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Abstract: Osteoarthritis, the most common joint disorder, is characterised by deterioration of the
articular cartilage. Many studies have identified potential therapeutic targets, yet no effective
treatment has been determined. The aim of this study was to identify and rank osteoarthritis-
associated genes and micro-RNAs to prioritise those most integral to the disease. A systematic
meta-analysis of differentially expressed mRNA and micro-RNAs in human osteoarthritic cartilage
was conducted. Ingenuity pathway analysis identified cellular senescence as an enriched pathway,
confirmed by a significant overlap (p < 0.01) with cellular senescence drivers (CellAge Database). A
co-expression network was built using genes from the meta-analysis as seed nodes and combined
with micro-RNA targets and SNP datasets to construct a multi-source information network. This
accumulated and connected 1689 genes which were ranked based on node and edge aggregated
scores. These bioinformatic analyses were confirmed at the protein level by mass spectrometry
of the different zones of human osteoarthritic cartilage (superficial, middle, and deep) compared
to normal controls. This analysis, and subsequent experimental confirmation, revealed five novel
osteoarthritis-associated proteins (PPIB, ASS1, LHDB, TPI1, and ARPC4-TTLL3). Focusing future
studies on these novel targets may lead to new therapies for osteoarthritis.

Keywords: microRNA; osteoarthritis; cartilage; meta-analysis; mRNA; novel; joint; dysregulation;
proteomics

1. Introduction

Osteoarthritis (OA) is the most common musculoskeletal disorder and cause of chronic
disability in adults [1]. The main characteristic of OA is the deterioration of the articular car-
tilage, of which chondrocytes are the only cell type. The primary function of chondrocytes
is to maintain homeostasis of the extracellular matrix (ECM). During OA, chondrocytes
show aberrant phenotypes and actively produce cartilage-degrading enzymes, such as
matrix metalloproteinases (MMPs) and aggrecanases, which result in the destruction of the
ECM [2]. This change in phenotype is reflected at the mRNA level with various studies
having identified a number of differentially expressed genes, some of which can also be
seen at the protein level [3–5]. Despite research having identified a number of key genes and
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cellular pathways associated with the pathogenesis of OA, their potential as therapeutic
targets remains largely undetermined.

Micro-RNAs (miRNAs) are a class of small non-coding RNA molecules, approximately
22 nucleotides long, which bind to messenger RNAs (mRNA) and induce their degradation
or inhibit protein translation. They play a major role in regulating post-transcriptional
gene expression and therefore protein levels. miRNA dysregulation has been implicated in
OA development [6] and they are emerging as powerful regulatory molecules and novel
therapeutic agents. miRNAs often have hundreds of experimentally verified and/or pre-
dicted target genes, which can be accessed via public databases such as miRTarBase [7]
and TargetScan [8] and can therefore target multiple genes involved in a specific disease
process. It is thought that restoring physiological levels of miRNAs, via mimics or in-
hibitors, will allow for restoration of joint homeostasis and function. Although miRNA and
gene expression data are incredibly useful for understanding diseases, they are primarily
researched independently. Single nucleotide polymorphisms (SNPs)—a common genetic
variation where single nucleotides are substituted at a specific position in the genome—are
another important tool for identifying disease-causing genes [9]. The benefit of integrated
biological networks is that they combine these data and allow us to gain new insights into
the molecular interactions underlying diseases [10]. These networks can be used to identify
potential new genes that contribute towards a biological process or disease phenotype, and
aid in target prioritisation via a guilt-by-association approach [11].

The current study utilises a p-value-based meta-analysis of the literature to identify
miRNAs and mRNAs that are significantly dysregulated in OA cartilage. Subsequent
pathway enrichment, overlap, chondrocyte co-expression, and integrated network analysis
using a variety of input data is then used to identify novel OA-associated hub genes,
which are ranked and prioritised. It is anticipated that this research will highlight potential
important therapeutic targets and pathways that future research should focus on.

