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scDiffCom: a tool for differential analysis 
of cell–cell interactions provides a mouse 
atlas of aging changes in intercellular 
communication

Cyril Lagger    1,5,8, Eugen Ursu    2,8, Anaïs Equey3, Roberto A. Avelar1, 
Angela Oliveira Pisco    4,6, Robi Tacutu    2 & João Pedro de Magalhães    1,7 

Dysregulation of intercellular communication is a hallmark of aging. To 
better quantify and explore changes in intercellular communication, we 
present scDiffCom and scAgeCom. scDiffCom is an R package, relying on 
approximately 5,000 curated ligand–receptor interactions, that performs 
differential intercellular communication analysis between two conditions 
from single-cell transcriptomics data. Built upon scDiffCom, scAgeCom is 
an atlas of age-related cell–cell communication changes covering 23 mouse 
tissues from 58 single-cell RNA sequencing datasets from Tabula Muris Senis 
and the Calico murine aging cell atlas. It offers a comprehensive resource 
of tissue-specific and sex-specific aging dysregulations and highlights 
age-related intercellular communication changes widespread across 
the whole body, such as the upregulation of immune system processes 
and inflammation, the downregulation of developmental processes, 
angiogenesis and extracellular matrix organization and the deregulation 
of lipid metabolism. Our analysis emphasizes the relevance of the specific 
ligands, receptors and cell types regulating these processes. The atlas is 
available online (https://scagecom.org).

Aging remains a poorly understood biological process despite affect-
ing most organisms1. One of the difficult aspects to model is how the 
dynamics of molecular changes and tissue homeostasis influence 
each other throughout the lifespan. To gain further insights on how 
to bridge this gap, we focused our attention on intercellular commu-
nication (ICC). Dysregulation of ICC has been defined as a hallmark of 
aging2,3 and has recently been proposed as one of the causes leading 
to the cell-to-cell stochasticity arising with age4. Well-known commu-
nication deregulations include inflammaging (a chronic low-grade 

age-associated inflammation)5, impaired immune surveillance6, 
increase in senescence-associated secretory phenotype (SASP)7, altered 
communication between stem cells and their niche8,9, remodeling of the 
extracellular matrix10,11 and changes in endocrine and neuronal commu-
nication12. Interestingly, interventions involving extracellular signals 
have been shown to partially reverse some of the aging phenotypes. This 
includes targeting endocrine mediators such as insulin-like peptides 
and growth hormones13,14, the use of anti-inflammatory compounds15–17, 
heterochronic tissue transplants and heterochronic parabiosis18–20.
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Results
LRIs from existing databases
As with other methods analyzing ICC from scRNA-seq data, our 
approach first relied on the collection of LRIs. To maximize the variety 
of interaction types, we retrieved LRIs from seven publicly available 
resources: CellChat26, CellPhoneDB27, CellTalkDB28, NATMI/connec-
tomeDB2020 (ref. 29), ICELLNET30, NicheNet31 and SingleCellSignalR32. 
From them, we built both human and mouse databases, keeping only 
curated interactions, converting human genes to mouse orthologs 
for human-only resources and including both simple and complex 
LRIs. Simple LRIs are interactions involving a single-gene ligand with 
a single-gene receptor—for example, Apoe:Ldlr. On the other hand, a 
complex interaction involves heteromeric ligands or receptors—for 
example, Col3a1:Itga1-Itgb1.

Our approach resulted in 4,582 mouse LRIs (simple: 3,479, com-
plex: 1,103) and 4,785 human LRIs (simple: 3,648, complex: 1,137) 
directly accessible from our R package scDiffCom (Fig. 1a and Sup-
plementary Tables 1 and 2). Whenever possible, we also included the 
sources used by each of the seven databases to curate their interactions, 
including references to PubMed identifiers, FANTOM5 (ref. 25), HPMR43, 
HPRD44, IUPHAR45, Reactome46 or KEGG47.

Functional annotation of LRIs
We annotated all LRIs using a standardized and consistent framework. 
We first associated Gene Ontology (GO) terms48 to each interaction in 
a way that conveys biological meaning related as much as possible to 
the interaction itself rather than to each gene independently. Simply 
taking the intersection between the ligand GO terms and receptor 
GO terms would have resulted in a considerable number of empty 
intersections (as most genes are annotated with specific GO terms 
and not all parent terms). Instead, we associated to each LRI all GO 
terms formed by the intersection of two sets of nodes: (1) the nodes 
of the GO graph made of the ligand GO terms with their ancestors 
and (2) the nodes of the corresponding receptor GO graph (Fig. 1b). 
Because this method is prone to attaching lowly informative terms 
(namely, those near the root of the GO graph), we also computed 
and indicated the level of each GO term (namely, its depth in the 
GO graph) to facilitate downstream analysis. Then, we added KEGG 
pathways47 to each LRI if all genes present in the interaction were 
part of the pathway. All these annotations are directly accessible 
from scDiffCom (Supplementary Tables 3–6).

Anticipating our aging analysis, we also annotated the genes from 
the mouse LRI database with the number of PubMed articles associating 
each of these genes (or its human homolog) with aging or age-related 
diseases (excluding cancers). We also indicated if each gene (or its 
human homolog) is referenced in the GenAge49, CellAge50,51, Longevi-
tyMap52 or Gene Expression53 database of the Human Ageing Genomic 
Resources (HAGR)49. According to our search, the top 10 ligands/recep-
tors associated the most with the aging literature are Apoe*, App*, Snca, 
Psen1*, Ldlr, Tnf*, Il6*, Crp, Tlr4* and Il1b, where a star indicates genes 
that are also referenced in the HAGR (Supplementary Table 7).

Differential cell–cell communication analysis with scDiffCom
We designed a bioinformatics method, available within the R package 
scDiffCom (https://github.com/CyrilLagger/scDiffCom), to detect 
cell-type to cell-type communication patterns that significantly 
change between two conditions in a given scRNA-seq dataset (Fig. 2). 
The dataset must be formatted as an R Seurat object54–56 and contain 
cells annotated by cell types and by the two conditions on which the 
differential analysis will be performed. The package then considers all 
possible interactions between each cell-type pair, based on the LRIs 
described in the previous subsection. We call each of those potential 
signals a cell–cell interaction (CCI). Each CCI is then assigned a score 
(independently in each condition) based on the average expression of 
the genes across the respective cells. As such, the CCI score should be 

Direct measurement of ICC is complicated and usually depends 
on the type of mediators considered, such as surface receptors, solu-
ble factors, extracellular vesicles21 or even mitochondria22. However, 
recent studies have shown that specific aspects of ICC can be inferred 
from single-cell gene expression data23,24. After the pioneer study that 
drafted the first comprehensive database of ligand–receptor interac-
tions (LRIs)25, and based on the development of statistical tools dedi-
cated to building cell-type to cell-type communication networks26–34, 
it is now becoming standard to perform ICC analyses alongside the 
workflow of single-cell transcriptomic studies.

In the context of aging, single-cell omics is a recent but expanding 
field35,36, with already a few investigations reporting changes in ICC. This 
includes articles on the mouse brain37, on the mouse mammary gland29, 
on several rat tissues38, on the primate cardiopulmonary system39 and 
on human skin fibroblasts40. However, the ICC analyses performed in 
some of those studies suffer from several limitations, as they rely on 
tools designed to detect interactions rather than to investigate how the 
interactions change between two biological conditions (for example, 
young/old and healthy/sick). Indeed, the main approach so far has 
been to detect interactions in young and old samples independently 
and then to focus on signals appearing or disappearing with age. As a 
result, this method does not account for interactions that are detected 
in both conditions but are, nevertheless, changing significantly; it also 
disregards the magnitude of the signal variation. More importantly, 
this approach lacks a statistical test to assess the significance of those 
changes and, thus, to evaluate if they occur due to noise or due to a 
true biological effect.

