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ABSTRACT

Gene co-expression analysis has emerged as a pow-
erful method to provide insights into gene function
and regulation. The rapid growth of publicly available
RNA-sequencing (RNA-seq) data has created op-
portunities for researchers to employ this abundant
data to help decipher the complexity and biology
of genomes. Co-expression networks have proven
effective for inferring the relationship between the
genes, for gene prioritization and for assigning func-
tion to poorly annotated genes based on their co-
expressed partners. To facilitate such analyses we
created previously an online co-expression tool for
humans and mice entitled GeneFriends. To continue
providing a valuable tool to the scientific commu-
nity, we have now updated the GeneFriends database
and website. Here, we present the new version of
GeneFriends, which includes gene and transcript co-
expression networks based on RNA-seq data from
46 475 human and 34 322 mouse samples. The new
database also encompasses tissue-specific gene co-
expression networks for 20 human and 21 mouse
tissues, dataset-specific gene co-expression maps
based on TCGA and GTEx projects and gene co-
expression networks for additional seven model or-
ganisms (fruit fly, zebrafish, worm, rat, yeast, cow
and chicken). GeneFriends is freely available at http:
//www.genefriends.org/.

INTRODUCTION

The advent of RNA sequencing (RNA-seq) technology has
revolutionized biological research (1,2). With RNA-seq we
are now able to understand the complexity of transcrip-
tome, which has enabled us to connect the information
on our genome with its functional protein expression (3).

Moreover, gene co-expression networks provide the poten-
tial to identify the gene modules (highly connected sub-
networks) that could serve as points for therapeutic inter-
ventions (4,5). There are many methods available to clus-
ter the genes in a gene co-expression matrix or map (see
the review; (6)). One of the widely used network-based ap-
proaches to predict gene functions is the Guilt by associa-
tion (GBA) method, GBA works on the principle that genes
which tend to co-express with each other are functionally
related (7,8).

With an increase of >2 million RNA-seq samples in
SRA/GEO between 2015 and 2021, the number and power
of co-expression databases have also consequently in-
creased. (9–11). To facilitate and promote the usage of co-
expression networks, we previously created an online mi-
croarray and RNA-seq-based co-expression database, enti-
tled GeneFriends (12,13) for human and mouse genes and
for human transcripts. GeneFriends has proven successful
for gene prioritization and associating function to poorly
annotated genes. Studies employing GeneFriends have fo-
cused on diverse topics such as estimating tumorigenic in-
dex for cancer initiation and progression (14), genetic anal-
ysis for neurological conditions in humans and mice (15),
genomics of human metabolic disease (16), development
of neuronal subtypes (17), genome evolution (18), genet-
ics of ageing and complex diseases (19,20) and cell senes-
cence (21). Therefore, to keep our tool at the forefront of
publicly available co-expression databases we have updated
the RNA-seq-based GeneFriends co-expression database
for both human and mouse gene and transcript data.

Gene expression and regulation can be highly tissue-
specific, and most disease-related genes have tissue-
specific expression abnormalities (22,23). Tissue-specific
co-expression modules may not be detectable in a co-
expression network constructed from multiple tissues
or conditions because the correlation signal of the
tissue/condition-specific modules is diluted by a lack of
correlation in other tissues/conditions (6). To address this
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need, we have now generated tissue-specific co-expression
networks for both humans and mice. Similarly, large-scale
RNA-seq data from The Cancer Genome Atlas (TCGA)
and Genotype Tissue Expression (GTEx) projects offer a
unique opportunity to gain better insight into complex hu-
man diseases (24). The co-expression maps generated from
these datasets will provide new perspectives about the genes
that tend to cluster in a disease setting and help in deci-
phering the genetic mechanisms underlying various com-
plex diseases, therefore we have now added dataset specific
co-expression maps based on RNA-seq data from TCGA
and GTEx projects.

Large-scale RNA-seq projects have resulted in rapid gen-
eration of transcriptome data for a wide range of organisms
(25). In addition to developing a co-expression database
for human and mouse samples, we have now created co-
expression maps for seven more model organisms (fruit
fly, zebrafish, worm, rat, yeast, cow and chicken). The co-
expression networks generated from different species will al-
low users to gain insight on lineage-specific evolution of co-
expression networks (26). These multi-species co-expression
networks will also give us better understanding of the tis-
sues, pathways and diseases that tend to be conserved or
diverged between the species. We believe our latest updated
and expanded version of GeneFriends will be useful for a
diverse and large number of researchers to understand the
complexity, functions and regulation of the genome. Gene-
Friends is freely available at http://www.genefriends.org

OVERVIEW OF NEW AND UPDATED GENEFRIENDS
CO-EXPRESSION DATABASES

In addition to updating the previous GeneFriends co-
expression database for human genes and transcripts (van
Dam et al. 2015), we have now added RNA-seq based co-
expression database for (a) mouse genes and transcripts;
(b) fruit fly, zebrafish, worm, rat, yeast, cow and chicken
genes; (c) TCGA project genes; (d) GTEx project genes;
(e) tissue-specific co-expression maps for human genes; (f)
tissue-specific co-expression maps for mouse genes (Fig-
ure 1).