2. Results
2.1. p-Value-Based Meta-Analyses Identify 6 miRNAs and 207 mRNAs Differentially Expressed in
OA Cartilage

The PubMed search for studies on mRNA and miRNA expression in OA yielded
936 and 622 papers, respectively. Of these initial papers, 86 on miRNA expression and
30 on mRNA expression met our eligibility criteria (see Literature Search and Eligibility
Criteria in Methods). Studies on miRNA expression were subject to quality control based
on the inclusion of the miRNA in miRbase (v22; http://www.mirbase.org, accessed on
1 May 2020), resulting in 77 papers that were suitable for the meta-analysis. From these
papers, 411 miRNAs and 5166 mRNAs were extracted. The p-value-based meta-analysis
identified 6 miRNAs and 207 mRNAs as being significantly dysregulated in OA cartilage
compared to healthy tissue in three or more independent studies. The 20 top mRNAs are
shown below (Table 1) and the full list can be found in Supplementary Table S1.

Table 1. All miRNAs and the 20 most significant mRNAs found to be dysregulated in knee articular
cartilage of OA patients compared to controls in three or more independent studies.

miRNA/mRNA Summed Z-Score p-Value

DDIT4 −10.63912988 9.80 × 10−27

TXNIP −9.159840611 2.60 × 10−20

RPL23AP1 −8.608480816 3.70 × 10−18

C10orf10 −8.302559066 5.09 × 10−17

ANG 8.070197563 3.51 × 10−16

APOD −7.769000282 3.96 × 10−15

GPX3 −7.67384789 8.35 × 10−15

http://www.mirbase.org
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Table 1. Cont.

miRNA/mRNA Summed Z-Score p-Value

CEBPD −7.448716407 4.71 × 10−14

DLX5 −7.351922828 9.77 × 10−14

HOXA5 −7.319143505 1.25 × 10−13

GDF15 −7.277596172 1.70 × 10−13

PDK4 −7.26107927 1.92 × 10−13

CISH −7.150042437 4.34 × 10−13

SCNN1A 6.872376244 3.16 × 10−12

RND1 −6.869197998 3.23 × 10−12

CSNK2A2 −6.803140204 5.12 × 10−12

KLF15 −6.746554293 7.57 × 10−12

DCXR −6.740626982 7.89 × 10−12

miR−149 −4.31654501 7.92 × 10−6

miR−150−5p −3.679922531 1.17 × 10−4

miR−140 −3.628394273 1.43 × 10−4

miR−140−5p −3.598588637 1.60 × 10−4

miR−424−3p −3.396430809 3.41 × 10−4

miR−26a −3.099660248 9.69 × 10−4

A further 27 miRNAs were found to be differentially expressed in two or more inde-
pendent studies (Supplementary Table S2).

2.2. Ingenuity Pathway Analysis (IPA) of Significant mRNAs and miRNA Target Genes Reveals
12 Shared Chondrocyte Pathways Linked to OA, of Which Senescence Is the Most Significant

To determine the most significant cellular pathways linked to these dysregulated
mRNA and miRs, we performed pathway analysis (IPA) on the 207 dysregulated mRNAs
and on the target genes of the miRNAs identified from the meta-analysis. We identified
four common pathways between the dysregulated mRNA genes and miRNA target genes,
including senescence, p53 signalling, BEX2 signalling, and unfolded protein response
(Figure 1a). We next investigated further the most significant pathway of senescence and
showed that our lists of miRNA target genes, mRNAs, and their upstream regulators over-
lapped with genes shown to induce or inhibit senescence in vitro (CellAge genes) [12]. The
most significant overlap was between predicted upstream regulators of the differentially
expressed mRNAs identified in the meta-analysis and inducers of senescence (43% overlap).
Moreover, there was a 33.3% overlap between inhibitors of senescence and predicted up-
stream regulators of miRNA target genes (Figure 1b). All significantly enriched canonical
pathways identified by IPA in the list of significant miRNA target genes and mRNAs can
be found in Supplementary Tables S3 and S4, respectively.

