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Abstract

The study of age is plagued by a lack of delineation
between the causes and effects within the ageing
phenotype. This has made it difficult to fully explain
the biological ageing process from first principles with
a single definition. Lacking a clear description of the
underlying root cause of biological age confounds clarity
in this critical field. In this paper, we demonstrate that
the epigenetic system has a built-in, unavoidable fidelity
limitation and consequently demonstrate that there is
a distinct class of DNA methylation loci that increases
in variance in a manner tightly correlated with chrono-
logical age. We demonstrate the existence of epigenetic
’activation functions’ and that topological features beyond
these activation functions represent deregulation. We
show that the measurement of epigenetic fidelity is an
accurate predictor of cross-species age and present a deep-
learning model that predicts exclusively from knowledge
of variance. We find that the classes of epigenetic loci in
which variation correlates with chronological age control
genes that regulate transcription and suggest that the
inevitable consequence of this is a feedback cycle of
system-wide deregulation causing a progressive collapse
into the phenotype of age. This paper represents a novel
theory of biological systemic ageing with arguments as to
why, how and when epigenetic ageing is inevitable.

Introduction

Despite increased research and the undeniable importance
and impact of ageing in medicine and society (1), the exact
nature of human ageing and its causative mechanisms
remain largely controversial. Many theories have been
put forward attempting to explain the ageing process (2),
yet the underlying molecular drivers of the human ageing
process continue to be a subject of great interest and
intense debate (3).

Recent studies have put the limelight on the potential
role of epigenetic modifications in ageing (4; 5; 6). These
include the discovery of epigenetic clocks, highly accurate

predictors of chronological age, based on a relatively small
number of methylation sites (7; 8). Epigenetic clocks
are associated with mortality, they can predict chrono-
logical age from various tissues, across the lifespan and in
multiple species, although their mechanistic basis remains
the subject of debate (5; 9). In addition, multiple changes
in methylation and other epigenetic modifications have
been reported with age, both in human and animal models
(4; 6; 10).

It has been proposed that epigenetic changes are causative
in ageing (5), and a recent study has suggested that DNA
damage response-induced loss of epigenetic information
drives ageing (11). More broadly, the information theory
of ageing has suggested that loss of epigenetic information
with age is a major driver of the ageing process (12;
11). It has also been suggested that pre-programmed
shifts in epigenetic information states with age are a
major determinant of ageing phenotypes (13). As such,
understanding the basis of epigenetic clocks, and how
epigenetic changes could impact ageing is a major and
important open question. Moreover, despite efforts to
understand the informatic character of ageing, there
has been comparatively little research on what makes
mammalian ageing inevitable.

In this work, we develop a conceptual model to explain
the ageing process based on first principles. We
demonstrate that the epigenetic system has unique
inherent informatic properties that progressively acquire
informatic corruption, meaning that with age epigenetic
information fidelity cannot be maintained. Our model
is further supported by empirical data from humans and
other species, and we derive a predictor of age based solely
on measures of epigenetic variation.
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(i) Internal and external trust information (ii) Biological damage is information erasure

(iii) Reconstitution of information (iv) Mirror backups have an infinitely regressive outer shell

Figure 1: i. Natural selection infers that in single-strand breaks the side with the broken backbone (a.) is most likely to contain
the incorrect base. A system for deducing which strand to use as a mirror backup (b.) will have access to this information.
Methylation damage (c.) cannot provide this information, so (d.) would require information from an external scope (e.) to
make the same comparison. ii. Incorrect modification of CpG methylation can be thought of as information erasure, removing
part of the state information that allows for the recovery of the original state. iii. Epigenetic damage is information loss (a.)
that requires repair either with a mirror backup from which to duplicate information (b.) or an algorithm with which to define
it according to original principles(c.). iv. Epigenetic mirrored backups represent a vicious infinite regress of endlessly nesting
scopes. Comparing two strands requires a system of trust recognition (a.) that, if subject to noise, would itself require a mirror
backup. These two systems would themselves require an external system of trust (b.), which can itself make errors, requiring a
backup and another system of trust (c.) and so on (d.)

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.29.538716doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.29.538716
http://creativecommons.org/licenses/by/4.0/


1 The information fidelity theory
of age

Repairing Damaged Information

Any state, including that of DNA methylation, can be
thought of as a state of information(Fig 1(ii)), and
therefore epigenetic damage (which we define as any
epigenetic change that reduces the organism’s overall
chance of survival, and thus is selected towards system
ontology) represents information loss. When information
is destroyed, there are only two possible mechanisms
by which it can be recovered(Fig 1(iii)). Information
in the original state can be recovered from an identical
backup, via a system encoded to know which is which.
Alternatively, information can be reconstituted through
an algorithm: a series of rules that defined the original
information state. All of these systems of data recovery
must be applied consequently to damage through either
observation or prediction of data loss.

