance was calculated using a binomial test:

P5 12 S0
k21 (n

x)px* (12p)(n2x)

Where k is the number of times a GO identifier was found associated with the
over-/under-represented genes, n is the number of times the GO identifier was found
associated with all genes and p the probability that GO identifiers were found over-/
under-represented. As such, p was calculated by dividing the sum of the number of
times all GO identifiers were found associated with over-/under-represented genes by
the sum of the number of times they were found associated with all genes.

To assess the significance of the found GO terms and find an appropriate cutoff for
P considering multiple hypothesis testing we scrambled the ln-ratios of each replicate
with respect to each other replicate. The analysis was repeated as with the
unscrambled files. Different cutoff values for P were tested to find reasonably low
FDRs.

As a complement to the above analysis, functional enrichment was studied among
over-represented and under-represented candidates from the 4of6 criterion using
DAVID24. Default options were used and genes represented on the microarray were
used as background.

Gene expression in embryonic stages or stem cells. Initially we tested the expression
of candidate genes in the Theiler Stage 4 (TS4) (Blastocyst, Inner cell mass apparent,
2–4 days post coitum (dpc)) and TS5 (Blastocyst (zona-free), 3–5.5 dpc) embryonic
stages according to the Mouse Genome Informatics website (http://
www.informatics.jax.org/expression.shtml). Afterwards, we checked the number of
expressed sequence tags (ESTs) at the Unigene website (http://
www.ncbi.nlm.nih.gov/unigene) for the candidates in the blastocyst stage and if not
found there in the morula and other embryonic tissues.

We also checked the candidate list for their expression values in the microarray
datasets GDS2666 and GDS2667, GDS2668 and GDS2669 as well as GDS2905 and
GDS2906 at the Gene Expression Omnibus (GEO). GDS2666 and GDS2667 compare
the gene expression in cells of the embryonic stem cell line R1 at different time points
towards differentiation to embryoid bodies, GDS2668 and GDS2669 do the same for
line J137. GDS2905 and GDS2906 compare gene expression in J1 stem cells and
embryoid bodies.

Network analysis. STRING (http://string-db.org/) is a database of physical and
functional protein interactions and can be employed to build a network from a gene
list based on this information. We used STRING 8.3 at default settings on a combined
list of genes over- or under-represented at the 4of6 criterion.

Proliferation assay by flow cytometry. To compare growth rates of transduced cells
to that of an internal standard of un-transduced cells we mixed them after
trypsinization at a ratio of 151 for a total of about 700,000 cells. Cell concentrations
were determined by counting with a Coulter Counter Z1 (Beckman Coulter) with the
lower threshold for particle size set to 0.8 mm.

For flow cytometry, cells were trypsinized and resuspended in about 2 ml of KO-
DMEM. To obtain a suspension of single cells samples were pipetted up and down
vigorously several times. Flow cytometry was performed on FACSCALIBUR (Becton
Dickinson (BD)), controlled by the Cell Quest Pro software, following the manu-
facturer’s instructions. In a first run a side scatter threshold separating presumably
intact cells from debris was identified and the same threshold applied in all further
runs; 10,000 cells above this threshold were measured per sample. The parameters
side scatter (SSC), forward scatter (FSC) and red fluorescence were recorded.

Flow cytometry data were analyzed with WinMDI version 2.9. On a dot plot of SSC
vs. FSC the cell population containing presumed living, single cells and excluding
dead cells and debris was gated. The same gate was applied for different samples
measured on the same day, but the best gate was selected at every day of measurement.
For the gated cells on a histogram displaying cell counts vs. fluorescence intensity
levels, positive and negative populations were separated at the minimum between
both peaks. The intensity value for the border between the peaks was chosen once and
kept for all further analyses and always coincided well with the minimum between the
peaks. The percentage of fluorescence positive to negative cells was given back by the
program. Cells transduced with a shRNA against FFL was used as a negative control
while against Oct4 was used a positive control in these experiments.

qPCR validation. Cells were pelleted and RNA extracted using the RNeasy (Qiagen)
standard protocol. The cDNA was generated using the superscript III first-strand
synthesis system (Invitrogen) for RT PCR according to the standard protocol (oligo
DT). The Edd1 sequence was obtained from Ensembl and the following primers were
designed using Perlprimer38: Forward: TGCCAAAGCTGAAGTATCTG; Reverse:
AATGTCCTGGTTAATGTGCTC. The primers were designed to cross an exon–
exon boundary to ensure RNA specificity. ACTB and GAPDH were used as reference
genes as they had been employed for this purpose in a previous study in murine ESC
(Willems et al., 2006). Standard curves were generated for each assay and indicated
that the efficiency of the assay was between 93% and 107% and the R2 value was
.0.98.

The q-PCR assays were all performed in triplicate using a TaqManTM ABI PRISM
7500 SDS (Applied Biosystems, Foster City, CA, USA) in 96-well plate format. A
25 ml reaction volume was used per well: 12.5 ml Brilliant II SYBRH Green Low ROX
QPCR Master Mix, 10.5 ml cDNA, 1 ml Forward primer (400 nM final conc.), 1 ml
Reverse primer (400 nM final conc.). The amplification was performed as follows:
10 minutes at 95uC, followed by 40 cycles of 30 seconds at 95uC and 1 minute at
60uC . The 22DDCt method39 was used to analyse the data, which allows to estimate
relative expression normalised by a reference gene.
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