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Abstract 17 

Cellular senescence (CS) and quiescence (CQ) are stress responses characterised by persistent 18 

and reversible cell cycle arrest, respectively. These phenotypes are heterogeneous, dependent on the 19 

cell type arrested and the insult inciting arrest. Because a universal biomarker for CS has yet to be 20 

identified, combinations of senescence-associated biomarkers linked to various biological stress 21 

responses including lysosomal activity (β-galactosidase staining), inflammation (senescence-22 

associated secretory phenotypes, SASPs), and apoptosis (senescent cell anti-apoptotic pathways) are 23 

used to identify senescent cells. 24 

Using in vitro human bulk RNA-seq datasets, we find that senescent states enrich for various 25 

stress responses in a cell-type, temporal, and insult-dependent manner. We further demonstrate that 26 

various gene signatures used to identify senescent cells in the literature also enrich for stress 27 

responses, and are inadequate for universally and exclusively identifying senescent samples. 28 

Genes regulating stress responses – including transcription factors and genes controlling 29 

chromatin accessibility – are contextually differentially expressed, along with key enzymes involved in 30 

metabolism across arrest phenotypes. Additionally, significant numbers of SASP proteins can be 31 

predicted from senescent cell transcriptomes and also heterogeneously enrich for various stress 32 

responses in a context-dependent manner. 33 

We propose that ‘senescence’ cannot be meaningfully defined due to the lack of underlying 34 

preserved biology across senescent states, and CS is instead a mosaic of stress-induced phenotypes 35 

regulated by various factors, including metabolism, TFs, and chromatin accessibility. We introduce the 36 

concept of Stress Response Modules, clusters of genes modulating stress responses, and present a 37 

new model of CS and CQ induction conceptualised as the differential activation of these clusters. 38 
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1. Introduction 40 

Cellular senescence (CS) – often characterised as irreversible cell cycle arrest – influences 41 

ageing, tumour suppression, tumorigenesis, chronic diseases, wound healing, regeneration, 42 

embryonic receptivity, and development [1-9]. CS is induced via replicative senescence (RS) due to 43 

telomere erosion [10-12], stress-induced premature senescence (SIPS) by DNA and cellular damage 44 

[13-17], and oncogene-induced senescence (OIS) through erroneous oncogene activation [18-20], 45 

among other stressors. 46 

There are various issues with how CS is defined, and identifying senescent cells is challenging 47 

due to the lack of universal biomarkers; a multifaceted approach using various biomarkers is required, 48 

complicating senescence detection, particularly in vivo [21-23]. Biomarkers include cell cycle arrest, 49 

β-galactosidase (β-gal) staining, senescence-associated secretory phenotype (SASP) secretions, 50 

senescence-associated heterochromatin foci (SAHF) formation, and an enlarged and flattened cellular 51 

morphology, plus the expression of cyclin-dependent kinase inhibitors and tumour-suppressor genes 52 

like p53, p21, and p16 [22]. However, all of these biomarkers can be uncoupled from CS and are 53 

associated with other processes (Table 1). 54 
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Table 1. Biomarkers of CS alongside examples from the literature highlighting how these biomarkers 56 

have been uncoupled from senescence and are detectable in contexts outside of CS, indicating that 57 

there is no universal, process-specific biomarker of CS. 58 

Senescence Biomarker Uncoupled from Senescence Relevant to other Processes 

β-galactosidase 
staining 

Knockdown of GLB1 leads to 
senescence-associated cell 
cycle arrest without β-gal 
staining [24]. 

Activated macrophages and quiescent 
cells both stain positive for β-gal, a 
biomarker of lysosomal stress [25]. 

Secretory phenotypes 

Knockdown of BRD4 blunts 
SASP gene expression in OIS 
and SIPS even after cells have 
established a senescence 
phenotype [26]. Additionally, 
mouse cells induced into CS at 
20% oxygen concentration lack 
a SASP despite being 
irreversibly arrested [27, 28]. 