2.3. Analysis of the Multi-Source Information Network Identifies and Ranks OA-Associated Hub
Genes, 32 of Which Are Confirmed in Mass-Spectrometry Data of OA Articular Cartilage vs.
Healthy Controls

An undirected and weighted chondrocyte co-expression network was built using
396 human chondrocyte samples (see ‘Chondrocyte expression matrix construction’ in
methods). This analysis allows the identification of novel genes that may not have been
associated with OA previously, but that are commonly co-expressed with OA-associated
genes identified from the meta-analysis. The meta-analysis genes were used as seed
nodes. First-order interactors were extracted alongside the OA genes and disconnected
components comprising less than 10 nodes were filtered out. The resulting network
contained 1463 unique nodes and 4972 edges shared across seven disconnected components
(including 142 OA seed nodes).
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Figure 1. (a) The 12 canonical pathways, determined by Ingenuity Pathway Analysis (IPA), that were
enriched for both the list of predicted miRNA target genes (green) and list of dysregulated mRNAs
(blue) identified from the meta-analysis. Pathways significantly enriched in both miRNA targets
and mRNAs are shown in bold. (b) A heatmap showing the overlap between miRNA target genes,
mRNAs, and their predicted upstream regulators, with genes that have been shown in vitro to either
induce or inhibit cellular senescence (CS). Numbers of overlapped genes are indicated in each cell.
* p < 0.01 Fisher’s exact test with Benjamini–Hochberg false discovery rate correction.

An integrated multi-source information (MI) network was then created by combining
the co-expression network with other data sources, such as miRNA target genes and SNPs.
In order to condense the topological information of the network to a node (gene)-specific
summary, the weighted degree was calculated, also known as the strength of each node,
which was taken as the MIGe for the Multi-source Information Gain (MIG) score and was
combined with the normalized integrated gene-specific information MIGn (see methods
for more details). This allowed us to make a total gene score based on both node and edge
aggregated score. The top 20 genes ranked by this score are listed in Table 2 and a list of all
1685 genes identified from the MI network can be found in Supplementary Table S5. Gene
scores of CellAge genes were also significantly higher when compared to non-CellAge gene
scores in the MI network (p = 0.0015).

Table 2. The top 20 OA-associated genes identified from the MI network. Genes are ranked by total
gene score—based on both node and edge aggregated score.

Gene Total Gene Score

APOD 0.769747271
PDK4 0.759162932

HNRNPH3 0.754176306
G0S2 0.727109931
CISH 0.726721385

GDF15 0.709522833
TXNIP 0.706369071
TIMP4 0.700535338
DDIT4 0.691347206
CALCA 0.690417491
RPL5 0.654961725

SCNN1A 0.652784123
UQCR10 0.645728211

GPX3 0.645571939
PLIN5 0.644970423
PRLR 0.62678813

CHI3L1 0.621938649
RND1 0.615125789

LIF 0.613030601
HOXA5 0.612272604
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These 1685 genes from the MI network were filtered for their inclusion in mass spec-
trometry (MS) data of dysregulated proteins in OA cartilage vs. healthy controls. Data
are available via ProteomeXchange with identifier PXD029116. This proteomic analysis
found 81, 46, and 29 dysregulated proteins in the superficial, middle, and deep cartilage
zones, respectively. Filtering for genes identified from the MI network revealed 32 common
proteins between the MS data and the MI network (Table 3). Seven mRNAs of these thirty-
two proteins were identified in the original meta-analysis, whereas the rest were found
via analysis of the MI network. Finally, five of the proteins (PPIB, ASS1, LDHB, TPI1, and
ARPC4-TTLL3) identified from the meta-analysis, that were experimentally confirmed via
inclusion in the proteomics data, have never been studied in OA before.

Table 3. OA-associated genes identified both at the mRNA level from the MI network analysis and at
the protein level by mass spectrometry. Negative and positive fold changes (FC) show down- and
upregulation in OA cartilage vs. control, respectively.

Gene Name
Integrated
Network
Ranking

Included in
Meta Analysis

Included in
CellAge
Database

Mass Spec OA Cartilage vs. Control

Superficial Zone
FC Middle Zone FC Deep Zone FC

APOD 1 TRUE FALSE −1.259817494 −2.410027844 −2.146022337
GPX3 14 TRUE FALSE −1.703092803

SERPINA1 35 TRUE FALSE −3.737089031 −2.102085205
PARK7 40 TRUE TRUE −2.178129473
ACAN 94 TRUE FALSE −1.918704064
TRPV4 104 TRUE FALSE −1.49270102 1.776227668
LDHA 105 TRUE FALSE −1.375252605 1.052821799
FBN1 133 FALSE FALSE 0.745264827 1.304169331
PPIB 1 283 FALSE TRUE 1.069319432
GSTP1 341 FALSE FALSE −1.643744729 −1.582648578

