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Cancer is an age-related disease, as incidence and mortality for most types of
cancer increase with age. However, how molecular alterations in tumors differ
among patients of different ages remains poorly understood. Recent studies
have shed light on the age-associated molecular landscapes in cancer. Here,
we summarize the main findings of these current studies, highlighting major
differences in the genomic, transcriptomic, epigenetic, and immunological land-
scapes between cancer in younger and older patients. Importantly, some cancer
driver genes are mutated more frequently in younger or older patients. We
discuss the potential roles of aging-related processes in shaping these age-
related differences in cancer. We further emphasize the remaining unsolved
questions that could provide important insights that will have implications in
personalized medicine.

Do cancers differ according to the patient’s age?

Aging (see Glossary) involves a progressive deterioration of physiological functions and an
increased risk of numerous diseases [1]. In particular, an exponential increase in cancer incidence
and mortality rate with age has long been recognized [2,3]. As the aging population continues to
rise, a better understanding of the relationship between aging and cancer is critically needed. In
addition, disparities between cancers in young and aged patients have also been observed [4].
For instance, breast cancer in younger patients tends to be more aggressive and is associated
with poorer survival [5], while the prognosis is worse in older ovarian cancer patients [6]. Several
studies have revealed distinct molecular characteristics of tumors in relation to age in various
cancer types, such as breast [7,8], prostate [9], and colorectal [10] cancers. These analyses,
however, focused on one cancer type and only a few molecular data types at a time. Recently,
four independent studies performed pan-cancer analyses to shed light on the age-associated
genomic, transcriptomic, and epigenomic patterns [11-14]. The age-related patterns of molecular
alterations might suggest differences in the oncogenic mechanisms concerning the patient’s age.
Another pan-cancer study focused on age-related markers of immune checkpoint blockade
(ICB) and a shift inimmune-cell-type abundance with age, which will be crucial for designing immu-
notherapy strategies [15]. Here, we summarize the major findings from these pan-cancer and
cancer-specific studies (Table S1 in the supplemental information online) and discuss potential
aging processes that might contribute to these differences in cancer molecular landscape.

Age-related genomic landscape in cancer

Age-related somatic mutation burden in tumors

Increased age is associated with higher somatic mutations (single-nucleotide variants and
small insertions/deletions) in most cancer types [11,12,14,16-18], with an estimated increase of
0.077 mutations per megabase per year [12]. The spontaneous deamination of 5-methylcytosine
to thymine (C>T) transitions, often referred to as the ‘clock-like’ mutational signature, dominates
this age-related increase in mutation load. Furthermore, DNA damage repair signatures are more
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likely to be found in older individuals [12]. The mutational signature related to APOBEC
(apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like family) cytidine deaminase
activity increases with age in melanoma [12] and prostate cancer [9]. In addition to somatic
mutations, somatic copy-number alterations (SCNAs) also increase as a function of age in
the pan-cancer analysis (Figure 1) [11,12]. Cancer-type-specific analyses revealed a significant
positive association between SCNA level and age in a few cancer types, including low-grade
glioma, endometrial, ovarian, and prostate cancers [11,12]. However, another study found a positive
association between SCNAs and age only in sarcoma [14]. This discrepancy might be due to the use
of a 50-year-old cutoff to separate young and old patients [14], in contrast to other studies that used
age as a continuous variable in their statistical model [11,12]. Tumors from older individuals tend to
accumulate more clonal mutations (i.e., mutations that arise earlier in tumor evolution) [12]. This
observation could correspond to an accumulation of somatic mutations with age occurring before
carcinogenesis, as recently reported in most noncancerous human tissues [19-21]. Further studies
are needed to elucidate how age affects clonal and subclonal mutations in cancer to better under-
stand the impact of age on cancer evolution.