Mirror backup is impossible

To create a mirror backup for DNA methylation, an object
with identical informatic properties would have to exist
from which to duplicate the information, which would
also have to behave in an identical manner to the first in
response to noise and errors. Were this not the case, there
would no longer be one-to-one parity between original and
backup, and the process of comparison would itself become
noisy. A system would then be necessary to duplicate
changes between original and backup, maintaining parity,
encoding trust, and indicating which of the two DNA
methylation signals should be treated as a backup in
the event of damage. In a biological context, such a
system would itself inevitably be subject to error, allowing
noise to enter the decision-making governing trust and
therefore requiring another mechanism for mitigation and
correction. In essence, just as DNA methylation is the
single outer layer of control for DNA, DNA methylation
itself would require the same system, which would be
subject to the exact problems it was intended to avoid (Fig
1(iv)). This ”nesting doll problem” is infinitely recursive:
it is logically impossible in a noise-filled environment to
design a signal without a component in which all damage
has a mirror backup. We suggest a flawless epigenetic
mirror is impossible as an example of vicious infinite
regress (14), extremely similar to Bradley’s regress (?
15). Although described here in terms of individual
methylation loci, this process holds true for regions
of methylation or even systems of comparison between
chromosomes. Any such comparison requires a ’comparer’,
which becomes the point of entry for signal corruption,
unless it itself has a backup and so on.

Algorithmic fidelity is restricted

Lacking a mirror backup, any information lost in
epigenetic damage must be reconstituted using some
form of algorithm. Any algorithm that reconstitutes
information must itself be encoded which, in the context
of the cell, means genetically encoded in DNA. This has
a consequent cost to the cell (for example, the more DNA
used, the greater the chance of mutation), meaning that
any increase in survival cost must be offset with additional
functionality. Minimum algorithm size increases with the
complexity of information it is to define: an increase in the
latter must result in an increase in the former(Fig 2(i)).
This means algorithm size is also related to the fidelity by
which it reconstitutes lost information because low fidelity
reconstitution represents a reduction in information from
the original (Fig 2(ii)), essentially performing lossy
compression (16). A perfect reconstitution requires the
exclusive use of lossless compression and has consequently
higher storage requirements. Natural selection will not
select for lossless compression if the cost of the additional
information outweighs the benefit to survival, meaning in
all cases one should expect DNA compression to be lossy
(except in the case of individual errors with infinite cost
to survival, e.g. errors leading to cancer). With DNA
methylation containing two legal character states, defining
it with perfect fidelity would be equivalent to binary key
definition in cryptology, becoming exponentially large as
regions contain more CpG loci. With approximately 20
million CpG in the human genome, perfect fidelity is
therefore impossible. Even working under the assumption
that epigenetic regions represent the states to define, there
are over 20000 CpG islands in the human genome and an
uncountable number of cellular identities to define.

This is not to say that reconstruction is generally
impossible, but that high-fidelity reconstruction is
extremely informatically expensive and impossible to
perform over a large number of cellular states.

As a result, an epigenetic algorithm reconstituting lost
information would be forced to work within a spectrum
between total lack of fidelity (randomly recreating
data) and flawless fidelity, with the massive amount
of information required for high fidelity restricting the
majority of systems to error-prone reconstitution of
damage.

Legal Characters and Trust

When damage occurs in DNA it almost always produces
a dictionary illegal character on one of the strands. In
such cases (e.g., bulky adducts) DNA repair mechanisms
can cheaply and effectively recognise that these new
’characters’ in the DNA signal fall outside of the pre-
defined set of legal dictionary characters: A, T, C, G. Both
in this situation and when a dictionary legal character
is created, DNA repair mechanisms must look for more
information to determine which of the two strands to treat
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(i) Dna cost impacts repair fidelity (ii) Repair fidelity impacts error retention

Figure 2: i. Any algorithm that corrects for epigenetic error must be comprised of proteins or RNA, which requires a region of
DNA to encode. The size of the genes encoding the system will be related to the sophistication of the algorithm, but this will come
at a survival cost commensurate to size. ii. The more sophisticated the algorithm for correcting error, the higher the fidelity
to correct error, as more rules can be encoded to describe the correct state of a region based on more detectable environmental
variables.

as an information backup of the original (Fig 1(i)). This
is a system of trust and while imperfect, allows for the
correct repair decision to be made the majority of the time.
When the repair decision is incorrect, it might result in
mutation: the introduction of an incorrect but dictionary
legal signal element into the DNA signal. Damage can only
be repaired in the context of a signal in which the damage
is recognised as a dictionary illegal element. As mutation
creates a legal character within the context of the signal
representing the immediate DNA environment, there is not
enough information on the original state of a dictionary
legal signal to allow for entropy-neutral reconstitution of
state, and so we can say that any dictionary legal error
such as mutation is logically irreversible in the immediate
context of repair enzymes. To repair this error in an
entropy-neutral manner, the signal containing the error
must be assessed in a higher syntax of which the local
signal is but an element. We can say that the information
scope must be broadened for repair.