Activated and cancer-associated 
fibroblasts secrete various SASP-
associated factors, including VEGFs, 
cytokines like IL6 and IL8, chemokines, 
and matrix metalloproteinases, while 
maintaining the ability to proliferate 
[29]. Immune and endothelial cells also 
secrete factors reminiscent of the SASP 
[22]. 

Hypophosphorylation 
of Rb protein 

Activation of the p53-
dependent DNA damage 
response can trigger 
senescence in cells with 
dysfunctional Rb protein [30]. 

Rb protein is hypophosphorylated in 
CQ [31]. 

Senescence-associated 
heterochromatin foci 

SAHF are dispensable for 
cellular senescence and 
primarily associated with OIS 
and not RS or SIPS [32]. 

DNA damage repair-deficient 
oncogene-expressing cells have 
nuclear heterochromatic structures 
morphologically reminiscent of SAHF 
while maintaining their proliferative 
capacity [33]. 

p53/p21 and p16 
expression 

Cells can be induced into 
SAHF-dependent irreversible 
arrest independent of p16, 
p53, and p21 via 
downregulation of p300 
histone acetyltransferase [34]. 

p53 and p21 expression are implicated 
in other cell cycle arrest phenotypes 
besides CS, including CQ and terminal 
differentiation [35-38]. 

Irreversible arrest 

Senescent BJ fibroblasts can 
re-enter the cell cycle 
following p53 knockdown, 
maintaining SASP secretions 
[39]. 

Granulocyte-monocyte ER-HOXA9 cells 
lose their ability to proliferate 
following terminal differentiation into 
mature neutrophils and monocytes 
[40]. 

DNA damage 
Senescence phenotypes can be 
triggered without detectable 
DNA damage [41]. 

Quiescent hematopoietic stem cells 
accumulate DNA damage that is 
repaired upon re-entry into the cell 
cycle [42]. 

Enlarged, flattened 
morphology 

Enforcing senescent cells to 
have a spindle-shaped 
morphology – as opposed to 

TGF-β-treated prostate epithelial cells 
exhibit elevated SA-β-gal activity 
alongside CS morphology whilst 
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the typical enlarged, flattened 
morphology – does not allow 
re-entry into the cell cycle [43]. 
Furthermore, RAF-induced OIS 
results in ‘retracted spindle’ or 
‘spherical’ morphologies as 
opposed to traditional CS-
associated morphologies [44]. 

simultaneously maintaining their 
proliferative capacity [45]. 

Senescent cells exhibit heterogeneity in both phenotype and function [46, 47]. The 59 

composition of the SASP is heterogeneous, dependent on insult and genetic factors such as p53, RAS, 60 

and p16 [27, 48]. The transcriptomic profile of senescent cells and their respective SASPs are partially 61 

dependent on the cell type, insult, and physiological environment of the cell when CS is induced [27, 62 

47, 49]. This heterogeneity suggests that senescent cells tailor their functions to their biological 63 

context, as seen in senescent pancreatic β-islets which secrete more insulin than their non-senescent 64 

counterparts [50]. Furthermore, post-mitotic cells like neurons and muscle cells showcase 65 

senescence-associated features under stress – like SASP production – despite lacking proliferative 66 

potential to begin with [51, 52]. 67 

The reversibility of arrest phenotypes in CS [39, 44, 53, 54] is itself contradictory; CS is 68 

classically defined as irreversible cell cycle arrest. SAHF – which are p16-dependent and primarily 69 

associated with OIS [32] – contribute to CS-associated irreversible arrest phenotypes [34, 55, 56]. On 70 

the other hand, p53/p21, known to induce CS [57], are also implicated in post-mitotic terminal 71 

differentiation and CQ – cellular programmes that showcase more-readily reversible forms of arrest 72 

[36, 37, 58]. The role of p53 and p21 in maintaining these states – alongside the fact that arrest 73 

associated with p53-induced CS can be reversed – blurs the line between ‘irreversible’ arrest in CS 74 

compared to reversible arrest in other contexts. Moreover, CQ is not a single uniform state, and 75 