While mutation load increases with age in most cancer types, lung adenocarcinoma and endo-
metrial cancer show an opposite trend. SCNAs also decrease with age in lung adenocarcinoma.
The fact that smokers were diagnosed with lung cancer at younger ages in The Cancer Genome
Atlas (TCGA) cohort potentially explains the negative association between age and somatic
mutation and SCNA in patients with lung cancer [11,12], although other unexplored causes are
likely to contribute as well. For endometrial cancer, tumors from younger patients showed a
higher proportion of the high microsatellite instability (MSI-H) subtype [22]. Furthermore,
mutations in DNA polymerase ¢ (POLE) and polymerase & (POLDT1) are found more often in
younger endometrial cancer patients [11,14,23]. Why the MSI-H and POLE/POLD1 mutation
subtypes occur more frequently in younger patients is, however, still unclear.

How somatic mutations in cancer driver genes differ according to age

Several cancer types display an age-associated mutational landscape in known cancer driver
genes. In other words, some driver genes are mutated more often in younger or older individuals
(Figure 1). A prominent example of this is a much higher frequency of mutations in isocitrate
dehydrogenase 1 (IDHT), alpha thalassemia/mental retardation syndrome X-linked gene
(ATRX), and tumor protein p53 (TP53) in younger glioma patients. These mutations are associ-
ated with the IDH-mutant subtype [11,12,14,24]. One study found that mutations in ATRX are
an age-dependent prognostic biomarker for low-grade glioma; such mutations are associated
with a poor outcome in younger patients but with better survival in older patients [12]. Conversely,
the IDH-wild-type subtype associated with copy-number losses of chromosome 10 (PTEN) and
gains of chromosome 7 (EGFR) is higher in older glioma patients [11,14,25]. As another example
already mentioned above, younger endometrial cancers are associated with MSI-H and POLE/
POLDT mutation subtypes with a high mutation load. Thus, younger patients contain a higher per-
centage of somatic mutations in cancer driver genes, including DNA-repair genes, PIBKCA (phos-
phatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit a), and growth factor signaling
pathways [13]. However, older endometrial tumors present a very high SCNA burden in sev-
eral regions, including regions harboring cancer driver genes [11], and are associated with poorer
survival than in younger patients [26].

Breast cancer is potentially the most well-characterized cancer in terms of age-associated
subtyping. A favorable prognostic estrogen receptor-positive (ER*) subtype is diagnosed more
often in older individuals, while an aggressive human epidermal growth factor receptor 2-positive
(HER2") subtype is more common in younger patients. In the PAM50 subtyping system, younger
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Glossary

Aging: while having multiple definitions,
aging can be broadly defined as a
complex, progressive process associated
with a decline in physiological function,
leading to increased susceptibility to
diseases and increased mortality.
Cancer driver gene: a gene in which
mutations are causally associated with
cancer progression.

Cellular senescence/senescent
cells: a stage of a cell in which
irreversible cell cycle arrest occurs in
response to different damaging stimuli.
Characteristics of senescent cells
include flattened and enlarged
morphology, resistance to apoptosis,
and secretion of cytokines, chemokines,
and proteinases [collectively called
senescence-associated secretory
phenotypes (SASPs)].

Immune checkpoint blockade (ICB):
a type of immunotherapy by targeting
checkpoint proteins that impair T cell
activation. Therefore, immune
checkpoint blockade therapy boosts the
ability of T cells to kill cancer cells.
Microsatellite instability (MSI): a
hypermutable phenotype caused by
impaired DNA mismatch repair activity.
Cancer types with a high prevalence of
MSI-high (MSI-H) tumors include endo-
metrial, colorectal, and stomach can-
cers.

Multi-omics: the integration of multiple
layers of data generated by high-
throughput techniques, such as geno-
mics, epigenomics, transcriptomics,
proteomics, and metabolomics.
Pan-cancer study/analysis: a study
that investigates molecular and cellular
similarities and differences across sev-
eral cancer types.