To alleviate such limitations, we built a statistical framework spe-
cifically designed to perform differential analysis in ICC. Our resulting 
R package, called scDiffCom, can be applied to any human or mouse 
single-cell RNA sequencing (scRNA-seq) dataset to analyze changes in 
ICC between two given conditions in a given tissue. scDiffCom includes 
a collection of approximately 5,000 curated LRIs that we retrieved 
from seven publicly available resources26–32. The typical output of the 
package is a table of detected cell-type to cell-type interactions indicat-
ing, in particular, their strength and how they are regulated between 
the two conditions of interest. To facilitate the interpretation of these 
results, we implemented an over-representation test to determine the 
dominant variations at the gene, cell-type or functional level. In addi-
tion, the package provides several visualization tools.

We used scDiffCom on several published scRNA-seq datasets from 
the Tabula Muris Senis (TMS) consortium41 and the Calico murine aging 
cell atlas42 to create scAgeCom, a large-scale atlas of age-related ICC 
changes across 23 mouse tissues. Samples obtained from male and 
female mice or from different experimental techniques were treated 
separately to avoid any confounding factors. By leveraging independ-
ent secretomics data from six cell lines, we confirmed that the interac-
tions detected by scDiffCom using only gene expression are globally 
consistent with protein secretion profiles. The results are hosted and 
accessible via an online web application (https://scagecom.org) that 
contains both tissue-specific analyses and a global section summariz-
ing changes shared across multiple tissues.

Our aging-related analysis supports previous knowledge regarding 
ICC, depicting a widespread upregulation of immune system processes 
and inflammation; a downregulation of extracellular matrix organiza-
tion, growth, development and angiogenesis; and deregulation of 
lipid metabolism. We also report a generally complex sex-dependent 
regulation of ICC with age. Despite considerable differences across 
experimental techniques, we were able to predict some of the ligands, 
receptors and cell types that might play key roles in such dysregulation. 
Due to its generality and to the large number of tissues considered, we 
think that scAgeCom contains a large amount of valuable data waiting 
to be interpreted, which might provide the community with potential 
therapeutic targets and hypotheses regarding the relationship between 
aging and ICC.

http://www.nature.com/nataging
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interpreted as the typical interaction that would occur between two 
cells randomly picked from the pool of emitter, respectively receiver, 
cells. This score has the advantage of not depending on the number 
of cells captured, a quantity that is usually biased by current experi-
mental protocols57. However, a limitation of this score is its inability to 
account for absolute communication across all cells and, consequently, 
to account for potential changes in cell composition.

Based on the CCI score, we first assess the biological relevance of 
each CCI (in each condition independently) by combining previously 
proposed approaches. To be considered detected, a CCI has to (1) not 
be lowly expressed; (2) be ‘specific’, as originally defined by the authors 
of CellPhoneDB27,58; and (3) have a large enough score (compared to 
the other remaining CCIs). The permutation test shuffles the cell-
type annotation attached to each cell to estimate how specific to a 
given emitter–receiver cell-type pair a particular LRI is. This allows the 
removal of non-specific CCIs that are likely not biologically relevant.

Alongside the detection analysis, we implemented a second per-
mutation test to assess if the score of each CCI significantly changes 
between the two conditions of interest. This consists of randomly 
exchanging the condition label of each cell to see whether the test sta-
tistic, namely the difference between the CCI scores of each condition, 
is different from zero. Choosing permutation tests was motivated by 
the fact that they are non-parametric—that is, they make no assump-
tions regarding the distributions of the underlying variables59. This 
was particularly useful in this context, as there is no obvious way to 
model the CCI score distribution. In addition, permutation tests can be 
applied to unbalanced and low sample size scenarios, which frequently 
appear in single-cell studies.

Finally, based on both the detection and differential analysis, each 
CCI is classified into one of four possible categories, further referred 
to as ‘regulation’. It can be upregulated (UP), downregulated (DOWN), 
stable (FLAT) or correspond to a non-significant change (NSC). As such, 
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Fig. 1 | Origin and annotation of LRIs used by scDiffCom. a, Distribution of the 
4,582 curated mouse LRIs classified according to the seven databases that they 
originated from. Each column of the UpSet plot corresponds to one intersection 
in an equivalent Venn diagram. Simple LRIs are composed of a single ligand gene 
and a single receptor gene, whereas complex LRIs contain a heteromeric ligand 

and/or a heteromeric receptor. Data are available in Supplementary Table 2.  
b, Method used to assign GO terms to a given LRI. Selected terms correspond to 
the intersection of the nodes of the two GO subgraphs made from the terms and 
ancestor terms of the ligand (blue) and receptor (red).
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Fig. 2 | Workflow summary of scDiffCom. Read counts/UMIs from the single-cell 
dataset are aggregated by cell types and conditions (1). Genes are then joined 
with our database of LRIs (2) to build all the potential CCIs that can occur between 
cell types (3). Statistical permutation tests are then performed to evaluate the 
biological significance of each CCI and its differential expression (4). They are 

then classified based on several computed variables, such as their scores,  
P values and log fold change (5). Results are returned in a convenient format for 
downstream analyses and interpretation (6). FC, fold change; tSNE, t-distributed 
stochastic neighbor embedding.
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the main output of scDiffCom is a table that contains all detected CCIs 
with relevant information, including their regulation, log fold changes, 
adjusted P values and scores.

Over-representation analysis to extract dominant changes
As it is typical to detect several thousands of CCIs in a single tissue, 
scDiffCom also performs an over-representation analysis (ORA) to 
extract the dominant differential patterns. Our method differs from 
usual enrichment analyses that typically infer GO terms associated with 
a list of genes of interest and, therefore, requires defining a background 
set of genes60. Here, the detected CCIs (as opposed to the genes) are 
classified into groups of interest (namely, UP, DOWN or FLAT) and a 
background (all other CCIs). Then, ORA measures the statistical asso-
ciation between the CCIs of interest and any feature that can be associ-
ated with them, such as GO terms and KEGG pathways, but also genes 
and cell types. As will be confirmed below, this approach also has the 
advantage of not being biased toward generic and lowly informative 
GO terms, despite the way that we annotated LRIs in the first place. 
Indeed, as being generic, these terms tend to be attached to most CCIs 
and, therefore, to have similar odds in both the group of interest and 
the background, making them rarely over-represented.

In practice, scDiffCom performs ORA on the following features by 
default: LRIs, individual ligands, individual receptors, emitter–receiver 
cell-type pairs, emitter cell types, receiver cell types, GO terms and 
KEGG pathways. Analyzing individual ligands is useful to detect those 
that may take part in various regulated CCIs involving different recep-
tors (or vice versa). The same logic is valid for considering the cell types 
individually. Moreover, scDiffCom offers the opportunity to perform 
ORA on additional user-defined attributes. To facilitate the interpreta-
tion of these results, over-represented features can be sorted according 
to a score that combines the usual odds ratio (OR) and adjusted  
P value: ORA score = − log2 (OR) • log10 (adj.pval). Finally, scDiffCom 
includes several built-in visualization functions that allow the user to 
easily take advantage of these statistical scores.

scAgeCom: a mouse aging atlas of ICC
We built a mouse atlas of age-related changes in ICC by applying scDif-
fCom (using 10,000 permutations and default parameters) to 58 scRNA-
seq datasets from the TMS consortium41 and the Calico murine aging 
cell atlas42. The datasets cover 23 organs distributed across five catego-
ries (TMS FACS (male), TMS FACS (female), TMS Droplet (male), TMS 
Droplet (female) and Calico Droplet (male)) and contain both young 
and old samples (Fig. 3). When necessary, cell types were renamed 
or regrouped to facilitate the comparison across datasets. We also 
noticed that some important cell types were occasionally not captured 
in specific tissues (for example, adipocytes in adipose tissues) due to 
technical limitations. Notably, male and female samples were treated 
independently to avoid confounding effects that would otherwise be 
likely to arise, as we observed that cells were not uniformly distributed 
across sex, cell types and tissues (Supplementary Table 8). Keeping 
male and female samples separate also allowed us to perform a sex-
differential analysis (Supplementary Text 1 and Supplementary Fig. 1) 
with the potential to reveal the effects of sex dimorphism on ICC aging.