‘deeper’ quiescent depths are implicated in the transition from CQ into CS [31, 59, 60]. As such, at 76 

least two mechanisms of cell cycle arrest – a more readily reversible arrest associated with p53/p21 77 

expression compared to a stringent irreversible arrest associated with p16 expression and erroneous 78 

oncogene activation – appear to have evolved in mammals. 79 
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CS manifests as a gradual process; a sequential emergence of gain-of-senescence phenotypes 80 

associated with specific genetic clusters has been identified in RS [61-63]. Secretion of SASP factors is 81 

also accelerated in OIS compared to other CS phenotypes [27, 64]. Uncoupling of the SASP from cell 82 

cycle arrest further indicates distinct regulatory mechanisms between these processes. Indeed, the 83 

regulation of SASP secretions varies, with a greater involvement of chromosomal rearrangements in 84 

OIS compared to RS, possibly via mechanisms involving SAHF [65, 66]. Furthermore, metabolic 85 

alterations such as in the prostaglandin pathway have been shown to drive SASP heterogeneity [49, 86 

67-70]. The temporal nature of CS – alongside the uncoupling of CS biomarkers from senescent states 87 

– suggests that senescence itself is a combination of multiple phenotypes [62, 71, 72]. Furthermore, 88 

p53 is involved in various other stress responses, including CQ, DDR signalling, autophagy, 89 

inflammation, and apoptosis, indicating that CS phenotypes may encompass multiple stress responses 90 

[35, 57, 64, 73-82]. 91 

In this study, we perform a bioinformatic analysis of CS and CQ transcriptomes and find that 92 

transcriptomic markers of CS commonly used to identify senescent cells in the literature fail to do so 93 

in a universal and exclusive manner. Furthermore, CS and CQ transcriptomes encompass various stress 94 

response pathways, including lysosomal genes, inflammation, apoptosis, and hypoxia. We further 95 

show transcriptomic heterogeneity of TFs, metabolic enzymes, epigenetic regulators, and key stress 96 

response genes that potentially heterogeneously regulate stress response pathways in CS. As such, 97 

we suggest that heterogeneity observed in mammalian cell cycle arrest phenotypes is due to 98 

differential regulation of stress responses, which do not universally coactivate alongside reversible 99 

and irreversible proliferative arrest. We call the clusters of genes associated with separate CS 100 

biomarkers ‘Stress Response Modules’ (SRMs) (Figure 1). This model suggests that senescent cell 101 

heterogeneity is due to mosaic activation of tailored stress-associated pathways, with CS not distinctly 102 

classifiable as a specific subset of SRMs or any other discrete category.  103 
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 104 

Figure 1. Proposed model of senescence and quiescence induction as differential activation of stress 105 

response modules. The activation of different modules is currently measured via different 106 

biomarkers, including β-gal as a proxy marker of lysosomal activation associated with autophagy, 107 

while inflammatory genes are used as markers for the activation of secretory phenotypes [22]. 108 

Importantly, activation of SRMs can occur independent of cell cycle arrest; the coactivation of these 109 

modules is not guaranteed in senescence, and individual stress response phenotypes like 110 

inflammation and lysosomal activity have been uncoupled from cell cycle arrest in ‘senescent’ cells 111 
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[24, 27, 83, 84]. Moreover, distinct classes of cell cycle arrest modulated by the p53/p21 and p16 112 

pathways likely influence the reversibility of SRM activations [39]. 113 

2. Results 114 

2.1 Transcriptional Heterogeneity of Arrested Human Fibroblast Cell Lines 115 

We probed the senescent, quiescent, and proliferating transcriptomic profiles of human lung, 116 

skin, and foreskin fibroblast samples across 34 studies, focusing on uniformly processed bulk RNA-seq 117 

datasets from recount3 [85, 86] (SI Table 1). OIS samples included cells expressing H-RasV12 (HRAS) 118 

(n=42) or BRAFV600E (BRAF) (n=6) constructs, or corresponding control samples transfected with 119 

control siRNAs (see 5.1 Cell Cycle Arrest Transcriptomic Data). SIPS samples were induced into CS via 120 