COL1A1 402 FALSE FALSE 1.49156546
CA1 454 FALSE FALSE −3.386795108

POSTN 467 FALSE FALSE 2.640518847
HP 595 FALSE FALSE −4.004374124

ANXA2 609 FALSE FALSE 0.832045847
RHOC 711 FALSE FALSE −1.796760511

LBP 766 FALSE FALSE −2.640551511
TGFBI 772 FALSE TRUE 1.923736073

RPS27A 857 FALSE FALSE −1.278041904
PRG4 997 FALSE FALSE −1.640433802
PGK1 1033 FALSE FALSE −1.104244463

ASS1 1 1099 FALSE FALSE −2.641457504
PRDX1 1144 FALSE FALSE −1.120350112 1.10599408
LDHB 1 1153 FALSE FALSE −1.358199289

COL12A1 1203 FALSE FALSE 1.574786097
ANXA5 1204 FALSE TRUE 0.881830367
TPI1 1 1214 FALSE FALSE −1.555403271
PKM 1267 FALSE TRUE 1.12886159

MATN3 1295 FALSE FALSE 2.766971378
ARPC4-TTLL3 1 1371 FALSE FALSE 1.386654494

A2M 1542 FALSE FALSE −2.854802653
PRDX2 1574 FALSE FALSE −3.152028639

1 Proteins that have never been associated with OA previously.

3. Discussion

Following a systematic literature search and data extraction, this study included a
p-value-based meta-analysis of data from all eligible miRNA and mRNA expression studies
in human OA cartilage versus healthy control tissue. We identified a list of OA-associated
genes and miRNAs, some of which were also confirmed to be modified at the protein level.
Using this MI network approach, a ranked system was established in order to prioritise
genes that future research can study for potential therapeutic targeting. In addition, this
study has identified novel OA-associated genes that were not found previously.
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As senescence was one of the most significantly OA-associated pathways shared be-
tween both the miRNA target genes and mRNAs, overlap analysis was performed with
genes included in the CellAge database [12]. These CellAge genes were compiled by a
systematic literature search of genetic manipulation studies whereby direct in vitro manip-
ulation of the gene in question resulted in induction or inhibition of cellular senescence.
Results of this analysis revealed highly significant overlaps, the most significant being
with predicted upstream inhibitors of the differentially expressed mRNAs and inducers
of cellular senescence. Furthermore, CellAge genes were found to score higher in the MI
network compared to non-CellAge genes, further highlighting the potential significance
of cellular senescence in the development or progression of OA. Senescent cells accumu-
late later in life and at sites of age-related pathologies, where they contribute to disease
onset and progression through complex cell autonomous and non-autonomous effects [13].
Previous research has shown that senescent chondrocytes not only accumulate with age
but are present at higher numbers in human OA cartilage compared with age-matched
healthy controls [14]. In fact, a clinical trial investigating whether the senolytic supple-
ment fisetinA reduces OA-associated pain and cartilage breakdown is due to begin in
2022 (NCT04770064). A key characteristic that distinguishes senescent cells from other cell
types is the upregulation of a combination of factors known as the ‘senescence-associated
secretory phenotype’ (SASP) [15]. The SASP contributes to fuel a state of chronic, systemic,
low-grade inflammation, known as ‘inflammaging’, and compromises a subset of genes
whose encoded secreted proteins include proinflammatory cytokines and chemokines,
growth factors, and proteases that can digest the ECM [16]. Overall, results of the over-
lap analyses corroborate this research, suggesting a strong association between OA and
cellular senescence.

One of the strengths of this study is that it increased the sample size by combining
all eligible data into one statistical test. This is particularly important as sample sizes
of individual miRNA studies are often small, especially as control healthy cartilage is
notoriously difficult to obtain. A co-expression network allows identification of genes
that tend to show a coordinated expression pattern across a group of samples, in this
case chondrocytes. However, hub-gene identification via co-expression networks has
limited power for identifying targets for follow-up studies [11]. We therefore enhanced
identification of important hub genes by integrated network analyses where additional data
sources were integrated to make a multi-source information (MI) network, with the aim
of prioritising genes on their importance to OA [10]. Finally, we confirmed our list of OA-
associated genes at the protein level using mass spectrometry data. It is known that articular
cartilage can be separated into distinct zones, namely, superficial, intermediate, and deep,
in which chondrocytes show distinct gene expression profiles and behaviours [17]. Thus,
separating these zones for proteomics analysis ensures location-specific changes in protein
levels is not under-represented compared to whole-cartilage samples.