Our aging atlas can be accessed from an online application (https://
scagecom.org/) that provides either results for each dataset inde-
pendently or results summarizing the dominant age-related signals 
shared across tissues (Fig. 4). Over the 58 datasets, scDiffCom detected 
393,035 CCIs regulated as follows with age: 5% UP, 13% DOWN, 56% 
FLAT and 26% NSC. The number of returned CCIs corresponds to an 
average of 100 detected LRIs (s.d. = 81) between any cell-type pair. 
Interestingly, 1,135 LRIs (out of 4,555) were never observed as part of 
any detected CCI (Supplementary Table 9), although their genes were 
individually detected in the scRNA-seq datasets. This illustrates the 
importance of the detection procedure to filter out interactions and 
minimize false discoveries.

As scDiffCom is based on mRNA expression rather than protein 
expression, we employed multiple secretomics datasets to indirectly 
validate the biological significance and cell-type specificity of the CCIs 
identified in scAgeCom. We analyzed six proteomics datasets that 
characterize the secretion profiles of the following cell types cultured 
in vitro: mouse bone-marrow-derived macrophages (mBMMs)61, mouse 
neurons (mNeurons)62, mouse mesenchymal stem cells of adipose tis-
sues (mMSC-ATs)63, rat cardiomyocytes (rCMs)64, human umbilical vein 
endothelial cells (hUVECs)65 and human pancreatic ductal epithelial 
(hPDE) cells66. We assessed the validity of scDiffCom by computing the 
association between these cell lines and the emitter cells in scAgeCom, 
based on if the ligands of the identified CCIs were secreted by the given 
cell line. Despite the inherent limitations of comparing proteomics to 
transcriptomics data, comparing data across different species and 
comparing cells from in vivo samples to cells cultured in vitro, we 
observed a significant level of consistency. For example, when consid-
ering CCIs whose ligand has been detected in the hUVEC secretome, the 
odds of their emitter cells being endothelial cells are 1.68 times greater 
(adjusted P < 1 × 10−15, Fisher’s exact test), in contrast to other cell types. 
Conversely, the odds of their emitter cells being lymphocytes are 1.98 
times lower (adjusted P < 1 × 10−15, Fisher’s exact test) (Fig. 5a). A similar 
consistent association is confirmed for the other secretomics datasets 
and scAgeCom emitter cell-type families (Fig. 5b–f). This pattern can 
also generally be observed at the tissue-specific level when considering 
cell types rather than families (Extended Data Fig. 1). Overall, this gives 
further support that CCIs predicted by scDiffCom using only scRNA-seq 
likely correspond to actual protein-mediated extracellular signaling, 
even though transcriptome–proteome correlations might be modest.

In addition to its detection capabilities, we also assessed several 
other aspects of scDiffCom using scAgeCom results as a benchmark. 
First, we confirmed the relevance of performing the differential analysis 
test on the CCI score that combines the expression of the ligand and 
receptor rather than performing a standard differential test on each 
gene separately. By comparing these two approaches on all scAgeCom 
CCIs, we observed that the regulation of a considerable fraction of them 
was determined without ambiguity by scDiffCom but not by standard 
differential analysis (Extended Data Fig. 2). Second, we confirmed that 
scDiffCom does not introduce a bias toward generic GO terms when 
performing ORA (Supplementary Text 2 and Supplementary Figs. 2 
and 3). Finally, we confirmed the importance of the prior knowledge 
contained in LRI databases to characterize CCIs from scRNA-seq data 
(Supplementary Text 3 and Supplementary Fig. 4).

Aging dysregulates several aspects of cell–cell 
communication
The regulation of the CCIs with age strongly varies across datasets, 
sex and experimental techniques (Fig. 6). The tissues from TMS FACS 
(male) clearly show a larger fraction of downregulated CCIs compared 
to all other datasets, including those from TMS FACS (female). We also 
observed more variability and noise (namely, more NSC CCIs) in FACS 
compared to Droplet datasets. These general observations are partially 
explained in the discussion below. Then, as it was not possible to pre-
sent all results contained in scAgeCom, we focused our attention on 
age-related changes that we considered of primary interest because 
they were shared across several tissues, involving genes not previously 
associated with aging, involving genes detected in secretomics datasets 
or showing interesting sex-dependent patterns.

Consistent with the literature, we first observed a major upregula-
tion of inflammatory, immune system and viral processes, as revealed 
by the numerous related GO terms, KEGG pathways and immune 
cell types over-represented across several tissues (Extended Data  
Fig. 3a). From the gene perspective, the interactions that are over- 
represented in the highest number of tissues include B2m:Cd3g, 
B2m:Cd3d, Tnfsf12:Tnfrsf12a, H2-D1/K1/Q6:Cd8b1, Mif:Cd74, 
Hmgb1:Thbd, Slpi:Plscr1 and Ccl5 interacting with different chemokine 
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receptors, such as Ccrl2, Ccr1 and Ccr5 (Extended Data Fig. 3b). As a pro-
tein, B2M was observed in the secretome of five of the six cell lines that 
we analyzed, further supporting a tissue and cell-type-independent 
role. Leveraging our annotation of LRIs with PubMed articles on aging, 
we also noticed that Slpi:Plscr1, although being over-represented 
as upregulated in eight tissues, is an interaction whose genes have 
almost not been studied in the context of aging. We, therefore, pro-
vide further interpretation regarding its potential role in aging in our 
discussion below.

Lipid metabolism is another process dysregulated in many tissues 
with age. Several related GO terms and KEGG pathways are globally over-
represented as upregulated (Extended Data Fig. 4a). However, looking 
at over-represented LRIs revealed more complex patterns, such as the 
upregulation of CCIs involving Apoe in male tissues and App in female 
tissues but the downregulation of CCIs involving Apoe in female tissues 
and App in male tissues (Extended Data Fig. 4b). Understanding such 
patterns in detail requires going beyond the over-representation results 
and exploring the specific CCIs of each tissue. For example, focusing on 
male brain samples, we observed that changes in CCIs involving Apoe 
are cell-type dependent (Extended Data Fig. 4c), typically upregulated 
when emitted from microglial cells but downregulated when emitted 
from ependymal cells. Both App and Apoe are associated with a large 
number of PubMed articles on aging, essentially for their relevance in 
Alzheimer’s disease. However, our results suggest that these two pro-
teins might play important roles in aging and ICC outside of the central 
nervous system as well, as they appear in dysregulated CCIs across many 
tissues and as they are detected in the secretome of most of the cell lines 
that we analyzed (Extended Data Fig. 4b).

The most over-represented processes among signals down-
regulated with age are related to the extracellular matrix and adhe-
sion (Extended Data Fig. 5a). The main corresponding LRIs involve 

collagens, cadherins and metallopeptidases interacting mainly with 
integrins (Extended Data Fig. 5b), mostly among connective tissue 
cells, epithelial cells and endothelial cells (Extended Data Fig. 5c). In 
addition to the changes undergone by the extracellular matrix, inter-
actions related to growth, development, survival, differentiation and 
angiogenesis are also significantly downregulated with age (Extended 
Data Fig. 6). Cell-type pair over-representation also indicates the down-
regulation of communication among stem cells and from stem cells 
toward endothelial cells (Extended Data Fig. 5c).