Human and mouse co-expression gene and transcript co-
expression database

The new human and mouse co-expression databases were
constructed from 46 475 and 34 322 RNA-seq samples, re-
spectively. The updated GeneFriends database contains co-
expression data for 44 896 human genes and 31 236 mouse
genes. The transcript co-expression data comprises of 145
455 human transcripts and 66 327 mouse transcripts. The
biotype of genes and transcripts for both human and mouse
data is given in Table 1. One of the unique features of Gene-
Friends co-expression database are its co-expression maps
for non-coding genes like long non-coding RNA (lncRNA)
and microRNA (miRNA) which can be useful in providing
the insights for regulatory mechanism of gene expression at
both transcriptional and post-transcriptional level. The up-
dated GeneFriends databases have co-expression data for
nearly 16 450 human and 6436 mouse non-coding genes.

We have also compared the top 5% of ten randomly se-
lected human genes and their co-expression partners, which

are present in both previous version (13) and new updated
version of GeneFriends (Supplementary Table S1). The per-
centage of the average overlap between the ten genes was
30.5% with a standard deviation of 4.97%. This difference
between the two versions could be due to the difference in
number of samples. The previous version was constructed
from only 4133 RNA-seq samples as compared to the up-
dated version, which is based on 46 475 samples. However,
when we compared the functional enrichment of the top 5%
co-expressed partners for some of these genes, the overlap
was stronger suggesting that although the overlap between
the co-expressed partners was low but overall they were as-
sociated with similar functional categories (Supplementary
Data S1).

Model organisms’ gene co-expression database

Apart from mouse gene and transcript co-expression maps,
we also constructed gene-co-expression maps for seven
more model organisms. Drosophila melanogaster (number
of samples = 9924), Caenorhabditis elegans (number of sam-
ples = 2935), Danio rerio (number of samples = 4004), Rat-
tus norvegicus (number of samples = 3373), Saccharomyces
cerevisiae (number of samples = 3268), Bos taurus (number
of samples = 2039) and Gallus gallus (number of samples =
1649). The number and biotype of genes used to create the
co-expression networks for model organisms are given in
Table 1. The one-to-one orthologs between different species
is represented in Supplementary Table S2.

Dataset-specific gene co-expression database (TCGA and
GTEx)

The TCGA co-expression map is constructed from 10 544
RNA-seq samples encompassing samples from 33 cancer
types. The GTEx co-expression database is based on 9662
RNA-seq samples from 31 tissues. The details of the cancer
types and tissue distribution for GTEx and TCGA data is
given in Supplementary Figure S1. TCGA and GTEx co-
expression databases contains data for 44 998 and 44 973
genes, respectively. The detailed information about the bio-
type of the genes is given in Table 1.

Tissue-specific gene co-expression database (human and
mouse)

The human tissue-specific co-expression maps were gener-
ated for 20 tissues from 46,080 RNA-seq samples. In the
case of the mouse, 53,098 RNA-seq samples were used to
generate 21 tissue-specific co-expression maps. The number
of samples used to create each tissue-specific co-expression
map for the human and mouse databases is given in Sup-
plementary Figure S2. For each tissue co-expression map,
the number of genes were filtered on the basis of their ex-
pression by excluding genes that were not expressed in at
least 20% of the samples (Supplementary Table S3). The
list of top 100 co-expressed genes for each tissue was deter-
mined by calculating the median of correlation values for
each gene with respect to its co-expressed partners across
the database (Supplementary Data S2). The distribution of
median correlation coefficients for genes among different
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Figure 1. Overview of updated GeneFriends co-expression database. (A) Species for which co-expression networks are available. (B) Details for dataset and
tissue-specific co-expression databases. The read counts for creating human RNAseq co-expression maps (bulk RNAseq, tissue-specific, TCGA, GTEx)
were downloaded from recount2 database. The read counts for both bulk and tissue-specific co-expression maps based on model organisms (mouse, fruit
fly, zebrafish, worm, rat, yeast, cow and chicken) were obtained from ARCHS4 database.

tissues in human and mouse tissue-specific co-expression
database is given in Supplementary Figure S3.