Using this complex method, we have confirmed some well-studied OA-associated
genes, such as TIMP-4 (Tissue Inhibitor for Matrix Metalloproteinases 4), a potent Matrix
Metalloproteinases (MMP) inhibitor known to be expressed by chondrocytes [18]. Al-
though not as well-studied in OA as other TIMP family members, previous research has
demonstrated an increase in TIMP-4 in human knee synovium and expression in primary
hip and knee chondrocytes [19]. In addition, other commonly associated gene expression
changes were defined by our network analysis, such as aggrecan (ACAN), collagens 1
and 12, and lubricin (PRG4) [20]. As well as confirming well-studied OA genes, results of
the MI network found a few genes that have, to our knowledge, never been implicated
in OA previously (PPIB, ASS1, LDHB, TPI1, and ARPC4-TTLL3). This shows that there
may be many genes integral to OA pathogenesis that have yet to be identified in the tis-
sue, let alone studied. These novel genes warrant further investigation to understand the
complex disease more fully. Interestingly, PPIB has been implicated in the rare skeletal
disorder ‘osteogenesis imperfecta’ (OI), with a recent study reporting a rare pedigree with
an autosomal recessive OI caused by two novel PPIB mutations [21]. Moreover, lactate
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dehydrogenase (LDH) catalyses the interconversion of pyruvate and lactate, which are
critical fuel metabolites of skeletal muscle. Previous research found that LDHB expression
is induced by exercise in human muscle and that chronic activation of LDHB in skeletal
muscle triggers an adaptive oxidative muscle transformation, leading to increased exercise
capacity in muscle-specific LDHB transgenic murine models [22]. This is particularly inter-
esting as research is increasingly finding a relationship between OA and skeletal muscle
wasting [23]. This warrants further investigation into LDHB in both OA and surrounding
peri-articular muscles. TPI1 is another novel gene identified in this study as having a critical
role in skeletal muscle, where it is involved in oxidative pathways [24]. ASS1 encodes a
protein that catalyses the penultimate step of the arginine biosynthetic pathway, mutations
in which cause the life-threatening condition Citrullinemia [25], but has not, to our knowl-
edge, been implicated in diseases of the musculoskeletal system. Finally, ARPC4-TTLL3
functions as the actin-binding component of the Arp2/3 complex [26]. The fact that three
of the five novel genes identified from this study are implicated in skeletal muscle function
corroborates the idea that health of the peri-articular skeletal muscles may play an integral
role in OA pathogenesis.

Other genes identified by the network analysis have been previously linked to OA,
but have not been studied for their potential as biomarkers/therapeutic targets. For
example, Apolipoprotein D (APOD) was found to be downregulated in every zone of the
OA cartilage. It was also 1 of the 207 mRNAs identified as significantly dysregulated from
the meta-analysis and was the top-ranked gene of the MI network. Research has previously
implicated APOD as being an important gene in OA pathogenesis. For example, APOD is
strongly upregulated by retinoic acid [27], which is in turn regulated by ALDH1A2—an
OA risk locus [28]. In vitro studies have shown APOD to be upregulated upon SOX9
overexpression, a master transcription factor essential for cartilage ECM formation [29].
Furthermore, a recent study into the identification of knee OA genes shared by both cartilage
and synovial tissue proposed that APOD may manage OA through chondrogenesis in
articular cartilage and immune regulation in the synovium [30]. The high ranking of APOD
in the MI network makes it an interesting candidate for future studies into OA. In particular,
research should investigate its potential as a biomarker/drug target. Fibrillin-1 (FBN1)
was another gene that was discovered from analysis of the MI network whose encoded
protein was also found to be upregulated in the middle and deep zones of OA cartilage
according to the MS data. This is particularly interesting as FBN1 is the causative gene
of the inherited connective tissue disorder Marfan syndrome [31]. Moreover, it was 1 of
300 proteins identified via lectin-affinity chromatography in a previous study investigating
the proteome of human OA synovial fluid [32]. The fact that this gene encodes microfibrils
that play a structural role in all connective tissues, and mutations in which are known to
cause a disease of the musculoskeletal system, warrants further investigation of its role
in OA.