DNA damage, while CQ was induced via contact-inhibition (n=19) or serum-starvation (n=22), and RS 121 

was induced via proliferative exhaustion. 122 

2.1.1 Cell Cycle Arrest Transcriptome Comparison 123 

After removing the study batch effect via linear regression, principal component analysis (PCA) 124 

was performed to assess how samples clustered (SI Figure 1); the top two PCs accounted for 71% of 125 

sample variation. We identified 4 separate clusters: i) proliferating; ii) serum-starved and contact-126 

inhibited CQ; iii) SIPS and RS; and iv) OIS. Differentially expressed genes (DEGs) were derived between 127 

arrested samples and proliferating controls using DESeq2 (p<0.05 and |log2FC|>log2(1.5), negative 128 

binomial distribution with Benjamini-Hochberg (BH) false discovery rate (FDR) correction) [87] (SI 129 

Table 2, see 5.2 in methods). Volcano plots of DEGs are shown in SI Figure 2. When we considered 130 

genes showcasing the largest variance across samples, the top genes consisted of SASP factors 131 

including IL1B, MMP3, CXCL8, and SERPINB2 (SI Table 2). 132 

Across all five cell cycle arrest states, there were 316 and 101 shared under- and 133 

overexpressed DEGs respectively (SI Figure 3, SI Table 3). We performed 10,000 simulations to 134 

determine the likelihood of DEGs changing in the same direction across all conditions (SI Table 4). 135 

Across simulations, DEGs never changed in the same direction by chance more than 13 times (see 5.4 136 
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in methods) (SI Figure 4, SI Table 5) indicating that there are significantly more arrest-DEGs shared 137 

between arrested conditions than expected. 138 

The shared under- and overexpressed DEGs were enriched using genes that change in the 139 

same direction in all five arrest conditions – regardless of significance – as an enrichment background 140 

(SI Table 6-7). There were no enriched KEGG or GO terms for shared overexpressed DEGs. 141 

Unsurprisingly, the shared underexpressed DEGs enriched for cell cycle-associated terms, including 142 

‘cell cycle,’ ‘cell division,’ and ‘meiotic cell cycle process’ (SI Figure 5a). DNA repair pathways were also 143 

enriched, alongside pathways involved in response to irradiation. The ‘Cellular senescence’ KEGG 144 

pathway was enriched amongst the shared underexpressed DEGs (SI Figure 5b), although the KEGG 145 

CS pathway constitutes both genes that promote and inhibit proliferation; amongst shared 146 

underexpressed DEGs are cyclin A2, B1, B2, and CDK1, which are necessary for cell cycle progression 147 

and are expected to downregulate in arrest. 148 

Samples were grouped via unsupervised hierarchical clustering based on the top 15 over- and 149 

underexpressed DEGs (identified using π scores) for each cell cycle arrest condition (SI Figure 6, SI 150 

Table 8) (see 5.3 PCA and Heatmaps). All proliferating, CQ, and CS samples clustered into their 151 

respective groups. Nonetheless, these DEGs were unable to fully differentiate between CQ subgroups.  152 

Over-representation analysis (ORA) was performed between conditions using all genes 153 

expressed within the recount3 data as an overlap background, and significantly underexpressed DEGs 154 

were significantly shared across arrest conditions (p<0.05, two-tailed Fisher’s exact test with 155 

Bonferroni correction) (Figure 2a, SI Figure 7, SI Table 9). This was also the case with the overexpressed 156 

arrest DEGs. The exception was the overlap between overexpressed OIS DEGs with overexpressed 157 

contact-inhibited CQ DEGs. The overexpressed CQ DEGs did not significantly overlap with the 158 

underexpressed CQ DEGs, as expected. We found the same pattern with the SIPS DEGs, where the 159 

overexpressed CQ DEGs overlapped the underexpressed SIPS DEGs significantly less than expected by 160 

chance while the underexpressed CQ DEGs overlapped the overexpressed SIPS DEGs less than 161 
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expected by chance. However, it appears that more overexpressed RS and OIS DEGs are 162 

underexpressed in serum-starved CQ than expected by chance. 163 

Various transcriptomic signatures of CS have been published (Table 2). To determine whether 164 

these signatures are significantly associated universally with CS – and not CQ – we overlapped them 165 

with the arrest DEGs using genes expressed in the recount3 fibroblast data as the background (Figure 166 

2b, SI Table 10-11). We also overlapped CellAge genes that are capable of inducing and inhibiting CS 167 

when genetically perturbed. 168 

Table 2. Sources of CS signatures from various published studies. Genes available in SI Table 10. 169 

Signatures Explanation 

CellAge Drivers 
Genes that induce or inhibit the senescence phenotype when 
genetically manipulated in human cell lines [21, 88]. 