Somatic copy-number alteration
(SCNA): a somatic change that results
inthe gain or loss of copy numbers of the
affected chromosomal section.
Somatic mutation: an alteration in the
DNA sequence that occurs after fertili-
zation.

Structural variation: a genomic variant
that affects a large scale of the genome.
Structural variations are generally classi-
fied into five major types — deletions,
insertions, duplications, inversions, and
translocations. Deletions and insertions
are commonly referred to as copy-
number alterations.

Tissue microenvironment: the set of
cellular and noncellular components in a
tissue such as fibroblasts, endothelial
cells, pericytes, adipocytes, various
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women are diagnosed with more biologically aggressive HER2-enriched and basal-like subtypes
[27]. Luminal A tumors that have a better prognosis are more common in older women [4]. Regarding
somatic mutations, higher cadherin 1 (CDH7) mutations in older patients are observed [7,8,11,13].
The CDH1 mutation is highly enriched in the invasive lobular carcinoma subtype, which is more
common in older patients [28]. Mutations in PIKSCA also appear to increase in frequency with
age [29,30]. Breast cancer in younger patients is associated with higher TP53, GATA binding pro-
tein 3 (GATAS), and AT-rich interaction domain 1A (ARID1A) mutations [7,13,30,31]. Interestingly, a
recent report suggests that the age-associated differences in GATA3, ARID1A, and PIK3CA muta-
tions were only found in luminal A but not in other PAM50 subtypes [30].

The identification of age-related driver genes may be clinically relevant. For instance, PIK3CA
mutations, which are more commmon in older patients, correlate with a better treatment outcome
in early-stage breast cancer [32]. Next, mutations in GATAS3, a gene encoding transcription factor
that acts cooperatively with ER and is mutated more frequently in younger patients, could promote
tumor cell growth and associate with endocrine resistance [33]. Furthermore, lower GATA3 ex-
pression is associated with poor prognosis [34]. However, mutations in GATA3 can be both
gain-of-function and loss-of-function [35], and it remains unclear whether GATA3 acts as a
tumor suppressor or as an oncogene [36]. Therefore, further studies are required to better clarify
biological and clinical implications of GATA3 mutations in younger and older breast cancer patients.

For other cancer types, it has been reported that TRP53 and CTNNB7 mutations are more common
in younger colorectal cancer patients, while adenomatous polyposis coli (APC), Kirsten rat sarcoma
viral oncogene homolog (KRAS), and v-raf murine sarcoma viral oncogene homolog B1 (BRAF)
V600 mutations are higher in older patients [10,37,38]. By contrast, BRAF mutations, especially
BRAF V600, decrease with age in melanoma [39]. CDH1 mutations, which are higher in older
breast cancer patients, decrease with age in stomach cancer [11]. In prostate cancer, structural
variation breakpoints were highly enriched near gene regulatory regions such as active enhancers
in the early-onset but not late-onset prostate cancer [9].

Overall, somatic mutations in cancer driver genes do not uniformly distribute across age. These
age-related somatic mutations appear to be cancer-type specific. In addition, some mutations
display opposite trends in different cancers. Typically, mutations in BRAF V600 decline with
age in melanoma and increase in colorectal cancer. Mutations in BRAF V600 are an example of
age-related mutations that are clinically actionable targets with multiple approved drugs [14].
Additional investigation of age-related driver genes could shed light on the underlying biological
differences between tumors from younger and older groups and help improve treatment strategy.
In addition, further studies are needed to determine if the effectiveness of targeted drugs differs
according to patient’s age [4]. Besides, older patients often present with comorbidities and
may have specific therapeutic challenges [40]. In summary, the identification of age-related
somatic driver mutations and further investigation of these drivers could have a profound impact
in the clinical setting to improve treatment options for patients of different age groups.