It should be noted that different methods of RNA extraction, miRNA expression mea-
surements, and statistical methods were not considered in this analysis. Hypothetically, the
impact of these variables could be investigated systematically, for example, by performing
sensitivity or meta-regression analyses. However, the current number of independent stud-
ies is too small to allow for this kind of analysis. Most of the studies used in this analysis
also did not report specific p-values in relation to the miRNA dysregulation. Rather, the
values were reported as “less than” a certain significance level (typically <0.05 or <0.001).
In these instances, the largest possible p-value was used (i.e., if it was reported at <0.05, the
p-value used in the analysis was 0.05). This conservative method may have prevented some
miRNAs that were on the verge of significance from being included in the study. Although
the sample size of analysis for each miRNA was increased by the meta-analysis method
used, ultimately the quality of the analysis is only as strong as the original publications.
As mentioned in the methods, quality control was conducted whereby some miRNAs and
publications were filtered out based on certain criteria. However, errors or limitations of
analysis in the original publications may remain. Moreover, research has suggested that
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there are reporting biases of differential gene expression in literature, including: prefer-
ential reporting of overexpressed rather than underexpressed genes as well as genes that
are popular in the biomedical literature at large [33]. As such, a critical mRNA that is
investigated by only one group worldwide may not make the cut in the present analysis
despite its potential importance to the disease pathogenesis. This bias is evident in the
results of this study. For example, miR-140 is probably the most researched and established
miRNA to date in terms of its relation to OA [34,35]. As its dysregulation has been very
well classified, research will often include it as a positive control. This is reflected in the
results of this meta-analysis, where miR-140, miR-140-3p, and miR-140-5p were all found
to be significantly dysregulated. However, miR-140 has also been shown to attenuate OA
progression via the inhibition of senescence in a recent study by [36]. This provides further
support for the downregulation of the miRNA observed in this meta-analysis, as well as
the association of its target genes with senescence.

A possible weakness of this study is that eligible studies often did not specify the stage
of OA of the tissue donor. As many of the samples came from total joint replacements, it is
assumed that a lot of the samples were from late-stage patients. Studies have shown that
different stages of OA development and severity have distinct gene and miRNA expression
patterns [37]. As such, the results may not adequately represent miRNA dysregulation in
early-stage OA.

4. Materials and Methods
4.1. Literature Search and Eligibility Criteria

A systematic literature search for miRNA and mRNA expression studies in human
OA cartilage was performed using PubMed (http://www.pubmed.gov (accessed on 1 May
2020)), applying the search terms “(microRNA OR miRNA OR miR OR micro-RNA) AND
(OA OR Osteoarthritis)” for the miRNA analysis, and “(OA OR osteoarthritis) AND (mRNA
OR gene) AND (expression) AND (human) AND (knee) NOT (synovium) NOT (murine)
NOT (meniscus)” for the mRNA analysis. Papers were assessed for eligibility using the
title, abstract, or full text, as necessary. Only articles published in peer-reviewed journals
and in English were considered. Papers were not filtered for publication date and were
only considered for eligibility provided they: (1) used human knee articular cartilage
tissue for analysis, (2) used control cartilage from non-OA patients, and (3) provided
the number of patients and significant p-values. A summary of eligible studies can be
found in Supplementary Tables S6 and S7 and an overview of the study design is depicted
in Figure 2.

4.2. Data Extraction and Quality Control

For each eligible paper, the first author’s name, year of publication, PubMed link,
city/country of origin, source of specimen, number of OA and control samples, p-values,
miRNA/mRNA names, and direction of dysregulation were extracted. For quality control,
the list of the extracted miRNAs was compared to those included on miRbase (v22; http:
//www.mirbase.org (accessed on 1 May 2020)). Any miRNAs that were not listed on
miRbase, had insufficient annotation, or corresponded with expired/non-human entries,
were excluded from further analysis.