In addition to these widespread age-related changes, scAgeCom 
contains much more specific information that cannot be detailed here 
but is available to the community from our atlas. Several large-scale 
downstream analyses are further possible to perform, such as combin-
ing scAgeCom with the results from the sex-differential analysis (Sup-
plementary Text 1) to reveal patterns of sex dimorphism in ICC aging. 
As an illustration, we observed from the TMS FACS Lung data that 13% of 
the differentially expressed CCIs had a complex pattern, namely being 
more expressed in young males than in young females, decreasing with 
age in males and increasing with age in females. Involved in these CCIs 
are bronchial smooth muscle cells (64%), App (21%), Pecam1 (4%), Tgm2 
(4%), Itgb1 (22%), Lrp10 (4%), Mcam (4%) and Nrp1 (4%). Sex differences 
in airway remodeling and inflammation have been recently reviewed, 
highlighting sex-related and age-related lung modifications, such as 
surfactant secretion67. We expect that other similar complex patterns 
could be mined from scAgeCom in the future.

Discussion
We provide a package to perform differential ICC analysis as well as a 
comprehensive database of age-related mouse CCIs. From a techni-
cal point of view, our results illustrate the importance of performing 
a proper statistical analysis when comparing intercellular signals 
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extracted from scRNA-seq data. Using scAgeCom as a benchmark, 
variability and noise were indeed responsible for the classification 
of 26% of the detected CCIs as NSC interactions, namely those with 

a fold change larger than 1.5 but a non-significant adjusted P value. 
Had we not used a statistical test and based our analysis solely on the 
appearance and disappearance of CCIs between the two conditions, 
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as in some previous studies, 82.4% of those NSC signals (that is, 84,998 
CCIs) would have been falsely considered to be age regulated. Moreo-
ver, such an approach would have missed all CCIs detected in both 
conditions but showing a significant change with age—18,146 interac-
tions, in our case.

We observed considerable disparities in the results depending 
on experimental techniques and sex (Fig. 6). Previous comparisons of 
single-cell sequencing techniques68 have claimed that droplet-based 
methods using unique molecular identifiers (UMIs) are less subject to 
amplification noise than Smart-seq2, potentially explaining why we 
observed fewer NSC CCIs in TMS Droplet and Calico Droplet than in TMS 

FACS. The other differences can be explained by several factors. First, 
different datasets sometimes compare different age groups (Fig. 3).  
Second, due to experimental limitations, captured cell types are rarely 
the same between two datasets of the same tissue. For example, for the 
Lung, there are 16 cell types in TMS FACS (male) against 12 cell types 
in TMS Droplet (male), resulting in more detected CCIs in the former 
than in the latter dataset (23,200 versus 11,711) and with a different 
distribution of the percentage of UP/DOWN/FLAT/NCS CCIs (Fig. 6). 
We also emphasize that the pronounced downregulation observed 
in TMS FACS (male) datasets (Fig. 6) was reported in a previous study 
performed on TMS datasets69.
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CCIs detected by scDiffCom from transcriptomics data are globally consistent 
with the proteomics secretion profile of six specific cell lines. Each cell line has a 
strong and positive association with related cell-type families from scAgeCom as 
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We now provide more specific interpretations of the main biologi-
cal results reported above. Regarding the increase of immune response 
processes with age, we observed a widespread upregulation of CCIs 
involving the ligand B2m (β2-microglobulin). B2m has already been 
recognized as a gene consistently overexpressed with age53 and as a 
pro-aging circulating factor whose elevated level negatively affects 
cognitive functions and neurogenesis in the mouse hippocampus70. 
Our results indicate that the increased secretion of the ligand B2m with 
age is systemic and appears to target T cells via their receptors Cd3g, 
Cd3d and, to a lesser extent, Cd247 (explaining the occurrence of the GO 
term ‘T cell differentiation’). This could be a sign of increased antigen 
presentation in major histocompatibility complex (MHC) class I. Such 
a widespread pattern might also indicate detrimental effects of B2m 
not limited to the brain and reinforce the idea that this protein might 
be a potential therapeutic target, as previously suggested71.

Regarding the increase in inflammation with age, our results show 
a global over-representation of the terms ‘cytokine-mediated pathway’ 
and ‘chemokine-mediated pathway’ and of the ligands Ccl5, Mif and 
Hmgb1. Those ligands are known SASP factors, but we cannot say from 
our analysis whether they originate in senescent cells. The original 
analysis performed on the Calico data found very few cells expressing 
markers of senescence and no significant changes in aged tissues42. 
The original TMS study reported a higher fraction of cells expressing 
senescence markers in some (but not all) older age groups41, although 
the number of such cells was also very small (unpublished data). Follow-
up studies, such as a cross-analysis between scAgeCom and the SASP 
atlas72, might allow us to explore such senescence-related hypoth-
eses more precisely. Here, we only mention that the two most over-
represented upregulated LRIs that we reported earlier, Mif:Cd74 and 
Hmgb1:Thbd, actually seem to play compensatory roles in the context 
of senescence and inflammation. Indeed, it has been reported that mac-
rophage migration inhibitory factor (Mif), a pleiotropic cytokine, can 

prevent cellular senescence and rejuvenate mesenchymal stem cells 
from age-induced senescence via CD74/AMPK/FOXO3a and autophagy 
in both rats and humans73,74. Along the same line, the high-mobility 
group box chromosomal protein 1 (Hmgb1) has pro-inflammatory 
effects when binding to RAGE/Ager75, but its sequestration by throm-
bomodulin acts as an anti-inflammatory mechanism76. According to 
our results, Hmgb1:Thbd is over-represented as upregulated in nine 
tissues and Hmgb1:Ager in three tissues (Extended Data Fig. 3b), point-
ing toward a global over-emission of Hmgb1 with age that tissues might 
try to compensate by over-expressing Thbd.

Our analysis also revealed widespread upregulation of the LRI 
Slpi:Plscr1 whose genes have received little attention in the context of 
aging. Secretory leukocyte peptidase inhibitor (SLPI) has anti-inflam-
matory, anti-bacterial, anti-fungal and anti-viral activities77, and its 
interaction with phospholipid scramblase 1 (PLSCR1) was suggested 
to inhibit HIV-1 infection of T cells78. In scAgeCom, Slpi:Plscr1 is notably 
upregulated with age in all three bone marrow datasets (Extended Data 
Fig. 3c). Therefore, the increase with age in such communication pat-
terns might represent a response to the latent and persistent invasion 
of the immune system by pathogens such as cytomegaloviruses, which 
can use the bone marrow as a reservoir of latency79.

Changes in lipid metabolism with age are known to have an 
important impact on the lifespan and age-related diseases80. Our most 
intriguing results concern the widespread sex-dependent deregulation 
of Apoe, its receptors and App. We indeed observed a general over-
emission of Apoe and under-emission of App in most TMS FACS (male) 
tissues but an opposite trend in TMS FACS (female) tissues (Extended 
Data Fig. 4b). In the brain, these genes are known to play a role in Alz-
heimer’s disease, for which there are well-documented and important 
sex differences81. App is the precursor of amyloid beta (Aβ) peptides82; 
Apoe is a known regulator of Aβ clearance83; and interactions between 
App and Apoe receptors influence Aβ metabolism and toxicity84,85.  
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admit a higher percentage of downregulated CCIs with age compared to all other 
conditions, in agreement with the general decrease in gene expression previously 
reported in these samples41.
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Much less research has been performed on the function of App outside 
the central nervous system86, but some studies point toward its role in 
other pathologies, such as in obesity87,88, and in different tissues, such 
as skin89, intestine90 (where it is modulated by diet91) and muscles92, 
particularly at neuromuscular junctions93. Taken together, those stud-
ies and our results suggest that changes with age in App intercellular 
trafficking might lead to a variety of tissue-specific diseases.