GENEFRIENDS GENE AND TRANSCRIPT DATA COM-
PARISON

To explore the differences between the gene and transcript
co-expression maps in the human and mouse co-expression
databases, we compared the median of Pearson correlation
coefficient values for each gene/transcript with respect to

its co-expression partners across the GeneFriends database.
For transcripts, the median of different transcripts of the
same gene was calculated for doing comparison. A total of
34 920 human and 25 459 mouse genes and its transcripts
were analysed. 78% of human and 70% of mouse genes
had more than one transcript. While comparing the co-
expression maps of human genes and transcripts, the overall
co-expression values of genes were significantly higher than
the co-expression values of transcripts (Figure 2A). The
range of Pearson’s correlation coefficient values was widely
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Table 1. The biotype of genes/transcripts in updated GeneFriends co-
expression databases

Co-expression
database

Number of
protein coding

genes

Number of
non-coding genes

(%) Others (%)

Human genes 19 642 (43.8%) 16 450 (36.6%) 8804 (19.6%)
(n=44 896)
Human
transcripts

89 433 (61.5%) 39 776 (27.3%) 16 246 (11.2%)

(n=145 455)
Mouse genes 19 715 (63.1%) 6436 (20.6%) 5085 (16.3%)
(n=31 236)
Mouse transcripts 42 852 (64.6%) 12 928 (19.5%) 10 547 (15.9%)
(n=66 327)
Fruit fly genes 12 165 (85.6%) 1844 (13.0%) 204 (1.4%)
(n=14 213)
Zebrafish genes 25 740 (85.6%) 4029 (13.4%) 304 (1.0%)
(n=30 073)
Worm genes 18 463 (87.3%) 1266 (6.0%) 1424 (6.7%)
(n=21 153)
Rat genes 17 685 (81.5%) 3023 (13.9%) 991 (4.6%)
(n=21 699)
Yeast genes 6015 (89.8%) 616 (9.2%) 68 (1.0%)
(n=6699)
Cow genes 17 019 (85.1%) 2582 (12.9%) 396 (2.0%)
(n=19 997)
Chicken genes 15 255 (86.0%) 2210 (12.5%) 264 (1.5%)
(n=17 729)
TCGA genes 19 164 (42.6%) 13 400 (29.8%) 12 434 (27.6%)
(n=44 998)
GTEx genes 19 262 (42.8%) 14 016 (31.2%) 11 695 (26.0%)
(n=44973)

*n = total number of genes present in the co-expression database, others =
pseudogenes, TR (T-cell receptor genes), IG gene (immunoglobulin genes).
#Read counts for human RNAseq based co-expression maps were down-
loaded from recount2 database and read counts for model organisms were
obtained from ARCHS4 database.

distributed in genes encompassing both positive and neg-
ative values (Figure 2A). However, transcripts had smaller
positive correlation coefficient values than genes. This ob-
servation could be due to the fact that the transcript values
are the median of different transcripts of the gene and differ-
ent transcripts of the same gene may have different trends of
correlation coefficient values. Similar trends were observed
for the mouse co-expression database, where mouse genes
had higher correlation coefficients than transcripts (Figure
2B), although the range of correlation coefficients were not
as widely distributed as in humans (Figure 2A). These re-
sults indicated that different transcripts arising from the
same gene are often expressed under different conditions
and are most likely to play different roles in different pro-
cesses or sometimes these transcripts may even be non-
functional (27).

PATHWAY ANALYSIS IN GENEFRIENDS

Since the primary purpose of the co-expression database
is to determine the function of the co-expressed genes, we
investigated the KEGG pathway genes to assess the con-
sistency of the co-expression data with pathway annota-
tions. We compared the number of enriched KEGG path-
way genes between top and bottom 5% of co-expressed
genes in human GeneFriends co-expression database. A to-
tal of 186 KEGG pathway gene sets from Molecular Sig-

natures Database (MSigDB) v7.0 were analysed. The top
5% of co-expressed genes had significantly higher number
[Median, Interquartile range (IQR) = 107(50 – 280)] of
KEGG pathway enrichments in comparison to bottom 5%
[median (IQR) = 6(6 – 203)] (Supplementary Figure S4).
This was followed by further analysing the top 5% of co-
expressed genes with most enriched KEGG pathway genes
for each 186 KEGG pathway gene sets (Supplementary
Figure S5) and comparing top 20 and bottom 20 KEGG
pathway annotations among the human GeneFriends co-
expression database (Figure 3A). The KEGG pathway en-
richments like Glycolysis, insulin signalling, folate synthe-
sis and WNT signalling were among the top 20 enriched
KEGG pathway annotations. These top 20 KEGG path-
way annotations were related to metabolic pathways, DNA
repair and signalling. The pathway annotations present in
bottom 20 were associated with immune system and infec-
tion (Figure 3A). After this, we selected the top 20 genes
from the GeneFriends database with maximum number of
KEGG pathway annotations, and checked which pathways
are most enriched in these top 20 genes (Figure 3B). Here
also we observed that the pathways related to metabolism
and cell signalling were among the top enriched KEGG
pathways annotations. All these observations from KEGG
pathway analysis indicated that genes that are enriched in
KEGG pathway often tend to co-express together, under-
scoring that genes that are co-expressed tend to work coop-
eratively in the same biological pathways.