DNA methylation sits outside the phosphate backbone
and thus outside the system of trust which allows for
limited local scope repair of DNA damage, and it has
exactly two dictionary legal characters: fully methylated
or unmethylated on both strands. Assuming no other
information, this results in a situation where if one
methylation is removed/added and a hemimethylated
state is created, there is no logical way within the scope
of a single repair enzyme to deduce which of the two
legal characters the damage state originated from. The
information of the original state is destroyed in the local

scope, that which contains information limited to the
methylation groups and immediately surrounding base
pairs. We can therefore say that methylation damage
is universally logically irreversible (as outlined in (?
17; 18)) within the local scope of repair enzymes, with
all the consequences of such a trait, namely obligate
entropy increase upon repair (17; 19; 20). Put simply,
all hemi-state DNA methylation created by damage is
the equivalent to mismatched DNA bases with intact
backbones and all epigenetic damage is consequently
equivalent to mutation. We can say from this that
epigenetic damage repair decision-making is a recognisable
but not decidable language.

Repair information is in the wrong place

In any situation of repair, the reconstitution of damage
is limited by the amount of information available to the
repairer. We can think of this as the scope of information
that the repairer has access to. Any repair algorithm will
sit within nested scopes of repair information: an enzyme
might only be “aware” of the information in the immediate
region of DNA it contacts; it has no access to information
encoded in some distal section of DNA, or another cell, or
another city. The super-entity of control represented by
the system expressing and targeting that enzyme might
well have access to a broader scope of information with
which to target repairs. The caveat is that decisions about
repair and consequently accurate repair can only occur
within the scope of the information required and this may
not be the scope in which the information exists. For
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example, the enzyme running along DNA has more up-to-
date information about the current damage-state of the
piece of DNA it sits upon than does the system that sent
it to fix that damage. It does not always follow that
the information scope of a subunit is a subset of that
of a system with a broader scope. Information loss can
result in logically irreversible damage within one scope
and that same damage can be logically reversible within
another. The question is: which scope has access to
the information necessary to detect the information loss
and which scope has access to the information necessary
to repair the information loss? In non-mutational DNA
damage, both of these sets of required information can
exist within the same scope: that of the repair enzymes.
In both DNA mutation and epigenetic mutation the
information encoding the state of the ontological purpose
of the governed system is exclusively found within systems
that have access to information on ontological outcome.
The information on the identity of the specific loci (base
or CpG) under interrogation is limited to the repair
enzyme while the repair enzyme remains at the locus of
damage. This information is temporarily segregated from
that of ontological outcome: the repair enzyme will have
moved on and discarded information delineating location
by the time the system is observably diminished in efficacy
towards survival. It is therefore impossible to provide
repair enzymes with the information necessary to correctly
repair specific instances of mutation after the mutation
has occurred, as well as any damage that could arise from
more than one dictionary legal character. The information
necessary for repair is not locally available at the point
repair is locally possible.

Ageing is the consequence of repair fidelity
limitations

As there can be no mirroring backup to the epigenetic
state and any algorithmic backup is limited below perfect
fidelity, the logically irreversible information loss accrued
within the epigenetic state will remain unrepairable
in systems that have a complexity high enough that
the information necessary for repair demands lossy
compression. Damage will only be repaired up to the
fidelity allowed for by the compression of repair. The only
way to create logical reversibility in the systems and to
reduce entropy is to increase the scope of the system until
logical reversibility is possible.

When the amount of information necessary to create a
system exceeds that which is beneficially storable in DNA,
lossy compression will begin to be used as information
is encoded in cellular context. This is the fidelity
boundary: the point beyond which perfect fidelity is
impossible. By storing information in the state of the local
environment, systems can minimise the need to explicitly
code functionality in DNA while retaining the information
for approximate functionality, but with the consequence
that they become logically irreversible as the low fidelity

by which they are encoded results in multiple possible
original states for the current system state. At this point,
repair can occur but only in an entropic manner with a
degree of error.

This fidelity boundary is never reached in simple systems
but when systems expand in scope to allow for logical
reversibility, they increase the information necessary for
repair, approaching or crossing the fidelity boundary. If
any system that influences the information necessary for
its own repair is complex enough to demand definition
past the fidelity boundary it will imperfectly repair itself
when damage occurs, generating a feedback loop as it
progressively repairs itself with decreasing fidelity. We
suggest that simple systems are logically reversible below
the fidelity boundary and complex systems influencing
their own repair are not, inevitably becoming dysfunc-
tional unless they are so valuable for organism survival
that selection encodes the entire system within DNA.
Only through the construction of a true logically reversible
repair scope can the inevitably accruing system corruption
be fully reversed.

When the information required for logical reversibility
exceeds that storable in the immediate context of the
cell, the scope must be extended to allow for repair.
Logical reversibility is then only achieved when the scope
expands to include a known originator state, i.e. a stem
cell. At this point, contextual algorithms with imperfect
fidelity reconstitute the information of the cell (differen-
tiation). In essence, the cell abandons its current state
and returns to a point of known logical reversibility. Stem
cells represent a type of cell that can be defined indepen-
dently of context and thus in an informatically efficient
manner. It is a simple, singular set of rules to encode,
cheap and robust due to the lack of need to handle multiple
definitions consequent to context. As epigenetic damage
creates complexity not just in individual cells but in tissues
and organs, the information defining the use of stem
cells to reconstitute damage becoming itself progressively
corrupted as tissue composition changes. This means that
the scope that allows for logically reversible repair must be
extended further back into epigenetic basality and more
and more cells and eventually tissue discarded to allow
for this. Eventually, this will reach such a point that
childbirth is the only solution available to the organism
(discarding the entire body save for a single primordial
stem cell, the logical reversal of the entire organism).