The two main downregulated processes reported in our results—
namely, changes in the extracellular matrix and development/growth/
proliferation—are partially interdependent. They have in common the 
under-expression of integrins, which typically act as bidirectional 
mediators between the cytoplasm and the extracellular space and 
regulate mechanisms such as cell migration, adhesion, prolifera-
tion, apoptosis, tumor progression and senescence94. The multiple 
functions of these proteins and their deregulation that we observed 
across multiple organs (most notably when they interact with collagen) 
suggest that they might play key roles in the structural decline of tis-
sues with age. They are also consistently downregulated in signaling 
involving stem cells, potentially impacting their maintenance and 
homeostasis, as suggested in previous articles10. Changes in processes 
related to growth and development also fit the hypotheses that the 
run-on from developmental mechanisms and programs may later 
impact on aging95.

A subpart of the development/growth/proliferation pathway 
concerns the global downregulation of angiogenesis and qualitative 
changes occurring in vessels. Several studies previously reported a 
decline with age in capillary density and in the formation of new blood 
vessels96,97, even leading some authors to postulate an ‘angiogenesis 
hypothesis of aging’98. Our analysis reveals that the pair Gpi1:Amfr, 
mainly detected from or to endothelial cells, is over-represented among 
downregulated CCIs in 10 male tissues (Extended Data Fig. 6b). Glucose-
6-phosphate isomerase functions as an autocrine motility factor that 
stimulates endothelial cell motility99. This LRI could be an important 
regulator of microvascular aging, and its therapeutic potential seems 
worth investigating. Moreover, we found downregulation of Angpt1 
(angiopoietin-1) in several tissues (Extended Data Fig. 6b), which could 
lead to the formation of leaky vessels, as vessel stability relies on the 
balance of Angpt1 and Angpt2 (ref. 100).

We conclude with some of the limitations of using gene expres-
sion of ligands and receptors to infer ICC activity. First, using mRNA 
counts as a proxy for the actual level of secreted proteins may lead to 
an overestimation of some intercellular interactions, as we assume 
that all transcripts participate in signaling, even though a fraction 
of them might be produced for intracellular processes. Despite this 
concern, scDiffCom was still able to predict CCIs that were globally 
consistent with secretomics data. Second, it is not always clear how 
some interactions (for example, App:Lrp10) are shared between cells 
and which fraction of them are autocrine rather than paracrine. Third, 
by looking only at ligands and receptors, our method does not assess 
changes in other players acting in downstream signaling. Fourth, we 
did not consider all possible types of intercellular mediators, and we 
did not investigate inter-tissue interactions, such as endocrine signals. 
Fifth, the CCI score does not account for potential changes in cell 
composition. Despite these limitations, we think that our atlas will be 
useful for the community and lead to hypotheses on ICC and aging to 
be further validated.

Methods
Retrieving LRIs
We downloaded LRIs from seven publicly available databases. Data 
from CellChat (version 1.1.3), NicheNet (version 1.1.1) and SingleCell-
SignalR (version 1.10.0) were directly accessed from their associated R 
packages. Data from CellPhoneDB, CellTalkDB, connectomeDB2020 
and ICELLNET were retrieved online (as of 16 April 2022) from their 
respective websites. All details regarding download dates and links 

are directly accessible from our package scDiffCom. We initially also 
retrieved LRIs from an eighth database, LRBaseDb from scTensor33, 
but we did not consider it further, as all curated LRIs present in it were 
derived from the seven others mentioned above.

Processing LRIs
We analyzed the documentation and annotations of each resource 
to keep only their curated LRIs. We removed the interactions that 
were only bioinformatically predicted, such as from protein–protein 
interaction networks. We checked that gene symbols were approved 
by the HUGO Gene Nomenclature Committee (HGNC)101 and, when 
mouse data were available, approved by Mouse Genome Informatics 
(MGI)102. If mouse LRIs were not provided (namely, for CellPhoneDB, 
connectomeDB2020, ICELLNET, NicheNet and SingleCellSignalR), 
we converted human LRIs to their mouse equivalent by retrieving 
orthology information from Ensembl version 102 (ref. 103), accessed 
through the R package biomaRt (version 2.50.2)104. We only kept mouse 
LRIs whose genes had high-confidence homolog pairs (setting the 
parameter mmusculus_homolog_orthology_confidence to 1) or whose 
genes were already included in the two databases providing mouse LRIs 
directly (CellChat and CellTalkDB).

LRIs from each resource were combined in a single list. Special 
care was taken to avoid duplicates arising from the same interactions 
available for both directions (for example, G1:G2 versus G2:G1), typi-
cally for juxtacrine signaling where the notion of ligand or receptor 
can sometimes be arbitrary.

As some of the resources provide only simple interactions, some 
of their LRIs could be incomplete. To partially correct this effect, 
we removed simple LRIs present in such databases if they were also 
found in complex databases but only in a complex form. For instance, 
we removed Col3a1:Itgb1, existing in SingleCellSignalR, as it always 
appears in a complex form in CellPhoneDB, such as in Col3a1:Itga1-Itgb1.

We manually verified the combined list of LRIs and removed 
approximately 200 records that we considered mis-curated—for exam-
ple, Mapk1:Fgfr2, Calm1:Adcy8, Gnas:Adcy1 and Hsp90aa1:Cftr. To do 
so, we first annotated each gene with descriptions from MyGene.Info 
(version 3.2.2)105,106 and categories from OmniPath (version 3.3.13)107. 
We then identified genes that seemed unlikely to participate in ICC 
because they were not annotated as being potentially secreted and 
observed extracellularly. Finally, we explored the interactions involv-
ing those genes and evaluated the evidence supporting their existence. 
Some of the removed LRIs were initially included based on publications 
describing intracellular interactions that had been misinterpreted as 
intercellular—for example, Loo et al.108 is presented as evidence for 
Hsp90aa1:Cftr, but the article does not mention ICC.

Annotating LRIs with GO terms and KEGG pathways
LRIs were annotated with GO terms by following a graph-based 
approach (Fig. 1b). GO terms associated with each gene were retrieved 
from Ensembl version 102 (ref. 103), accessed through the R package 
biomaRt (version 2.50.2)104. For a given LRI, we used the R package 
ontoProc (version 1.16.0)109 to build the ligand and receptor ontol-
ogy subgraphs, whose nodes included their respective GO terms and 
ancestors up to the root node. For complex LRIs including, for example, 
multiple ligand genes, we considered the union of the terms associated 
with each ligand gene. The final LRI GO terms were those present in 
both the ligand and the receptor subgraphs—that is, the intersection 
of those graphs at the node level. scDiffCom can provide other GO 
term annotation methods (Supplementary Text 2), but we do not rec-
ommend them outside benchmarking purposes as we consider them 
less biologically relevant.

To annotate LRIs with KEGG pathways, we used the R package 
KEGGREST (version 1.34.0)110 to retrieve all pathways associated with 
a given gene. For each LRI, we then only retained the pathways that 
included both the ligand gene(s) and receptor gene(s).
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Annotating ligands and receptors with aging resources
To annotate the genes from the mouse LRI database with the number 
of PubMed articles associating them with aging, we first downloaded 
the gene2pubmed table from ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
gene2pubmed.gz on 16 April 2022. We filtered the table by keeping 
only mouse and human genes and by removing articles associated with 
more than 50 genes. Second, we performed a PubMed search with the 
R package rentrez (version 1.2.3)111 for all articles containing at least 
one of the following keywords in their title or abstract (TIAB search): 
aging, longevity, senescence, age-related, dementia, alzheimer, par-
kinson, atherosclerosis, stroke, arthritis, osteoporosis and cataract. 
Diseases without a very direct and strong connection with aging, as 
well as cancers that have a too-broad scope, were excluded. Finally, we 
merged the gene2pubmed table with our aging search to count how 
many PubMed articles mentioning a given mouse ligand or receptor 
(or its human homolog) were related to aging.