VALIDATION OF GENEFRIENDS DATA

To assess the quality of the GeneFriends co-expression
database we compared the top and bottom 5% of the
genes that are present in some widely used databases.
Genes from databases such as GenAge (28), CellAge (21),
T2D-AMP Knowledge Portal and TRRUST (29) and
their co-expressed partners were analysed to ascertain
whether or not the genes that are linked to some diseases or
processes tend to co-express together (Figure 4). GenAge
is a curated database of genes related to ageing (28). We
analysed co-expression data of 298 GenAge genes. The
top 5% of GenAge genes present in GeneFriends database
had significantly higher number of GenAge genes as their
co-expressed partners as compared to the bottom 5%
[median(IQR): top = 29(21–32); bottom = 11(9–14)].
Similar trend was observed for 272 CellAge database (a
curated database of cell senescence genes) and their co-
expressed partners, where top 5% had significantly higher
number of CellAge genes co-expressed in comparison
to bottom 5% [median(IQR): top = 29(23–33); bottom
= 9(6–15)]. We were also interested to see how often
genes that are related to some diseases may co-express
with each other. To investigate this we analysed 132 type
2 diabetes (T2D) effector genes from the T2D-AMP
database (https://t2d.hugeamp.org/effectorgenes.html).
We observed that T2D effector genes co-express with each
other as the top 5% had a significantly higher number of
T2D genes with respect to the bottom 5% [median(IQR):
top = 9(5–15); bottom = 4(3–8)].

To further validate our observations we also tested tran-
scription factors and their targets from TRRUST database
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Figure 2. (A) Distribution of correlation coefficient values between human genes and transcripts. (B) Distribution of correlation coefficient values between
mouse genes and transcripts.

version 2 (29). TRRUST database is a manually curated
database of human and mouse transcriptional regulatory
networks. As genes that co-express with each other may also
help in co-regulating each other, hence we postulated that
transcription targets should co-express with their respec-
tive transcription factors. We removed transcription fac-
tors where the relationship with the target was unknown.
For the human co-expression database, 603 human tran-
scription factors were analysed. These transcription factors

were then matched with 1710 transcriptional targets. The
top 5% of co-expressed genes of all transcription factors
had a significantly higher number of transcriptional tar-
gets expressed in comparison to bottom 5% [median(IQR):
top = 1(1–2); bottom = 0(0–1)]. A total of 223 transcrip-
tion factors had at least one transcriptional target present
in the top 5% co-expressed genes. In the case of the mouse
co-expression database, co-expression data for 703 mouse
transcription factors were checked for 2100 transcriptional
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Figure 3. KEGG pathway enrichment analysis among the GeneFriends human database genes. (A) Top 20 and bottom 20 KEGG pathway annotations
among the top 5% of GeneFriends human genes and their co-expressed partners. (B) KEGG pathway annotations among the top 20 GeneFriends genes
with maximum number of KEGG pathway enrichments. The colour of the heat map represents the range of KEGG pathway enrichments among these 20
genes, pink = low number of KEGG pathway enrichments and green = high number of KEGG pathway enrichments.

targets. Similarly for human transcription factors, top 5%
mouse co-expression partners of transcription factors had
a significantly higher number of transcriptional targets in
comparison to bottom 5% [median(IQR): top = 1(1–3);
bottom = 0(0–1)]. A total of 317 transcription factors
had at least one transcriptional target present in the top
5%. All these observations indicated that GeneFriends co-
expression database is successfully able to identify the genes
that are co-expressed and co-regulated together.

GENERATING TAU BASED TISSUE-SPECIFIC GENES

Apart from generating tissue-specific co-expression maps
for human and mouse data, we also created tau-based
tissue-specific gene sets for RNA-seq data downloaded
from the SRA database. A Tau (� ) tissue specificity index
was calculated for each gene for every tissue. A � index
was used as an indicator to check how tissue specific or
broadly expressed a gene is, with a � of 1 indicating ex-
pression specific to only one tissue, and a � of 0 indicating
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Figure 4. Comparing top and bottom 5% co-expressed gene partners of T2D-AMP, GenAge, CellAge and TRRUST database genes.

equal expression across all tissues (30). We used a � value of
0.8 as cut-off to create our � based tissue-specific database.
The number of tissue-specific genes for each tissue were cre-
ated for human and mouse data (Supplementary Table S4).
Tissue-specific gene lists were generated for 20 human and
21 mouse tissues (Supplementary Data S3).