Age-associated gene expression, epigenetic, and immunological landscape in
cancer

Age-associated gene expression and DNA methylation patterns

Several studies attempted to investigate age-related gene expression in cancer. In breast cancer,
an early study reported a higher expression of cell cycle-related genes in tumors from younger
than those from older ER* patients [41]. Recently, another work suggested that age-related
differentially expressed genes in breast cancer could partly be controlled by age-related changes
in estrogen signaling [42]. Pan-cancer studies reported that the amount of age-associated
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Figure 1. Age-associated differences in the cancer genome. Examples of cancer driver genes that display age-associated patterns in somatic mutations are shown
in the figure. Driver genes in blue represent genes that are mutated more frequently in younger patients, while those in red denote genes that are mutated more frequently in
older patients. Please note that this is not a comprehensive list of age-related somatic mutations in cancer driver genes. For more complete data, we refer to Table S1in the
online supplemental information online. Figure created with BioRender.com.

differentially expressed genes in cancer varies across tumor types. These genes are partly regu-
lated by age-associated DNA methylation changes [11,13,43]. One study used survival data and
the number of differentially expressed genes to classify cancers as age-associated and non-age-
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associated [13]. Age-associated cancer types include low-grade glioma, lung squamous cell car-
cinoma, thyroid adenocarcinoma, and cancers of female reproductive organs (breast, ovarian,
and endometrial). Notably, tumors from younger patients of age-associated cancers are associ-
ated with increased age acceleration as measured by the epigenetic clock. This was not ob-
served in non-age-associated cancers [13]. Nevertheless, the molecular mechanisms behind
this observation, and why such a feature is limited to only age-associated cancers, are unclear.

The observed age-related gene expression changes in tumors are associated with numerous
biological processes, such as extracellular matrix (ECM) organization, metabolism, development, sig-
naling pathways, and immune-related processes across various cancer types [7,8,11,13,14,43,44].
For instance, the expression of genes from immune-related pathways was lower in younger sar-
coma, low-grade glioma, and head and neck cancer [14]. As these results have been derived from
bulk RNA sequencing (RNA-seq) analyses, they likely incorporate changes not only from cancer
cells themselves but also from the aging tissue microenvironment [45]. The ever-increasing
data generated from single-cell RNA-seq (scRNA-seq) hold a great promise to resolve this issue.
For example, a recent study in mouse mammary gland revealed age-dependent alterations in cell
proportions and gene expression. These changes are potentially associated with pro-tumorigenic mi-
croenvironment properties, such as loss of ECM integrity, compromised endothelial barrier, and in-
creased production of proinflammatory cytokines [46]. Yet, to date, the comparison of gene
expression between tumors as a function of patient’s age using sScRNA-seq s still lacking.

Another critical question is how age-related somatic mutations in cancer driver genes alter age-
related transcriptional programs in cancer. Indeed, copy-number alterations usually correlate
with the expression of the affected genes [11,12]. However, the precise interplay between age-
related omic landscapes in cancer has not been comprehensively examined. We expect recently
designed single-cell dual- and tri-omics sequencing methods (e.g., G&T-seq [47], sCTrio-seq
[48]) or Genotyping of Transcriptomes (GoT) [49] to shed new light on such questions in the
near future. For instance, although not in the context of aging, scTrio-seq was able to measure
simultaneously the SCNAs, methylome, and transcriptome of individual hepatocellular carcinoma
cells and predict malignancy and metastasis potentials of different cell subpopulations [48].

Age-related changes of the immunological landscape in cancer

Aging is associated with a decline in immune system function (immunosenescence) and chronic
and persistent inflammation (inflammaging) [50,51]. Immunosenescence is linked with a decrease
inimmune cell ability to eliminate cancer cells, while inflammaging is associated with carcinogenesis
and cancer progression [52,53]. Thymic involution, the shrinkage of the thymus with age, could
partly be responsible for immunosenescence, by reducing T cell production and altering T cell
antigen receptor (TCR) diversity. Thus, thymic involution is thought to contribute to the rise of
cancer incidence with age [54]. Age-related changes in immune cell populations also contribute
to a shift of the immune landscape, notably via myeloid-bias differentiation, increase of natural killer
cells, decrease of naive T cells, and increase of memory T cells [55].