To further determine if a gene of the mouse LRI database (or its 
human homolog) was previously associated with aging, we downloaded 
GenAge (human and mouse genes, build 20), LongevityMap (build 3) 
and the Microarray meta-analysis of Ageing Gene Expression database 
from the HAGR website (https://genomics.senescence.info/download.
html) on 16 April 2022. On the same date, we retrieved the CellAge 
database of cellular senescence genes (build 2) from the supplementary 
material of Tejada-Martinez et al.51.

CCI score based on the geometric mean
For each CCI in the form (emitter cell type, receiver cell type, ligand(s) 
and receptor(s)), a score φ is computed in each condition as the geo-
metric mean φ = √eL ⋅ eR  between the averaged expression eL of the 
ligand gene in the emitter cells and the averaged expression eR of the 
receptor gene in the receiver cells (based on normalized non-log-
transformed read counts/UMIs). In the case of complex LRIs with mul-
tiple ligand genes (or receptor genes) involved, eL (or eR) is given by the 
minimum value from the set of average expressions of those genes.

Defining a CCI score is a standard approach when investigating 
ICC from scRNA-seq data23,24, although the way of computing the score 
varies between studies. Here, the choice of the geometric mean (similar 
to SingleCellSignalR) rather than the arithmetic mean (as used by 
CellPhoneDB) is motivated by several advantages. The first one is that 
the geometric mean tends toward zero if either eL or eR tends to zero. 
This implies that when a highly expressed ligand is combined with a 
lowly expressed receptor (or vice versa), the score is not dominated by 
the large ligand value, as would have been the case with the arithmetic 
mean. Along the same line, although transcript counts or UMIs give 
only an indirect representation of protein levels112, molecular interac-
tions are usually modeled by the law of mass action113, which is by 
essence multiplicative and not additive in protein concentrations. 
Finally, the geometric mean provides a clear interpretation of the log 
fold change of the scores between the two conditions of interest. 
Indeed, we see that the log fold change of the CCI score across two 
hypothetical conditions A and B corresponds to the (arithmetic) aver-
age between the respective ligand and receptor log fold changes, 

log ( φB
φA
) = log ( √eL,BeR,B

√eL,AeR,A
) = 1

2
(log( eL,B

eL,A
) + log( eR,B

eR,A
)).

At present, scDiffCom calculates CCI scores exclusively from gene 
expression and relies only on the LRI database as a prior source of 
information. However, additional forms of prior knowledge, such as 
binding kinetics parameters, may become available soon and enable 
more precise score calculations. Supplementary Text 4 provides some 
concrete examples.

CCI detection and differential analyses
Our approach relies on three permutation tests to assess if a CCI is (1) 
cell-type pair specific in condition A, (2) cell-type pair specific in condi-
tion B  and (3) differentially expressed between A and B. To be  

computationally more efficient, the three tests are done together as 
part of a single iteration loop. All threshold parameters described below 
can be adjusted by the users.

Given m cell types and l  LRIs that are found in the scRNA-seq 
dataset, scDiffCom builds a table of m2 ⋅ l  hypothetical CCIs. For each 
CCI, we compute the CCI scores φA and φB, the log fold change 
log(φB/φA) and the variables ni, j  and di, j  corresponding to the number 
and fraction of emitter cells expressing the ligand (i = L) or receiver 
cells expressing the receptor (i = R) in either condition ( j ∈ {A,B}). A 
CCI is deemed ‘not expressed’ in condition j  if ( nL, j < 5 or nR, j < 5 ) and 
(dL, j < 0.1 or dR, j < 0.1).

Only the CCIs ‘expressed’ in at least A or B are passed to the itera-
tion loop. At each iteration k, three independent operations are done: 
(1) shuffling the cell-type labels of cells from condition A and return-
ing the random score φ̃kA as the k-th element of the null distribution 
representing the random variable ΦA; (2) same for condition B, 
returning φ̃kB to form the null distribution of ΦB; and (3) keeping the 
original cell-type labels but shuffling the A and B condition labels 
and returning the random score difference δk = φk

B̃
− φk

Ã
 to form the 

null distribution of the random variable Δ. After iterating, the true 
values φA, φB and δ = φB − φA are compared to the three null distribu-
tions to compute the two one-sided specificity P  values  
pA = P(ΦA > φA) and pB = P(ΦB > φB) and the differential two-sided P 
value pDE = P(|Δ| > ||δ||) . Those P values are then adjusted for false 
discovery rate according to the Benjamini–Hochberg procedure114.

A CCI is considered ‘detected’ in condition j ∈ {A,B}  if (1) it is 
‘expressed’; (2) it is ‘specific’, based on the specificity P values 
(padj.j ≤ 0.05); and (3) its score is among the top 80% of all the ‘specific’ 
CCI scores of both conditions, namely φj ≥ qφA,B (20), where qφA,B (x) is 
the x-th percentile of the scores. A CCI is called ‘differentially expressed’ 
if padj.DE ≤ 0.05 and | log(φB/φA)| ≥ log(1.5).

As performing permutation tests can be computationally demand-
ing, special care was taken to optimize the above computations. In 
particular, sDiffCom relies on the R package data.table (version 1.14.8)115 
for fast manipulations of large data. Along the same line, we leveraged 
the R package future (version 1.32.0)116 allowing scDiffCom to perform 
permutation iterations in parallel. A toy model analysis (1,000 itera-
tions on a dataset of 1,000 cells and five cell types) took a couple of 
minutes when run sequentially on a single-core computer. A more 
realistic example (10,000 permutations on 3,107 cells and 16 cell types) 
was measured to take around 9 min when run in parallel on 30 CPUs.

CCI classification
We only kept CCIs that were ‘detected’ in at least one of the two  
conditions. They are then classified into four categories: (1) UP when 
padj.DE ≤ 0.05  and logfc ≥ log(1.5) ; (2) DOWN when padj.DE ≤ 0.05  and 
logfc ≤ − log(1.5) ; (3) FLAT when |logfc| < log(1.5) ; and (4) NSC when 
padj.DE > 0.05 and |logfc| ≥ log(1.5).

The detection analysis was used to remove biologically irrelevant 
interactions but not to predict actual changes. Using the detection 
test for this purpose was indeed prone to return false-positive varying 
signals—that is, CCIs that seem to appear or disappear because they 
fluctuate around the detection threshold but that are, in reality, not 
differentially expressed. Using the aging datasets as benchmarking 
data, we considered all possible outcomes and noticed only a marginal 
number of seemingly contradictory cases between the two tests, such 
as disappearing CCIs with positive log fold changes (Supplementary 
Table 11). Those are, for instance, due to a reduction of the fraction 
of expressing cells, despite the increase of the signal, hence our deci-
sion to prioritize the classification of the CCIs based on the differential 
test that shuffles the A and B condition labels as explained in the 
previous subsection.

For benchmarking purposes, scDiffCom also performs standard 
differential expression analysis on individual genes in their respective 
cell type. Following the same notation as above, scDiffCom builds a 
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distribution for the difference in expression of the ligand in emitter 
cells, EL,B − EL,A, alongside the same permutation loop as for the CCI 
scores (similarly for the receptor R in receiver cells). The P value  
for the ligand to be differentially expressed is computed as 
pL,DE = P(||EL,B − EL,A|| > ||eL,B − eL,A||) and then adjusted according to Ben-
jamini–Hochberg (similarly for the receptor R)). There are more direct 
methods than a permutation test (for example, a Wilcoxon test) to 
obtain such differential P values. However, our approach ensures that 
comparing these P values to the ‘CCI score P value’ does not suffer from 
technical biases as they are computed from the same permutations. In 
practice, we performed such a comparison using the 393,035 CCIs from 
scAgeCom. Using padj.L,DE < 0.05  and |logfcL| ≥ log(1.5)  as thresholds for 
differential expression of the ligands (respectively, receptors), we saw 
that the classification of a considerable fraction of CCIs was determined 
without ambiguity by scDiffCom but not by standard differential 
expression (Extended Data Fig. 2).