Low fidelity creates error feedback

As epigenetic signaling fails, the systems governed by
that signal will make incorrect decisions, resulting in a
feedback cycle in which the epigenetic fidelity governing
epigenetic fidelity fails, resulting in a recursive loss of
epigenetic control as well as deregulation of all systems
in which logical reversibility is impossible in the scope of
repair. The deregulation of all cellular systems governed
by epigenetic control is what, we suggest, gives rise to the
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(i) CpG SD with age correlated to age (human blood) (ii) CpG SD with age correlated to age (human brain)

Figure 3: i. CpG SD correlation to age in GSE87571 human whole blood, using the SD to age dataset described in methods.
Fluke correlation would be expected to be a normal distribution centered on zero. The peak at 0.75 represents a large population
of CpG loci that increase in SD between samples with age. ii. CpG SD correlation to age in GSE41826 human brain tissue,
using the SD to age dataset described in methods. As with GSE87571, we see a peak of correlation at 0.75, but a larger peak of
negative correlation. We speculate that this peak represents genes switched on or off with age.

phenotype of age.

Our theory suggests that ageing is itself the inevitable
consequence of the impossibility of signal fidelity due to
the specific dynamic of epigenetics being a single system in
which it is impossible to design trust (through a mirrored
backup) or an algorithm with perfect signal fidelity in
systems where complexity is high enough that logical
reversibility is impossible without crossing the fidelity
boundary.

2 Results

Methylation variance with age

The principles outlined above suggest that there is an
inevitable accumulation of epigenetic damage with age,
driving the structure of epigenetic signals into randomness.
One measure of this dynamic is the progressing disparity
between an individual’s DNA methylation loci with
age. We obtained methylation data from preexisting
datasets (outlined in Methods) expressed in beta values
that represent the ratio of methylated to unmethylated
measurements within samples for individual probe loci.
For each CpG, we binned samples into age groups spanning
five years and for each group obtained the standard
deviation (SD) of the beta values within the group. We
then performed a Pearson’s R correlation between the age-
binned SD and age. Results are summarised in Fig 3(i)
and 3(ii), and in supplementary table 1.1 (human blood)
and supplementary table 1.2 (human brain). We used
Benjamini-Hochberg correction to account for multiple
testing, but most forms of multiple testing are heavily
biased to extremely strong correlation, and in any analysis

of stochastic noise the understanding of what represents
’fluke’ correlation can be observed through the expectation
that these will be represented by a normal distribution
centered on 0 correlation. In all tissues, we observe a non-
normal distribution of correlation. In long-lived mammals,
we observe a conserved peak within GSE87571 (human
blood), GSE41826 (human brain), and GSE184223 (zebra
blood) around r=0.75. In human blood, we observed
another peak at approx. r=0.12 and in human brain we
observe a peak at r=-0.3. In GSE120137 (mice tissues)
we observe a single distribution centered on r=0.75 in
blood, an even more extreme distribution centered on
r=0.9 in muscle, a three-pole distribution with peaks
at r=-1.00, r=0.00, and r=1.00 in adipose and kidney,
with lung and liver also having peaks at r=-1.00 and
r=1.00 but with the peak at 0.00 unpronounced, probably
hidden by merging with the tails of the polar peaks.
The more pronounced polarisation of r values in this
dataset was likely consequent to there only being three
recorded age groups, 2, 10, and 20 months. The general
observation is that there are three approximate classes
of loci: those that correlated negatively with age, those
that correlate positively, and those representing ’fluke’
correlation, centered on r=0.00.

Methylation polarisation with age

We theorised that those CpG with strong positive
correlation between SD and age represented a class of
noise-retaining loci. We expected a peak at r=0.00 to
represent fluke correlation, and we next set out to charac-
terise the nature of the negative correlations. We suggest
that as samples are getting older, there is a tendency
to switch on or off genes as a mechanism to control
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(i) Beta distributions by correlation (ii) Polarisation of CpGs by correlation

Figure 4: i. CpG beta value vs CpG SD by CpG SD correlation to age in GSE87571 human whole blood. As beta SD correlation
to age increases, the loci with higher SD decrease in representation. ii. Correlation of CpG SD to age faceted by centralisation
correlation to age in GSE87571 Human whole blood. CpG loci in which SD correlated heavily to age are those in which beta
centralisation increases with age.

noise. We theorised that these genes would therefore tend
towards polar beta values in their regulating methylation
(either fully methylated or unmethylated). To explore
this, we segregated loci SD correlation to age by the
polarisation of their mean beta value with age. This
demonstrated that in all datasets (GSE87571 (human
blood), GSE41826 (human brain), GSE184223 (zebra
blood), GSE120137 (mouse tissues)) the distribution of
negative correlation is heavily skewed towards polarising
loci, and that across all tissue datasets the peak at r=0.75
is retained, segregated to those CpG in which centrali-
sation of beta value increases with age. This suggests that
those loci with that decrease in variance with age indeed
represent those genes that are increasingly regulated in
response/consequent to age, and thus a different class of
loci to those that, free of regulation, drift into variance.