Immune-related pathways are enriched in age-related differentially expressed genes in several
cancers [11,13,14,43]. Although an increasing number of studies use scRNA-seq to explore
tumor immune landscape (e.g., [56]), the comparison of immune cell population between cancer
from younger and older patients has not been performed. To bridge this gap, a recent study used
deconvolution approaches to examine the relationship between age and immune cell proportions
in cancer from bulk RNA-seq data [13]. They suggested older age is associated with decreased
CD4" and CD8* T cells in breast and ovarian cancers and increased M2 macrophages in breast
and thyroid cancers. Furthermore, naive B cells decline, while plasma cells increase with age in
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breast cancer. Some of these patterns were also discovered by another study [14]. In addition,
immune gene signature analysis reported lower transforming growth factor (TGF)-3 and elevated
interferon (IFN)-y responses with age, corresponding to a better response in immunotherapy in
cancer from older patients [14]. Another recent deconvolution analysis reported a decrease in T
cell abundance, together with increased macrophage abundance in tumors from older patients
[15]. This study also investigated ICB biomarkers in relation to age across cancer types. Overall,
tumors from older patients have a higher mutation burden, increased expression, and decreased
promoter methylation of immune checkpoint genes. Therefore, older patients are more likely to
benefit from immunotherapy based on these biomarkers. By contrast, a decline in T cell abun-
dance with age might be related to reduced ICB efficiency. Future large-scale studies are needed
to shed light on the effects of age-related tumor immune landscape on ICB therapy.

Altogether, recent studies have investigated the age-related tumor immune landscape. Further
research using scRNA-seq to compare immune cell population and gene expression between
young and old tumors would complement existing studies. The interaction between cancer
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Figure 2. The contribution of the aging tissue microenvironment to cancer. Aging is associated with diverse alterations in the tissue microenvironment, many of
which have been shown to promote cancer progression. These processes include, but are not limited to, immune system aging, accumulation of senescent cells which
secrete inflammatory cytokines, reorganization of the extracellular matrix (ECM), and changes in circulatory factors such as hormones. Figure created with BioRender.com.

Abbreviations: NK cells, natural killer cells; SASP, senescence-associated secretory phenotype.

Trends in Cancer, November 2022, Vol. 8, No. 11~ 967


Image of Figure 2
http://BioRender.com
CellPress logo

¢? CellPress

cells and other cell types in the tumor microenvironment, including immune cells, could also be
different in patients of different ages. The advent of tools to analyze intercellular communication
and spatial transcriptomic is expected to advance our understanding of age-associated
immune-cancer crosstalk in tumors [57-59]. Finally, a better understanding of age-related
tumor immune infiltration is needed to prioritize cancer patients who will benefit from specific
immunotherapy [15,55].

How may aging processes contribute to age-related features of cancer?

The studies mentioned above clearly show that age does impact the molecular landscape of
cancer. In addition to somatic mutation accumulation with age, tissue microenvironment changes
during aging can contribute to cancer progression (Figure 2), as evidenced by mathematical
modeling and experimental studies [45,60-63]. Tumor microenvironment may have a profound
impact on the cancer genome landscape. For example, a recent study showed an association
between breast cancer microenvironment and genomic features [64]. Notably, shifts in ECM
organization and angiogenesis might have considerable effects on carcinogenesis and tumor
progression [45]. ECM organization-related genes are upregulated with age in normal kidneys
but are downregulated with age in clear-cell renal cell carcinoma (ccRCC) [44]. In addition, the
expression of angiogenesis-related genes also decreases with age in ccRCC. However, one
study found that angiogenesis-related genes are upregulated with age in glioblastoma [65],
again highlighting cancer-type-specific gene expression differences with age. It is possible that
age-related alterations in the tissue microenvironment might provide different selective advantages
for cancer cells containing distinct molecular alterations (Figure 3). This hypothesis is, however,
waliting for experimental evidence.