COMPARISON OF HUMAN AND MOUSE CO-
EXPRESSION NETWORKS

We analysed human and mouse co-expression networks
from an updated GeneFriends co-expression database to

decipher the evolutionary differences and similarities be-
tween human and mouse co-expression maps. We compared
24 434 genes that have a homolog in both human and
mouse gene co-expression databases. In our co-expression
database, 14,911 genes were one-to-one orthologs, while the
remaining mouse and human homologs had a one-to-many
or many-to-many relationship. To understand the impact of
duplication events on the divergence of humans and mice,
we compared the dN/dS ratios of homologous genes with
different types of homology (Figure 5A). The one-to-one
orthologs had the lowest dN/dS ratio as compared to the
many to many, which had the highest dN/dS ratio. Next, we

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac1031/6858853 by guest on 02 D

ecem
ber 2022



8 Nucleic Acids Research, 2022

Figure 5. (A) Comparison of dN/dS values of homologs with three different relationships (one to one, one to many and many to many). The Mann–
Whitney test showed significant difference between all three comparisons (one to one versus one to many, one to many versus many to many and one to
one versus many to many). (B) Comparison of the dN/dS values between the top 5% of human and mouse co-expression gene networks.

compared 14 911 one to one orthologs among the top 5%
of co-expressed genes. The dN/dS ratio values were divided
into four groups to check how the increase/decrease in these
values may relate to overlapping between two co-expression
networks (Figure 5B). We observed that the group with the
lowest dN/dS values had the highest number of overlapped
co-expressed genes. This supported the hypothesis that non-
synonymous substitutions influence the conservation of co-
expression connectivity (31). Therefore, the higher the num-
ber of non-synonymous substitutions, the less conserved is
a co-expression network.

COMPARISON BETWEEN GTEX AND TCGA CO-
EXPRESSION NETWORKS

Because the GTEx co-expression network was derived
from only non-cancerous tissues, whereas the TCGA co-
expression network was constructed from neoplasms, we
were interested in comparing these two networks. We first
compared the top 5% co-expressed partners of 562 cancer
driver genes (32). TCGA network presented a significantly
higher number of cancer driver genes in the top 5% co-
expression partners of a cancer driver gene than in GTEx
network [median (IQR): GTEx = 87 (54–104.75); TCGA =
104 (71.25–127)] (Figure 6A), suggesting that cancer driver
genes were more often co-expressed with each in the cancer-
ous tissues than the non-cancerous tissues. We next selected
very top connections between protein-coding genes (mutual
rank < 15) from GTEx (nodes = 16 825; edges = 55 973)
and TCGA (nodes = 16 097; edges = 50 385) networks and
combined these connections to construct a unified network
containing 18 475 protein-coding genes and 100 650 con-
nections (Figure 6B, Supplementary Data S4a). We found

that only 5708 connections were shared between GTEx and
TCGA networks (Figure 6C), while 50 265 and 44 677 con-
nections were unique to the GTEx (blue lines in Figure 6B)
and TCGA (red lines in Figure 6B) networks, respectively.
This result indicates that the very top co-expression part-
ners between genes in cancer and normal tissues were dif-
ferent.

We detected 111 modules (clusters) with 25 modules con-
taining >150 genes using a multi-level optimisation algo-
rithm (Supplementary Data S4b). Out of these 25 mod-
ules, we found modules mainly consisting of GTEx edges
and those enriched in TCGA edges (Figure 6D). For in-
stance, 68% of edges in module 103 were from GTEx net-
work (Figure 6D), this module enriched in genes related
to muscle functions (Figure 6E top, Supplementary Data
S4c). On the other hand, edges from the TCGA network
contributed to 71% of edges in module 4 (Figure 6D). This
module was enriched in developmental processes (Figure
6E bottom, Supplementary Data S4c), consistent with the
idea of the reactivation of developmental pathways in can-
cer initiation and progression. Hub genes of module 4 in-
cluded prostate cancer-related genes such as NKX3-1 (33),
KLK2 (34), KLK3 (35) and HOXB13 (36) (Figure 6F, left).
Furthermore, we also noticed several genes implicated in
breast cancer, such as ESR1 (37), GATA3 (38), XBP1 (39),
TBC1D9 (40) and TRPS1 (41) (Figure 6F, right).