CellAge 
signatures of RS 

Signatures of RS compiled from a meta-analysis of human cells [89]. 

SenMayo 
Gene set used to identify senescent cells across tissues and species 
[90]. 

Hernandez-
Segura et al 

Senescence-associated 'core' signatures identified in senescent human 
fibroblasts, melanocytes, astrocytes, and keratinocytes and validated 
in mouse cells, generated via irradiation and oxidative stress [47]. From 
the data generated in house, only samples sequenced 10 days post-
irradiation were included in the generation of the ‘core’ signatures of 
CS. 

Casella et al 
Senescence signatures developed from human fibroblasts and 
endothelial cells induced into CS via RS, ionising radiation, doxorubicin, 
or HRASG12V overexpression [91]. 

Cherry et al 
In vivo derived signature of CS from p16+ fibrotic mice validated in 
human scRNA-seq datasets [92]. The authors themselves note that 
these signatures are not universal across tissues. 

 We assessed whether any of these signatures could be used as universal transcriptomic 170 

signatures of CS, based on the following criteria: i) be significantly overrepresented in all senescent 171 

conditions – in a direction-dependent manner where applicable – and ii) be unique to CS as opposed 172 

to other biological processes like CQ. The majority of these gene lists failed to meet these criteria. 173 

The most promising gene list that was significantly upregulated exclusively in CS and not CQ 174 

was SenMayo. However, when we looked at the genes that were shared exclusively across CS 175 

conditions, we only found 10 genes upregulated across CS – ANGPTL4, CCL26, CSF2, CST4, EREG, FGF2, 176 
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MMP12, MMP3, NRG1, and SPX – indicating that the majority of overexpressed SenMayo genes are 177 

not universally shared exclusively in CS (SI Figure 8, SI Table 12). 178 

 179 

Figure 2. a) Overlap between arrest-DEGs. b) Overlap of arrest-DEGs with various gene lists of 180 

interest. Red tiles indicate significantly more overlaps than expected by chance, whereas blue tiles 181 

indicate significantly fewer overlaps than expected, and only significant results are shown (p<0.05, 182 

two-tailed Fisher’s exact test with Bonferroni correction). For (b) lighter tiles are used to distinguish 183 

quiescence from senescence. 184 
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2.1.2 Associations Between Cell Cycle Arrest and Stress Responses 185 

To find potential SRMs in arrest phenotypes, ORA was performed between arrest-DEGs and 186 

all gene lists from the Molecular Signatures Database (MSigDB) hallmark gene set collection. 187 

Furthermore, given associations between arrest phenotypes and lysosomal activity, we included a list 188 

of lysosome-related genes published by Bordi et al. [93] (SI Table 13). 189 

There was significant underexpression of mitotic spindle, G2M checkpoint, and E2F target 190 

genes across arrest conditions, as expected (Figure 3a, SI Figure 9a, SI Table 14). Furthermore, 191 

lysosomal genes in arrest phenotypes were significantly overexpressed, except in serum-starved CQ. 192 

While overlaps suggest that all CS conditions are significantly associated with inflammation, there was 193 

heterogeneity amongst which proinflammatory pathways were upregulated in CS, with the interferon 194 

gamma response and IL6 JAK STAT3 signalling pathways overexpressing in OIS but not SIPS or RS. 195 