Fisher’s exact test to find over-represented signals
ORA is used to evaluate frequent patterns in categorical data—for 
example, to find if a particular feature of CCIs—for example, the annota-
tion with the GO term ‘T cell differentiation’ is more frequent in upregu-
lated CCIs compared to all other CCIs. This statistical association is 
measured by compiling the corresponding 2 × 2 contingency table 
(upregulated/not upregulated versus annotated/not annotated) and 
applying two-sided Fisher’s exact test. We performed this procedure 
for every CCI feature (all GO terms, KEGG pathways, LRIs, ligands, 
receptors and cell types) and classes (UP, DOWN and FLAT). It returns 
an OR and a P value adjusted for multiple testing according to the 
Benjamini–Hochberg procedure114. In some instances (for example, 
pattern ranking and plots), to sort the results based on a single value, 
we combined the OR and the P value to create an ORA score, by  
adapting the gene significance score (π value) used in differential  
gene expression analysis and gene set enrichment analysis117: 
ORA score = log2 OR ⋅ (−log10 pval).

Visualization tools in scDiffCom
We implemented two functions in scDiffCom to visualize the 
over-representation results. scDiffCom::PlotORA displays the top 
over-represented keywords of a given category and regulation. It 
is implemented on top of the R package ggplot2 (version 3.4.2)118. 
scDiffCom::BuildNetwork shows on a summary graph the over-repre-
sented cell types and cell-type pairs. It relies on the R package igraph 
(version 1.4.2)119 for internal computations and on the R package vis-
Network (version 2.1.2)120 for the interactive rendering.

Retrieving and preparing scRNA-seq datasets
We downloaded the latest version (as of 21 March 2021) of TMS from 
the Amazon S3 czb-tabula-muris-senis repository and the Calico data-
set from the calicolabs website. They had been pre-processed and 
annotated with the Python toolkit Scanpy121 before our work, and we 
converted the resulting h5ad files to R Seurat objects.

As stated in the original TMS article41, FACS and Droplet refer 
to the technique used to capture the cells, namely (1) cell sorting in 
microtiter well plates followed by Smart-seq2 library preparation and 
full-length sequencing and (2) cell capture by microfluidic droplets 
as per the 10x Genomics protocol followed by 3′ end counting. The 
Calico data were exclusively obtained using the Droplet technique. 
Regarding mice age, TMS provided multiple timepoints that needed 
to be grouped into ‘young’ and ‘old’ categories. We removed 1-month-
old cells and 30-month-old cells to avoid bias due to developmental 
or longevity-related processes. Therefore, we compared 3-month-old 
cells to 18/24-month-old cells from TMS and 7/8-month-old cells to 
22/23-month-old cells from Calico. Finally, we filtered out tissues that 
were missing one age group (for example, TMS Droplet Fat contained 
only old cells).

The cells from each dataset were sequenced together. However, we 
decided to regroup TMS FACS Brain_Myeloid and Brain_Non-myeloid as 
the former contained only two cell types (macrophage and microglial 
cell), and merging the datasets allowed us to infer interactions with the 
other parts of the brain. We verified that this did not considerably alter 
the interactions detected in each dataset independently.

Cell-type characterization
In each dataset, we standardized the names of the cell types based on 
Cell Ontology standards122—for example, ‘atrial myocyte’ was renamed 
as ‘regular atrial cardiac myocyte’. We also regrouped some specialized 
cell clusters—for example, CD4+ and CD8+ T cells—to increase sample 
size and avoid overlapping cell types. These overlaps were exception-
ally kept in some tissues—for instance, the ‘undetermined myeloid 
leukocytes’ in the Lung dataset from Calico Droplet (male) overlap with 
some specialized cell types, such as ‘classical monocytes’, but were kept 
as distinct categories. Finally, we classified the cell types into 10 families 
to facilitate downstream analyses: ‘endothelial cells’, ‘epithelial cells’, 
‘connective tissue cells’, ‘leukocytes’, ‘stem cells’, ‘neurons’, ‘glial cells’, 
‘muscle cells’, ‘erythroid lineage cells’ and ‘hematopoietic precursor 
cells’ (Supplementary Table 12).

Building and deploying scAgeComShiny
We used the R package golem (version 0.4.0)123 to build the Shiny app 
scAgeComShiny, which contains all scAgeCom results. Interactive scat-
ter plots were built with plotly (version 4.10.1)124, which was also used 
to display the GO terms tree maps. Those were internally computed 
with the R package rrvgo (version 1.10.0)125, according to the original 
method from REVIGO126. To deploy the application, we first used golem 
to create a Docker image of the scAgeComShiny app and then serve it 
with the containerized version of ShinyProxy open-source middleware 
(version 3.0.1).

Comparing scDiffCom to secretomics data
We leveraged the supplementary data of six recent studies to retrieve 
datasets of proteins secreted by six different cell types: mBMM61, mNeu-
ron62, mMSC-AT63, rCM64, hUVEC65 and hPDE66. When necessary, we only 
kept the proteins secreted by control cells and discarded results related 
to specific conditions, such as cancer cells. Protein names were con-
verted to MGI gene symbols (using orthology conversion if necessary) 
and intersected with the genes from our mouse LRI database. For each 
secretomics dataset, remaining gene symbols were used as input to an 
over-representation analysis assessing the cell-type specificity of the 
CCIs returned by scDiffCom. More precisely, each CCI was categorized 
into one of four groups depending on whether its ligand gene was part 
of the detected proteins and if its emitter cell type (or cell type family) 
was part of the cell type of interest. A two-sided Fisher’s exact test was 
applied to each such contingency table to compute corresponding  
P values and ORs. P values were further adjusted for multiple compari-
sons (Benjamini–Hochberg procedure). We focused our attention on 
the ligand and emitter parts of each CCI, as secretomics data do not 
directly provide information regarding the targets of secreted proteins.

Statistics and reproducibility
No statistical method was used to pre-determine sample size. Sample 
size selection was informed and restricted by the availability of the 
public scRNA-seq data used in this study41,42. Randomization and blind-
ing were not performed in this study, as all data collected were public, 
and the authors performing the analyses had already worked on most 
of the data before starting this study. Few groups of cells were excluded 
from the original scRNA-seq datasets to avoid biases, as explained in 
Methods. Both statistical tests implemented in scDiffCom (differen-
tial expression and over-representation) are non-parametric and do 
not assume the data to follow specific distributions. Other statistical 
tests are mentioned in the figures with additional details provided in 
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Methods. Adjustments for multiple testing were always performed 
when relevant, as reported.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper
Datasets used in this study:
• scRNA-seq Tabula Muris Senis: https://s3.console.aws.amazon.com/
s3/buckets/czb-tabula-muris-senis
• scRNA-seq Calico murine cell atlas: https://mca.research.calicolabs.
com/
• LRIs from CellChat: available from their R package
• LRIs from NicheNet: available from their R package
• LRIs from SingleCellSignalR: available from their R package
• LRIs from CellPhoneDB: https://www.cellphonedb.org/
• LRIs from CellTalkDB: https://github.com/ZJUFanLab/CellTalkDB
• LRIs from connectomeDB2020: https://asrhou.github.io/NATMI/
• LRIs from ICELLNET: https://github.com/soumelis-lab/ICELLNET
• General gene information: https://mygene.info/ and https://
omnipathdb.org/
• GO terms: Ensembl (version 102), https://useast.ensembl.org/index.
html
• KEGG: accessed via the R package KEGGREST
• gene2pubmed table: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
gene2pubmed.gz
• GenAge (build 20): https://genomics.senescence.info/genes/index.
html
• LongevityMap (build 3): https://genomics.senescence.info/
longevity/
• Microarray meta-analysis of Ageing Gene Expression database: https://
genomics.senescence.info/gene_expression/
• CellAge (build 2): Supplementary Material of https://doi.org/10.1093/
molbev/msab369
• Secretomics data for mBMM: Supplementary Material of https://doi.
org/10.1126/science.1232578
• Secretomics data for mNeuron: Supplementary Material of https://
doi.org/10.15252/embj.2020105693
• Secretomics data for mMSC-AT: Supplementary Material of https://
doi.org/10.18632/aging.202423
• Secretomics data for rCM: Supplementary Material of https://doi.
org/10.1161/circulationaha.119.044914
• Secretomics data for hUVEC: Supplementary Material of https://doi.
org/10.1016/j.ajpath.2019.10.007
• Secretomics data for hPDE: Supplementary Material of https://doi.
org/10.1002/pmic.202100320
Datasets created in this study:
• scDiffCom LRIs: available from the R package scDiffCom (https://
github.com/CyrilLagger/scDiffCom/tree/master/data)
• Aging and sex scAgeCom results: https://doi.org/10.6084/
m9.figshare.17074964
• Data to run the app scAgeComShiny and scagecom.org: https://fig-
share.com/articles/dataset/scAgeComShiny_data/17075375