We further identified gene modules in which cancer driver
genes are enriched. Interestingly, cancer driver genes signif-
icantly overrepresented in module 32 (OR = 1.92; adj. P-
value = 3.9 × 10−4), which relate to immune system func-
tions, and module 90 (OR = 1.73; adj. P-value = 1.6 ×
10−6), which is associated with RNA processes (Supple-
mentary Figure S6 A–C, Supplementary Data S4d). Inter-
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Figure 6. Comparison between GTEx and TCGA co-expression networks. (A) Boxplots showing the number of cancer driver genes in the top 5% co-
expression partners of a cancer driver gene. The middle bar of the boxplot is the median. The statistical significance (p-value) was calculated using a
two-sided Wilcoxon rank-sum test. The box represents the interquartile range (IQR), 25–75th percentile. Whiskers represent a distance of 1.5× IQR. (B)
A unified network comprised edges from the top connections (mutual rank < 15) of GTEx and TCGA co-expression networks. Circles (nodes) represent
protein-coding genes. Circle colours correspond to modules. Lines (edges) represent co-expression between two protein-coding genes. Edge colours repre-
sent types of edge (blue: GTEx only, orange: TCGA only, yellow: both GTEx and TCGA). (C) Overlap between edges from GTEx network and TCGA
network. (D) The proportion of edges in each module. The bar chart represents the proportion of edges in each module by GTEx only (blue), TCGA
only (orange) and both GTEx and TCGA (yellow). (E) Top 10 Gene Ontology (GO) terms related to genes in module 103 and module 4. (F) Network
representation of module 4. Circles (nodes) represent protein-coding genes in module 4. Circle size corresponds to the number of connections of the circle
(degree). Lines (edges) represent co-expression between two protein-coding genes and are coloured by types of edge (blue: GTEx only, orange: TCGA only,
yellow: both GTEx and TCGA).
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estingly, both modules did not have a bias toward TCGA
or GTEx connections (module 32: 53% GTEx edges, 40%
TCGA edges; module 90: 51% GTEx edges, 47% TCGA
edges) (Figure 6D). Therefore, while the connections be-
tween cancer driver genes were more pronounced in the
TCGA network (Figure 6A), cancer driver genes are not ex-
clusively located within the module with mostly cancer-only
connections.

Taken together, by integrating co-expression networks
from non-cancerous tissues and tumours, we were able to
identify gene modules that are co-expressed exclusively in
cancer. These results confirm our GTEx and TCGA co-
expression networks’ reliability and highlight the differ-
ences between gene networks in normal and cancer tis-
sues. We expected that our GTEx and TCGA co-expression
networks would lead to the identification of novel cancer-
related genes, which will serve as potential biomarkers or
therapeutic targets.

GENEFRIENDS WEB SERVER

The new GeneFriends website is more intuitive and faster
with easy data accessibility (Figure 7). The first step is to
input one or multiple gene/transcript ID’s. The second step
involves selecting species (Human, Mouse, Fruit fly, Ze-
brafish, Worm, Rat, Yeast, Cow and Chicken), data source
(SRA, TCGA, GTEx) and tissue of interest (User can se-
lect all tissues together, if not interested in tissue specific co-
expression). The results section contains the list of the top
co-expressed genes, top functional enrichment categories of
the co-expressed list of genes using DAVID API, Analytics
and Network Visualization. We refer readers to the Supple-
mentary section (GeneFriends Web Application Tutorials,
Supplementary Figures S7–S12) for a detailed tutorial and
usage guide of GeneFriends.

FUTURE PLANS

To better serve the research community, in the future we aim
to expand GeneFriends to include more features and func-
tionalities. Although GeneFriends provides tissue-specific
co-expression networks based on the SRA database, our
current TCGA and GTEx co-expression networks are not
tissue-specific, and we intend to include the tissue-specific
networks for TCGA and GTEx in future versions. We also
plan to add cancer-specific co-expression networks for the
users interested in comparing networks generated from var-
ious cancer-types. Because of the lack of gender-related
metadata for many samples, our GeneFriends database
does not have gender-specific co-expression maps, however,
accumulating evidence suggests that gender has an impact
on gene expression in various tissues (42,43); therefore we
aim to curate our samples and create gender-specific co-
expression maps in future updated versions of the database.
Finally, we aim to generate conserved co-expression net-
work to compare network from different species.