Several aging-related processes might contribute to creating a fertile ground for cancer. For
instance, senescent cells release proinflammatory cytokines, chemokines, and growth factors,
collectively known as senescence-associated secretory phenotypes (SASPs) [66]. The gene
expression signatures of cellular senescence increase with age in various human tissues
[67]. Although the SASP has been suggested to promote cancer initiation and progression
[66,68], how this process contributes to the progression of cancer cells harboring diverse molecular
landscapes is unknown. Likewise, systemic changes in circulating factors during aging, such as
hormones, can also influence cancer. A recent study suggested that a majority of age-related
differentially expressed genes in breast cancer are potentially regulated by age-dependent estrogen
signaling [42]. Another study showed that metabolic alterations with age increase methylmalonic
acid (MMA) in blood and promote cancer progression [69]. It remains to be investigated how
these aging-related processes affect the cancer molecular landscape in addition to their role in
facilitating cancer progression.

Concluding remarks and future perspectives

In addition to an increase in cancer incidence and mortality with age, tumors arising from patients
of different ages also show distinct characteristics and may relate to age-associated subtypes of
cancer. The studies mentioned above relied heavily on only a few large-scale datasets, primarily
TCGA[70], Genomics Evidence Neoplasia Information Exchange (AACR GENIE) [71], and Molec-
ular Taxonomy of Breast Cancer International Consortium (METABRIC) [72] (Table S1 in the sup-
plemental information online). Furthermore, the lack of consistency regarding age cutoffs
between studies impairs the reproducibility of the findings. Whereas the meaning of ‘young’
and ‘old’ groups may vary between analyses, other studies choose to analyze age as a continu-
ous variable. Thus, careful consideration should be taken when interpreting these data. More-
over, current datasets usually have limited numbers of samples from extreme age groups,
particularly from those 20-30 and 80-90 years old, obscuring the findings of the molecular
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Outstanding questions

What drives the differences in cancer
molecular landscape according to
patient’s age?

How do age-related changes in the
microenvironment, such as cellular
senescence, shape the age-related
molecular landscape of cancer? And
how does it relate to clinical outcomes?

How do cell-cell communications in
the tumor microenvironment, such as
through ligand-receptor interactions and
through small vesicles like exosomes,
differ according to age?

What are the differences in tumor
immune landscape according to age,
and how do these differences affect
response to immunotherapy?

How does age influence metastatic
patterns of cancer?
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Figure 3. Tissue microenvironment changes with age may contribute to the selection of cancer clones with
distinct phenotypes (hypothesis). What drives the age-associated differences in the cancer molecular landscape is
unknown. One potential explanation is that tissue microenvironment changes during aging might alter local selection
pressures to favor tumor clones driven by different oncogenic driver events (tumor clones with different colors in the
figure). This hypothesis is yet to be proven, however. Figure created with BioRender.com.

alterations specific to these age ranges. While results from the current studies are informative,
there is an urgent need for new multi-omic cancer datasets to both validate previous findings
and discover novel information.

Current studies have identified the differences in molecular landscape between cancer in younger
and older patients. Therefore, the logical next step is to understand why such differences emerge.
Indeed, it is also possible that we may still be missing unknown layers of biological and genomic
regulation that could be significant in aging and cancer. In addition, several important questions
remain to be elucidated (see Outstanding questions). For example, age-dependent metastatic
patterns have not been investigated. Novel experimental strategies, such as the use of mouse
models of different ages carrying cancer clones with distinct genotypes, and advances in sin-
gle-cell genomics, spatial omics, and statistical methods, are expected to improve our under-
standing of the impact of age on the cancer molecular landscape. This knowledge will,
ultimately, be helpful to inform treatment strategies for patients of different ages.
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