Methylation topology is an activation
function

We hypothesised that if different methylation regions
represented different classes of epigenetic control resulting
from the need for discrimination in the amount of noise
gene functionality was exposed to, evolution’s naturally
conserving effect would unify these classes into a few
different regulatory activation functions governed by a
simple set of arguments. Were this the case, we would
expect to observe conservation between the way specific
loci were themselves regulated and therefore regulated
the underlying gene. To visualise this, we performed
Euclidean k-means clustering on sorted preparation of
all datasets (Fig 5(i)). In GSE87571 (human blood),
GSE41826 (human brain), and GSE184223 (zebra blood)
we observed a definite grouping in locus topology,

indicating that there are a few archetypical ”activation
functions” to which all DNA methylation belongs, and
by which all methylation is regulated. It appears that
DNA methylation is controlled by two types of functions,
a linear function and a step function, which themselves act
as components for a small range of combination activation
functions. We classify these overall activation functions as
linear functions, single-step functions, multistep functions,
and ”ragged” functions (functions containing regions with
numerous fractional subpopulations independent of the
majority ontological state). The topology of GSE120137
(mouse tissues) differs from that of longer-lived mammals
(Fig 5(ii)). Both linear and step functions are observable,
but the banding effect seen in human methylation data is
absent.

Methylation topology ’tailing’

Examining the topology of the clusters and individual
CpG loci highlights that in most cases there is a majority
position output by the function controlling methylation for
each individual CpG locus. We assume that these are the
positions for the ontological purpose of system function.
In a large number of loci, there is also a ’tail’ region of
rapidly increasing or decreasing methylation approaching
the nearest occupancy absolute (beta 0.00/1.00). These
tails have the distinguishing feature of being an approxi-
mately consistent fraction of the total population size, but
the difference between the tip of the tail and the mean
beta value can vary substantially. We theorise that these
tails represent a failure of control, in which a methylation
area that is ideally at a given level of methylation loses its
ability to regulate itself, resulting in mean betas that differ
greatly from the ontological target. Mouse topologies
increase at a comparatively steep and smooth linear rate
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(i) Methylation activation functions (human blood) (ii) Methylation activation functions (mouse kidney)

Figure 5: i. Topological activation functions of DNA methylation in GSE87571 human whole blood. Sorted dataset clustered
using Euclidean k-means. ii. Topological activation functions of DNA methylation in GSE120137 mouse kidney. Sorted dataset
clustered using Euclidean k-means. (x resampled to 50)

with very little evidence of the ”tailing effect” seen in the
loci of longer-lived mammals (Fig 5(ii)), which suggests
that there is comparatively less ’failure of regulation’
because there is less regulation in the first place, mice not
selecting as strongly for epigenetic fidelity as mammals
more exposed to epigenetic mutation through lifespan and
lack of predation. It is notable that these tails do not
correlate to age in all loci. We believe that these may
in some cases represent a loss of control in disease states
and/or systems that lack the ability to create positive
feedback into further epigenetic deregulation.

Methylation topology ’walling’

To gain a deeper understanding of the observed dynamics,
we created a state machine that modeled regions of CpGs
under variable methylation pressure, which we defined as
the ratio between the overall frequency of methylation
addition against that of methylation removal. Rather
than defining CpG islands (CGI) holistically, we modeled
methylation regions as being ‘soft edged’, representing
the normal distribution of randomly walking methylation
enzymes and other local effects. Independently of these
local effects, we modeled uniform static pressures such
as stochastic loss of methylation and other single entity
dependent effects.

Within this model, we observed the existence of two
universal effects within any given region of methylation.
First, there is a methylation boundary effect determined
by current region occupancy. The current occupancy
level of a methylation region creates a proportional
diminishment in the ratio of methylation pressure to

methylation state change, by which can be concluded
that the efficacy of methylation pressure has an inverse
relationship to the direction the pressure is traveling.
Taking observed global peaks of methylation states as
parameters (approx. 0.125/0.925 occupancy in global
methylation (21; 22) we estimated that the methylation
pressure necessary to move a peak from 0.125 to 0.925 is
180/1 positive to negative pressure, i.e. there needs to be
a 180 times more addition than removal of methylation
to result in an average methylation occupancy of 0.925.
This means that as average methylation approaches the
occupancy walls of 0 and 1 beta, greater pressures must
be applied to the regions, and any deviation from the mean
beta value in loci close to the walls represents a far more
extreme failure of control than deviation further away
from the walls. Secondly, the induction of noise pushes
the equilibrium towards 0.5 occupancy ratio overall, but
only in the biologically unlikely scenario that noise is
uniform across pressure components. Stochastic loss of
methylation, for example, seems unlikely to become noisy
consequent to deregulation because it is by definition
unregulated. When noise is added to individual pressure
components, those components have their overall pressure
coefficient diminished towards zero, meaning that we
should not necessarily expect noise from the deregu-
lation of epigenetic maintenance to necessarily approach
homogenous occupancy.
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(i) Classification of age by deviation (ii) Classifcation of age by ranked deviation