MATERIALS AND METHODS

Generation of co-expression database

Human RNA-seq read counts for 46 475 samples were
downloaded from the recount2 database (44). Human gene

expression data was downloaded with recount Bioconduc-
tor package (version 1.22.0) (44) and transcript data was
downloaded with recountNNLS R package (version 0.99.7)
(45) Mouse RNA-seq based read counts were obtained for
34 322 samples from ARCHS4 database with rhdf5 Biocon-
ductor R package (version 2.40.0) (46). The human sam-
ples were aligned against the GRCh38 human reference
genome, and mouse samples against the GRCm38 mouse
reference genome. The reads were then normalized by di-
viding the expression per gene/transcript to the combined
expression of all genes/transcripts per sample. In addition
to human and mouse, co-expression maps for fruit fly, ze-
brafish, worm, rat, yeast, cow and chicken were also created
from read counts downloaded from ARCHS4 database with
rhdf5 Bioconductor R package (version 2.40.0).

To create co-expression maps, we used weighted Pearson
correlation method (13). This was followed by constructing
mutual rank maps by employing the same approach used in
COXPRESdb (11). We used guilt by association method to
create co-expression networks. The genes that were not ex-
pressed in at least 20% of the samples were excluded from
the database. The biotype of genes and transcripts for both
human and mouse data was identified using biomaRt (ver-
sion 2.46.3).

Tissue-specific co-expression maps were also created for
both human and mouse data. For human tissue-specific
co-expression maps, read counts were downloaded from
recount2 database (44) for 20 tissues from 46 080 RNA-
seq samples. Mouse tissue-specific co-expression database
comprised of 21 tissues based on 53098 samples. The read
counts were downloaded from ARCHS4 database (46). The
low expressed genes were filtered out from the analysis by
keeping only genes that were expressed in at least 20% of
samples. There is an overlap between the RNAseq samples
used for creating bulk and tissue-specific human and mouse
co-expression maps. The larger number of samples in tissue-
specific co-expression maps is due to the addition of more
samples in the respective databases in a period of time.

TCGA (number of samples = 10 544) and GTEx (number
of samples = 9662) co-expression databases were also cre-
ated by using raw read count from recount2 database (44).
The samples included in TCGA and GTEx co-expression
databases were excluded from the human co-expression
database. The reason for excluding TCGA samples was
to avoid any bias in the co-expression database moreover;
cancer-related samples do not generalize well with overall
human co-expression networks (47). The GTEx samples
were excluded to observe the difference between the tau-
based tissue-specific database created from SRA data with
respect to the database created from GTEx data by Palmer
et al. (48).

Construction of tau-based tissue-specific database

Tau (� ) based tissue-specific genes database was created
for 20 human and 21 mouse tissues. The read counts were
obtained from recount2 and ARCHS4 database. The read
counts for each gene among all tissues were then converted
to transcripts per million (TPM) values. This was followed
by calculating the mean TPM value for each gene per tissue.
The mean TPM values were then log transformed. These
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used values were then used to create a � index for each gene.
A � of 1, indicated that expression is specific only to one tis-
sue, and a � of 0 indicated equal expression across all tissues
(30).

Functional and pathway analysis

We used WebGestalt 2019 (49) to do the Overrepresentation
Enrichment Analysis for each of the gene ontology cate-
gories (Biological Process. Cellular Component and Molec-
ular Function). The significance level was determined at
FDR <0.05 and the multiple test adjustment was done us-
ing the Benjamini–Hochberg method. We verified our en-
richment results by repeating the analysis using DAVID’s
annotation clustering (50). P-value and FDR < 0.05 were
considered significant. We also used ClusterProfiler Version
3.14.3 (51) to visualize the GO terms (FDR < 0.05) ob-
tained from DAVID. For KEGG annotation analysis (52),
genes lists with their enriched KEGG pathway annotations
were obtained from the KEGG subset of canonical path-
ways (CP) from Molecular Signature Database Version 7.0
(53–55). The box plot and heat map for KEGG pathway
analysis were created using R (version 4.0).

Evolution-based analysis

To identify any differences in the evolutionary conserva-
tion of genes present in human and mouse co-expression
networks we performed dN/dS analysis. The dN/dS values
were obtained using biomaRt R package release 96 (ver-
sion 2.46.3).

Comparison of GTEx and TCGA database

We obtained a list of 568 cancer driver genes from IntO-
Gen (32). We converted gene symbols to ensemble IDs us-
ing Ensembl database (version 102) (56) implemented in the
biomaRt R package (version 2.46.3) (57), resulting in 562
cancer driver genes in total. We extracted the top 5% co-
expression partners of each cancer driver gene from GTEx
network (total = 44 999 genes) and TCGA network (total =
44 972 genes) separately. Thus, for each cancer driver gene,
the top 5% co-expression genes were 2250 and 2249, respec-
tively, in GTEx and TCGA. We compared the number of
cancer driver genes presented in the top 5% co-expressed
genes of each cancer driver gene between GTEx and TCGA
using a two-sided Wilcoxon rank-sum test.