Code availability
All code used in this study is available from the following repositories:
• R package scDiffCom: https://github.com/CyrilLagger/scDiffCom
• R scripts for the aging/sex analyses: https://github.com/CyrilLagger/
scAgeCom
• Golem package for the Shiny app: https://github.com/CyrilLagger/
scAgeComShiny
• Docker image of the Shiny app: https://hub.docker.com/r/ursueugen/
scagecom

Although scagecom.org is available online, we note that the content 
of the website can always be reproduced locally by installing our Shiny 
app from R as follows: devtools::install_github(‘CyrilLagger/scAgeCom-
Shiny’). The app can then be launched after having downloaded the 
necessary data in the app directory (https://figshare.com/articles/
dataset/scAgeComShiny_data/17075375).
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Extended Data Fig. 1 | Consistency between secretomics data and tissue-
specific scDiffCom detection results. a, After keeping the secreted proteins 
that matched to ligand and receptor genes present in the scDiffCom LRI 
database, mBMM, hPDE, mNeuron, and hUVEC cells have the highest number 
of specific proteins (that is only secreted by them), whereas rCM and mMSC-AT 
cells have most of their secreted proteins in common with other cell types; b-e, 
several secretomics datasets have their cell line originating from a tissue present 
in scAgeCom, allowing us to perform tissue-specific association analyses. Odds 
ratios and p-values were computed from a two-sided Fischer’s exact test and 
p-values were further adjusted for multiple comparisons (Benjamini-Hochberg 
procedure); b, for scAgeCom TMS Brain results, the secretome from mNeuron is 

predominantly associated with CCIs emitted from consistent cell types, namely 
neuronal stem cells and neurons; c, for scAgeCom TMS Adipose Tissue results, 
the secretome of mMSC-AT is predominantly associated with CCIs emitted from 
the corresponding cell type, namely mesenchymal stem cells; d, for scAgeCom 
TMS Heart results, the secretome of rCM is predominantly associated with CCIs 
emitted from heart-specific cell types (fibroblast of cardiac tissue and heart valve 
cell) but is neither positively nor negatively associated with regular ventricular 
cardiac myocytes; e, for scAgeCom TMS Pancreas results, the secretome of 
hPDE is predominantly associated with CCIs emitted from endothelial cells and 
pancreatic stellate cells and to a lesser extent with its corresponding cell type, 
namely pancreatic ductal cells.
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Extended Data Fig. 2 | Comparing scDiffCom differential test to standard 
differential gene expression analysis. Using the 393,035 scAgeCom CCIs as 
a benchmark, the UpsetPlot shows how they are distributed in functions of 
scDiffCom differential analysis (rows 1-3), standard differential analysis of the 
ligand (rows 4-6), and standard differential analysis of the receptor (rows 7-9). 
For clarity, we removed the column counting CCIs not differentially expressed 
(Not DE) in all three cases. For most of the remaining CCIs, scDiffCom resolves the 
ambiguity that appears when performing differential analysis on the ligand and 
receptor individually. For example, scDiffCom considers that among the CCIs 
with a non-differentially expressed ligand but a down-regulated receptor, 23,337 

of those are not differentially expressed whereas 16,426 are down-regulated. We 
also observed additive effects (CCI differentially expressed while both the ligand 
and receptor are not) or subtractive effects (CCI not DE while both the ligand and 
receptor are DE in the same direction). Additive effects can be easily explained by 
the CCI having a fold change larger than the threshold while this is not the case for 
its genes individually. Subtractive effects are rare and mainly due to the p-value 
of the CCI being not significant, despite ligand and receptor p-values being 
significant. Inconsistent cases only represent a marginal fraction of all cases and 
can be explained by CCIs and genes having fold-changes and p-values close to the 
thresholds.
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Extended Data Fig. 3 | Processes and LRIs related to inflammation, the 
immune system, and viral processes are globally over-represented as 
up-regulated with age across tissues. a, List of selected GO terms and KEGG 
pathways over-represented as up-regulated with age in several male and 
female tissues. b, List of selected LRIs over-represented as up-regulated with 
age in several tissues. We indicate how many aging PubMed articles mention 
individual genes and if each gene is part of the Human Ageing Genomic 
Resources (HAGR). Of note, the fact that histocompatibility 2 (H2) genes were 

only associated with a low number of aging PubMed articles (as indicated with a 
star) is technical rather than biological and because most of these genes are not 
often discussed individually but rather as a family in the literature. The column 
Secretomics detection indicates if at least one of the genes of a given LRI has 
been detected in some of the six secretomics datasets we analyzed. c, Over-
representation results for the LRI Slpi:Plscr1 across the 58 scAgeCom datasets. 
It is over-represented as up-regulated with age in 10 datasets and consistently in 
the three bone marrow datasets.
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Extended Data Fig. 4 | Processes and LRIs related to lipid metabolism are 
over-represented as globally dysregulated with age across tissues. a, List of 
selected GO terms and KEGG pathways over-represented as up-regulated with 
age in several male and female tissues. b, List of selected LRIs over-represented as 
either up or down-regulated with age in several tissues. The column Secretomics 
detection indicates if at least one of the genes of a given LRI has been detected in 

some of the six secretomics datasets we analyzed. Several LRIs display opposite 
aging patterns in male compared to female datasets. c, Comparison between 
the fold changes of the ligand and the receptor for the CCIs from the TMS FACS 
(male) Brain dataset that have Apoe as ligand. Changes in Apoe expression with 
age (x-axis) are strongly cell-type-specific. For example, Apoe is most strongly 
up-regulated in microglial cells while it is down-regulated in ependymal cells.
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Extended Data Fig. 5 | Processes, LRIs, and cell-type families related to 
the extracellular matrix and adhesion processes are over-represented as 
globally down-regulated with age across tissues. a, List of selected GO terms 
and KEGG pathways over-represented as down-regulated with age in several male 
and female tissues. b, List of selected LRIs over-represented as down-regulated 

with age in several tissues. The column Secretomics detection indicates if at least 
one of the genes of a given LRI has been detected in some of the six secretomics 
datasets we analyzed. c, Emitter-Receiver cell-type family pairs that are mainly 
over-represented as down-regulated with age in several tissues.
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Extended Data Fig. 6 | Processes and LRIs related to morphogenesis, 
development, and angiogenesis are over-represented as globally down-
regulated with age across tissues. a, List of selected GO terms and KEGG 
pathways over-represented as down-regulated with age in several male and 

female tissues. b, List of selected LRIs over-represented as down-regulated with 
age in several tissues. The column Secretomics detection indicates if at least 
one of the genes of a given LRI has been detected in some of the six secretomics 
datasets we analyzed.
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