Figure 6: Classifiers trained on a sliding window dataset (i.) and a ranked SD dataset (ii.) of GSE87571 human whole blood
DNA methylation beta values(window size = 5, as described in methods). Chronological age (y) is measured against vs predicted
age (x), with perfect prediction being represented by the samples in which the predicted age matches the chronological age.

Neural Networks can predict age from
noise

We trained a Keras classifier with a range of parameters
(supplementary table 2.1) on both the blood and brain ’SD
by age’, ’sliding window SD by age’, and ’ranked SD by
age’ datasets. Features were selected by random sampling
and the results represent the mean of a Kfold split (f=5).
Results are summarised in supplementary table 2.2. We
observe that age can be predicted with great accuracy
from individual loci beta SD within age groups, illustrating
neural networks’ capability to predict based entirely on the
amount of variance in a CpG site, rather than information
on actual methylation levels (Fig 6(i)).

To remove all possibility that the loci SD provided to
the network was allowing it to estimate beta values, we
used a dataset where locus SD values are replaced with a
rank based on size, preventing the network from having
any understanding of the extent of the SD and leaving
only the information about how sample variance ranked
against other samples at that locus (Fig 6(ii)). As a result,
the network lost only a small amount of predictive power,
with a mean absolute error of 2.573 (R2 0.962), which
demonstrates that prediction is possible solely based on
the knowledge of relative deviation within CpG sites.

Control is lost in the regulation of
regulation

To improve the classification of loci in which SD most
correlates to age, we reasoned that ’fluke’ correlation

was more likely to be represented in individual CpG loci
than entire CGI which should be more consistent in their
ontological effect. To this end, we grouped loci by their
CGI and calculated the SD of the correlations within these
CGI.

We subset all used human datasets to only include
CpG from CGI with a correlation SD below 0.15, and
further subset to contain only CpG in which SD to age
correlation and centralisation were above 0.8. We then
used methylGSA (23) to perform gene set analysis on
unique genes associated with these loci and compared
them against both those loci that fall outside this criteria
and ten sets of randomly sampled of loci(n=100000).

Within the human genome datasets this preparation
resulted in the enrichment of sequence-specific DNA
binding (GO:0043565), RNA polymerase II transcription
regulatory region sequence-specific DNA binding
(GO:0000977), cis-regulatory region sequence-specific
DNA binding (GO:0000987) and other terms that
relate to transcriptional regulation (summarised in
supplementary table 3.1 (GSE87571 human blood) and
3.2 (GSE41826 human brain)), traits absent from the
randomly sampled sets and the low polarisation set. It
is interesting that those CGI in which SD correlates to
age are those that are involved with the regulation of
promoters and enhancers, i.e. the regulation of regulation.
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3 Discussion

The role of epigenetic changes in ageing has been a
major research focus, in particular since the discovery
of epigenetic clocks. In this work we set out to break
down the nature of epigenetic damage and characterise
biological ageing as a failure of repair fidelity. To do this,
we began by showing that chronological age correlates
to the progressive deviation within certain classes of
CpG loci. It seems that there are three variables that
control the distribution of SD correlation to age: those
values representing fluke correlation to cellular regulation
centered near 0, those representing genes that are being
regulated increasingly as age increases (senescence, DNA
repair, stress response, etc) and those peaks describing
epigenetic systems becoming deregulated with age (Fig
3(i)). The latter approach random methylation and so are
detectable by their tendency to centralise their average
beta. We suggest that epigenetic clocks are measuring
both of the latter classes of CpG and that the answer
to the question ’Are epigenetic clocks measuring cause or
effect?’ (5) is ’both’, depending on the CpGs used. Genes
that change in response to age represent the effect of age
and the epigenetic stochastic noise represents biological
age itself.

We also suggest that there is evidence that there are
’activation functions’ of regional epigenetic control that
are observable through the limited range of outputs
that define average methylation across populations (Fig
5(i)). These activation functions are defined through
control of local methylation pressure, upon which will
be applied mechanisms that we suspect to be a handful
of evolutionarily conserved behaviours repeatedly applied
in combination to produce a limited range of robust
behaviours.

Within these activation functions, we suggest that
deviation from the ontologically intended output of
the activation function represents epigenetic damage,
eventually resulting in deregulation of the governed gene
expression. It seems likely that this is what is represented
by the topology ’tails’, samples in which loci control has
either become aberrant (or possibly some cases where the
loci were measured during a transition state).