We extracted the top co-expressed genes by mutual rank
<15 for GTEx and TCGA networks separately. We further
kept only connections between protein-coding genes iden-
tified using Ensembl database (version 102). The top con-
nections from GTEx network consisted of 16 825 protein-
coding genes (nodes) and 55 973 connections (edges), while
those from TCGA network comprised 16 097 nodes and 50
385 edges. We next combined these top connections from
both networks to construct a unified network containing 18
475 nodes and 100 650 edges. We then classified edges by the
network of origin as edges from GTEx network, edges from
TCGA network, and edges from both GTEx and TCGA
networks. Network module detection was performed using
the multi-level optimisation algorithm (58) implemented in

the igraph R package (version 1.2.6) (59). Gephi (version
0.9.2) was used for network visualisation. We next extracted
modules with more than 150 genes and performed Gene
Ontology (GO) enrichment analysis for genes in each mod-
ule using the clusterProfiler R package (version 3.18.1). All
genes in the network were used as a background.

Statistical analysis

Mann–Whitney U tests was used to test the significance be-
tween the correlation coefficients among top 5% and bot-
tom 5% co-expressed partners of genes and to compare
the distribution of dN/dS scores between the human and
mouse co-expression database. The median and interquar-
tile ranges (IQR) were calculated by R package (version
4.0). For comparing GTEx and TCGA co-expression net-
works, multiple-hypothesis testing correction was done us-
ing Benjamini–Hochberg procedure. Biological processes
with adjusted P-value <0.05 were considered significantly
enriched GO terms. The enrichment of cancer driver genes
within each module were tested using Fisher’s exact test.

GeneFriends webserver

The new version of GeneFriends has been developed using
Vue.js 3 as view engine in the frontend and Node.js in the
backend. Since our data is inherently graph-like in form,
and since speed is only required for data fetching, the an-
alytical database Neo4j was chosen. Also, the styles library
PrimeVue, together with vanilla CSS, was used to imple-
ment structure and appearance in the frontend. Finally, the
frontend, the backend, and the database are within their
own Docker container. In order to communicate with the
third party DAVID API, a Python 2.7 module was used
within the backend Docker container.

CONCLUSIONS

Large-scale gene co-expression networks have proven effec-
tive for analysing and discovering new gene functions and
associations (60). There are several other online databases
and tools based on co-expression data, as this is a very
timely and widely used approach. Examples of tools based
on co-expression data derived from public databases are
COXPRESdb (11), iNETModels (61) and CoCoCoNET
(47). The features that make GeneFriends unique and ex-
ceptional are its transcript-based co-expression maps and
inclusion of co-expression networks for non-coding genes.
In comparison to other publicly available co-expression
databases, which focus more on protein coding genes,
our GeneFriends database encompasses co-expression net-
works for about 16 000 and 6000 non-coding genes for, re-
spectively, humans and mice. The transcript co-expression
data comprises 145 455 human transcripts and 66 327
mouse transcripts. These transcripts and non-coding gene
data based co-expression networks are crucial in providing
novel insights for different splice variants and non-coding
genes, such as miRNAs and lincRNAs. Understanding the
regulated and coordinated changes that occur between non-
coding RNA and coding (including splice variants) gene ex-
pression may reveal novel important players in many bio-
logical processes and diseases. Since different splice variants
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from the same gene can have different functions, measuring
the differential expression of all splice variants together can
result in misleading conclusions. GeneFriends allows puta-
tive functions to be assigned to each splice variant and non-
coding genes.

Furthermore, we validated GeneFriends with genes from
GenAge (28), CellAge (21), T2D-AMP Knowledge Portal
and TRRUST database (29). Our validation results espe-
cially using a curated transcription factor-transcriptional
target database show that genes that are co-expressed with
each other also tend to co-regulate each other. In addi-
tion, in our new version, we have included tissue-based and
dataset specific co-expression maps. We also created co-
expression maps for other model organisms. Our new web
application will allow users to explore and download data
from the GeneFriends webserver. Overall, with our latest
version of co-expression networks we hope to make Gene-
Friends unique, powerful and valuable to the scientific com-
munity.

DATA AVAILABILITY

All gene and transcript co-expression maps are avail-
able for download at http://www.genefriends.org
(https://www.dropbox.com/sh/jz0z3z8fuhx70fx/
AACt3CUvyro2cEETVBoWwIrNa?dl=0). Addi-
tionally, the code can be found in GitHub (https:
//github.com/maglab/genefriends v5).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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