Finally, both the apoptosis and p53 pathways were significantly overrepresented amongst 196 

overexpressed CS – but not CQ – DEGs. 197 

  198 
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 199 

 200 

Figure 3. a) Overlap between arrest-DEGs and various pathways of interest. Red tiles indicate 201 

significantly more overlaps than expected by chance, whereas blue tiles indicate significantly fewer 202 

overlaps than expected. b) Overlap between various gene lists and pathways of interest. Note that 203 

while overlaps were performed for the entire MSigDB, only some pathways of interest are shown due 204 

to space constraints. 205 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.03.616489doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.03.616489
http://creativecommons.org/licenses/by/4.0/


 14 

We considered whether senescence gene lists might also capture stress responses. ORA was 206 

performed between the gene lists from Table 2 and MSigDB, using genes expressed in the fibroblast 207 

data as a background for consistency (Figure 3b, SI Figure 9b, SI Table 15). Overexpressed CellAge RS 208 

signatures significantly overlapped the lysosomal genes, alongside the p53 pathway, various 209 

inflammation pathways, hypoxia, and apoptosis pathways. Underexpressed CellAge RS signatures 210 

were associated with MYC targets, MTORC1 signalling, and proliferation-associated pathways. CellAge 211 

genes were also associated with various stress responses and pathways. Finally, SenMayo and the 212 

Cherry et al. datasets are also measuring various stress response pathways including hypoxia, 213 

inflammation, and apoptosis, although not all gene lists enrich for stress responses. 214 

Given the connections between SenMayo and stress pathways, we questioned whether other 215 

cellular states might also enrich for SenMayo. Literature indicates that senescent cells exhibit 216 

behaviour similar to activated macrophages, characterised by increased secretory and lysosomal 217 

activity [94]. To explore this, we compared SenMayo with DEGs generated from both classically and 218 

alternatively activated macrophages against untreated macrophages [95] (SI Figure 10, SI Table 10 and 219 

16). Since the macrophage data is from mice, we conducted ORA using the SenMayo mouse gene list—220 

approximately 80% of which has an equivalent human homologue from the human SenMayo list —221 

using all protein-coding mouse genes as the background. SenMayo was significantly overrepresented 222 

amongst both classes of activated macrophages, indicating that while SenMayo is significantly 223 

enriched exclusively in the CS DEGs, it does not separate CS from other stress-related phenotypes. 224 

To assess whether there is crosstalk between the MSigDB pathways, ORA was performed 225 

between different pathways using genes expressed in the fibroblast data as a background for 226 

consistency (SI Figure 11, SI Table 17). Various genes are shared across pathways, like the apoptosis 227 

gene list which significantly overlaps the hypoxia pathway, various pro-inflammatory pathways, and 228 

the MTORC1 pathway. As such, we assessed the expression of individual genes linked to various stress 229 

pathways and processes related to CS and CQ based on the literature (Table 4). We focused on genes 230 

known to promote or inhibit apoptosis, alongside genes associated with autophagy and lysosome 231 
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function, inflammation, cell cycle arrest, chromatin architecture in SAHF formation, and transcription 232 

factors (TFs) associated with regulating stress responses, and found widespread heterogeneity 233 

dependent on insult (Figure 4a). 234 

Table 4. Various genes associated with CS or other stress response pathways. 235 

Gene Class Explanation 

PMAIP1 (NOXA) Apoptosis Intrinsic pro-apoptotic BCL-2 protein [96]. 

BCL2L1 (BCL-xL) Apoptosis Intrinsic anti-apoptotic BCL-2 protein [96]. 

BBC3 (PUMA) Apoptosis Intrinsic pro-apoptotic BCL-2 protein [96]. 

BAK1 Apoptosis Intrinsic pro-apoptotic BCL-2 protein [96]. 

CASP3 Apoptosis 
Effector caspase that plays a critical role in the 
execution phase of cell apoptosis [97]. 

SUV39H1 
Chromatin 
architecture 

Histone methyltransferase that trimethylates 
'Lys-9' of histone H3 necessary for SAHF 
formation [98]. Inhibits the SASP [99]. 

HMGA2 
Chromatin 
architecture 

Structural component of SAHF [100]. 

HMGA1 
Chromatin 
architecture 

Structural component of SAHF [100]. 
Implicated in modulating CS heterogeneity 
[101]. 