Our analysis shows that as beta SD correlation to age
increases, mean beta SD decreases (Fig 4(i)). Combined
with our conclusion above, this paints a profile of low
SD unwalled loci as being the most correlated with age.
We suggest that activation function deregulation is more
extreme in situations where noise can push deregulation
in both directions, as opposed to only away from a wall.
These would be the most difficult loci in which to maintain
precise control, while also being loci in which precise
control is required, as evidenced by their overall minimal
variance. We suggest that there is a selection pressure
towards regulating by polarisation, minimising variance
by creating pressure opposed by occupancy effects. Those

loci that do not have outputs aimed at placing them close
to an extreme must have a selection pressure superseding
these benefits. There seems to be a reason that some loci
are less regulated, and thus more prone to retaining error,
and these loci are those in which SD correlates to age.

We can demonstrate that these loci are separate in class
from genes that are regulated in response to age (Fig 4(ii))
and further demonstrate through the ranked variance
clock that age can be predicted exclusively from the
knowledge of this deregulation (Fig 6(ii)). This fits exactly
with our initial theory: epigenetic damage is inevitable due
to the impossibility of mirrored backup and the bounding
that limits any algorithmic repair to imperfect fidelity.

We propose that this epigenetic damage would result in a
feedback cycle, in which deregulation would lead to further
deregulation through the disruption of maintenance and
repair of the epigenetic regions, and to the phenotype of
age through the general deregulation of cellular systems.
This would fit the profile of ageing as a robust, gradual
process, with slow, reliable progress made as deregulation
accumulates, accelerating toward network failure as the
feedback cycle picks up pace. We can see in the gene
ontology results that in all organisms and tissues, those
genes regulated by the loci in which deregulation correlates
to age are genes governing promotors and enhancers.

We suggest that this is because promotors and enhancers
have a unique feature that precludes polarising their
regional control for regulation: they need to regularly
reconfigure the local methylation state consequent to the
current state of transcription. We suggest this makes
them tautologically defined, in that the definition of the
epigenetic signal of a promotor/enhancer modulator relies
in part on its own current state (such that any damage
results in damage to any rule from which the signal could
be corrected), and thus representing a class of loci in which
epigenetic regional control cannot be correctly defined
once epigenetic damage has occurred. We suggest damage
accrues in these regions and the global deregulation of
transcription that occurs consequent to this gives rise to
the general phenotype of age.

Our work demonstrates that the cell cannot perfectly
reconstitute epigenetic damage whenever it occurs, and
must instead pick and choose which systems to hold to
high fidelity and which to allow low fidelity. In some cases,
we argue, low fidelity is forced either way. There can be no
perfect fidelity backup of all epigenetic information stored
in the cell.

Our work is broadly consistent with the information loss
theory of ageing (12; 11), but we suggest that the cell
doesn’t have a problem with information loss: information
is lost all the time. What the cell has an issue with
is fidelity of repair, and this ultimately boils down to a
limitation of data storage and trust sourcing. We also
argue that it is not merely systemic damage: epigenetic
damage causes ’definition damage’, as the tautological
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nature of epigenetic regulation and epigenetic definition
causes certain systems to treat accepted damage as ’the
new normal’.

We would also argue against the idea that any specific
cellular subsystem explains the general dynamic of age,
rather suggesting that the frequency of epigenetic events
is likely to be the main influence of the rate of epigenetic
damage and it is a core dynamic of epigenetic control
that information loss must occur in the regulation of any
adaptive system. The nature of the systems themselves
is irrelevant to the frequency of epigenetic modification
they demand and the fact that such modification must
in these systems be tautologically defined. We argue
that DNA repair and other correlated behaviours are
simply representatives of this class of epigenetic regulation
and those models that recognise the link between age
and particular systems such as DNA repair (12; 11)
are measuring the rate at which epigenetic modification
within these systems leads to epigenetic damage. It has
been demonstrated that there is a general stochastic loss
of methylation over time (24) and that hemimethylated
states can spontaneously occur through methyl group
drop-off or enzymatic error (25), and we suggest that
this might provide a base rate at which biological ageing
progresses.

This theory, therefore, provides a full line of reasoning
from the logical necessity of epigenetic damage through
to the phenotype of age. The outlined theory is not
limited to methylation-based damage: the duplication of
histone markers and damage within that system shares
the exact same issue as methylation, as will any outer
layer system of information fidelity. In an effort to reduce
the information necessary to maintain a system in which
damage is logically reversible, we propose mammals use
childbirth to shed complexity, reducing the information
necessary to a single cell. In primordial cells, stem cells
and the simple cellular systems of organisms without
epigenetic regulation, damage is reversible through the
encoding of state in algorithms that can define the correct
informatic state within the genetic code. This is possible
due to the ability to prescribe what a cell should be
independently of its environment, and results in logical
reversibility. We suggest that logical reversibility is a
necessary objective for any organism existing in a noisy
channel.