4.3. p-Value-Based Meta-Analyses

A p-value-based method was used as it enables the combination of results when effect
size estimates and/or standard errors from individual studies are not freely available.
Meta-analyses were performed on p-values and directions of effects, providing the miRNA
or mRNA was identified as being significantly dysregulated in ≥3 independent studies, as
previously described [38]. To do so, a customised R Studio script was used to transform
p-values into signed z-scores using Stouffer’s method [39,40], which were then converted
to positive or negative values depending on the direction of expression (R script can be
found in Supplementary Table S8). Z-scores for each miRNA/mRNA were combined by

http://www.pubmed.gov
http://www.mirbase.org
http://www.mirbase.org
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calculating a weighted sum, with weights being proportional to the square root of the
effective sample size of the study.

Figure 2. A schematic overview of the study design.

4.4. CellAge Overlap

CellAge is a database of genes that can drive the senescence process [41]. Build 2
of CellAge [12] was overlapped with differentially expressed genes identified from the
OA meta-analysis. Significance was assessed using a two-tailed Fisher’s exact test with
Benjamini–Hochberg false discovery rate (FDR) correction.
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4.5. Chondrocyte Co-Expression Matrix and Network Construction

The undirected weighted protein-coding chondrocyte expression matrix was built
using 396 chondrocyte read count data obtained from recount2 [42]. The raw expression
data were normalized by quantile normalization method using Bioconductor in R Stu-
dio [43]. Protein-coding genes were obtained using Ensembl biomaRt version 101 [44]. The
mutual-rank method was used to obtain the top co-expressed partners for all 15,550 protein-
coding genes expressed in the chondrocyte data [45]. The mutual-rank cut-off value of
15 was used to filter the top co-expressed genes, resulting in 14,521 unique nodes and
61,222 edges. Networks were built and analysed using the R package igraph version
1.2.521 [46]. The chondrocyte co-expression network was filtered for OA genes identified
in the meta-analysis, alongside their first-order interactors. Since the network comprised
31 disconnected components, components with fewer than 10 nodes were filtered out.

4.6. Multi-Source Information Network Construction and Gene Rankings

Selected OA multi-source data were integrated by extending a previously proposed
methodology [10]. In total, three different sources of information were utilised: validated
miRNA targets (from miRTarBase [7]), the co-expression network, and OA-associated
SNPs. These individual networks were used to produce an MI network that is based on
the weighted sum of the pairwise weighted edge vectors (for each pair of genes), and
node-specific information from different sources was used to produce the weighted sum of
the nodal score. An overview of this methodology is depicted in Figure 3 and a detailed
description can be found in Supplementary Text S1.

Figure 3. A depiction of the multi-omic integration method used to create the MI network of
genes involved in OA. The circles represent the ‘nodes’ and the connecting line represents the ‘edge’.
‘w’ refers to the weight given to each source of data used to calculate the node and edge-specific scores.

4.7. Confirmation of Results with Mass Spectrometry Analysis

Results of the MI network were overlapped with label-free mass spectrometry pro-
teomics data of human OA articular cartilage compared to healthy controls (manuscript in
preparation). The mass spectrometry data have been deposited to the ProteomeXchange
Consortium via the PRIDE [47] partner repository with the dataset identifier PXD029116
and 10.6019/PXD029116.

5. Conclusions

OA is a progressive and debilitating disease and the most common cause of chronic
disability in adults. This study identifies 33 dysregulated miRNAs in human OA cartilage
which may present as good candidates for replacement or inhibition therapy, as well as
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207 differentially expressed mRNAs. Results of IPA and overlap analyses suggest a strong
association between OA and senescence, corroborating the idea that the accumulation
of senescent cells in cartilage contributes to the ECM degradation characteristic of OA.
The MI network approach used in this study to integrate multi-source data may help to
uncover important and novel genes involved in OA. Experimental confirmation of our
bioinformatic analyses, using mass spectrometry data, revealed 32 proteins that are signifi-
cantly differentially expressed in human OA cartilage. By using a range of bioinformatic
methods, this study enabled the ranking, prioritisation, and experimental confirmation
of novel OA-associated genes and their encoded proteins. Ultimately, this will allow for
future research to focus on genes that may be of higher importance to OA pathogenesis and
assess their suitability as drug targets or disease biomarkers. This is particularly important
given that pain management and total joint replacement procedures are the only current
treatment options for the disease.
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com/article/10.3390/ijms23084395/s1. References [48–50] are cited in the supplementary materials.
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