4 Methods

Datasets were handled in Python (v3.8.10) using Pandas
(v1.3.5) and visualised with a combination of Matplotlib
(v3.1.3) and Seaborn (v0.11.2). Datasets were obtained
by direct download from the NCBI GEO repository
(https://www.ncbi.nlm.nih.gov/) or where unavailable
accessed through the Python package GEOparse (v2.0.3).
Datasets were acquired with the most recent version as
of 01/09/2022. GSE87571 is GPL13534 (450k array)

beadchip data from human whole blood. Processed data
was used as described in the original paper (26). In
brief, the dataset was 728 samples from 421 individuals
with an age range of 14 to 94 years old. GSE41826
is GPL13534 (450k array) beadchip data from human
brain tissue. Processed data was used as described in
the original paper (27). In brief, the dataset was 145
samples from 58 individuals with an age range of 13 to
79 years old. Half the samples are from healthy controls
and half from subjects with major depression. GSE120137
is GPL21103 (Illumina HiSeq) data from mouse liver,
lung, adipose, blood, kidney and muscle tissue. Processed
data was used as described in the original paper (28).
GSE184223 is GPL28271 (Illumina HorvathMammalian-
MethylChip40) data from zebra blood and biopsy (only
blood used). Processed data was used as described in the
original paper (29).

These datasets were used as a base to create additional
datasets under the following conditions:

SD by age datasets

Samples were binned into groups covering five years of age
(e.g. 60-65 years old). Within each bin, the standard
deviation was taken for the beta values within each
individual CpG loci, resulting in a table of age group SD
by loci.

Sliding window SD by age datasets

The sliding window SD by age dataset was created by
sorting samples by age and running a five-row sliding
window on each CpG taking the SD for each window step.
Sample order was then re-randomised.

Ranked SD by age datasets

The ranked SD dataset was created by ranking the sliding
window dataset within individual loci.

Polarisation datasets

The polarisation datasets were created with the following
transformation on every value (x):

0.5 − |X − 0.5|

Statistical Tests

Statistical tests were performed using scikit-learn
(v1.0.2) and Benjamini-Hochberg multiple correction
was handled using the ’multipletests’ function from
statsmodels (v0.12.2). Beta plots were resampled using
’TimeSeriesResampler’ and clustering was performed
using ’TimeSeriesKMeans’ from the package tslearn
(v0.5.3.2). A random seed of 0 was used for all clusterings.
Pearson’s R correlation was performed with the pandas
’corrwith’ function, feature ranking and sliding windows
were performed using the pandas ’rank’ and ’rolling’
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functions respectively, and feature sorting was performed
with the Python built-in ’sorted’ function.

Deep Learning and State Machine

Deep learning was performed using Tensorflow (v.2.11.0)
Keras. The methylation state machine was coded in
Python (v3.8.10).

Gene Ontology

GSEA was performed using the R package methylGSA
(23) (v.1.16.0, gene set size minimum = 100, maximum
= 500, method RRA(GSEA), using the possible genes
associated to GPL13534 as background.

Data Availability

Correlation results are made available in supplementary
tables. State machine code will be made available upon
publication.

Correspondence to: Thomas Duffield (email:
thomas.duffield.correspondence@gmail.com) or João
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Role of DNA Methylation in Aging, Rejuvenation,
and Age-Related Disease,” Rejuvenation Research,
vol. 15, pp. 483–494, Oct. 2012. Publisher: Mary
Ann Liebert, Inc., publishers.

[11] J.-H. Yang, M. Hayano, P. T. Griffin, J. A. Amorim,
M. S. Bonkowski, J. K. Apostolides, E. L. Salfati,
M. Blanchette, E. M. Munding, M. Bhakta, Y. C.
Chew, W. Guo, X. Yang, S. Maybury-Lewis, X. Tian,
J. M. Ross, G. Coppotelli, M. V. Meer, R. Rogers-
Hammond, D. L. Vera, Y. R. Lu, J. W. Pippin,
M. L. Creswell, Z. Dou, C. Xu, S. J. Mitchell,
A. Das, B. L. O’Connell, S. Thakur, A. E. Kane,
Q. Su, Y. Mohri, E. K. Nishimura, L. Schaevitz,
N. Garg, A.-M. Balta, M. A. Rego, M. Gregory-
Ksander, T. C. Jakobs, L. Zhong, H. Wakimoto, J. E.
Andari, D. Grimm, R. Mostoslavsky, A. J. Wagers,
K. Tsubota, S. J. Bonasera, C. M. Palmeira, J. G.
Seidman, C. E. Seidman, N. S. Wolf, J. A. Kreiling,
J. M. Sedivy, G. F. Murphy, R. E. Green, B. A.
Garcia, S. L. Berger, P. Oberdoerffer, S. J. Shankland,
V. N. Gladyshev, B. R. Ksander, A. R. Pfenning,
L. A. Rajman, and D. A. Sinclair, “Loss of epigenetic
information as a cause of mammalian aging,” Cell,

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.29.538716doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.29.538716
http://creativecommons.org/licenses/by/4.0/


vol. 186, pp. 305–326.e27, Jan. 2023. Publisher:
Elsevier.

[12] D. Sinclair, Lifespan: The Revolutionary Science of
Why We Age and Why We Don’t Have To. London:
Thorsons, an imprint of HarperCollinsPublishers, uk
edition ed., 2019.
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