LMNB1 
Chromatin 
architecture 

Downregulation is a marker of CS, and plays a 
role in SAHF formation [102, 103]. 

LMNA 
Chromatin 
architecture 

Regulates p16 expression [104]. 

ULK1 Autophagy/lysosome 
Involved in autophagy initiation and promotes 
autophagosome–lysosome fusion [105]. 

MAP1LC3B 
(LC3) 

Autophagy/lysosome 
Implicated in autophagosome biogenesis and 
autophagy substrate selection. Marker of 
autophagy [106]. 

LAMP1 Autophagy/lysosome 
Role in regulating lysosomal function and pH 
[107, 108]. 

IL6 Inflammation Proinflammatory cytokine SASP secretion [27]. 

IL1B Inflammation Proinflammatory cytokine SASP secretion [27]. 

PTGS2 (COX2) Inflammation 
Involved in prostaglandin synthesis and 
regulating inflammation [109]. 

CXCL8 (IL8) Inflammation 
Proinflammatory chemokine SASP secretion 
[27]. 

MDM2 Cell cycle Regulates p53 [110]. 

CDKN2A (p16) Cell cycle 
Regulates CS by inhibiting CDK4 and CDK6 
[111], indirectly modulates SAHF formation 
[32]. 

CDKN1A (p21) Cell cycle 
Regulates CS via inhibiting cyclin-dependent 
kinases [112]. 
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CDK6 Cell cycle 
Cyclin-dependent kinase involved in regulating 
the cell cycle [113]. 

CDK4 Cell cycle 
Cyclin-dependent kinase involved in regulating 
the cell cycle [113]. 

CDK2 Cell cycle 
Cyclin-dependent kinase involved in regulating 
the cell cycle [113]. 

CCNE1 Cell cycle 
Cyclin E1 binds CDK2 regulating DNA 
replication and cell cycle progression [113]. 

CCND1 Cell cycle 
Cyclin D1 forms a complex with CDK4/6 and 
regulates G1 [113]. 

TP53 (p53) TF 
Regulates various stress responses including 
cell cycle arrest, inflammation, autophagy, 
and apoptosis [114]. 

FOXO4 TF 

Regulates pathways like oxidative stress 
signalling, cell cycle progression, and 
apoptosis [115]. Inhibition acts as a senolytic 
[116]. 

FOXO3 TF 
Regulates pathways like oxidative stress 
signalling, cell cycle progression, and 
apoptosis [115, 117]. 

CEBPB (C/EBPβ) TF Regulates CS and the SASP [118]. 

ATF4 TF 

Regulates adaptive genes enabling cells to 
endure stress like hypoxia or amino acid 
depletion, but promotes apoptosis under 
persistent stress [119]. 

MITF TF 
Promotes proliferation and inhibits apoptosis 
[120]. 

EGR2 TF 
Regulates CS, knockdown in RS reverses the 
senescent phenotype [54]. 
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 236 

Figure 4. a) Heterogeneous expression of key stress response genes across cell cycle arrest conditions, 237 

compared to proliferating controls. Red tiles indicate overexpression of the given genes for the cell 238 

cycle arrest conditions compared to proliferating controls, while blue tiles indicate underexpression. 239 

Significance assessed using a negative binomial distribution with BH correction and 240 

|log2(FC)|>log2(1.5)). Maximum log2FC was capped at 6 to visualise differences more clearly between 241 

conditions. b) Overlap of DEGs generated between CS and CQ samples and SASP secretomes. 242 
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2.1.3 Metabolic heterogeneity 243 

CS is associated with shifts in metabolic profiles [68, 121]. We compiled various metabolic 244 

pathways associated with CS from WikiPathways, KEGG, and MetaCyc, alongside a background of 245 

metabolic enzymes (see 5.6 Metabolism Pathways in Methods) [122-125]. ORA of metabolic pathways 246 

against each other using the metabolism background shows that most pathways comprise unique 247 

metabolic enzymes (SI Figure 12, SI Table 18-19).  248 

ORA was performed between metabolism pathways and arrest-DEGs using the intersection of 249 

the metabolism background and genes expressed in the fibroblast data as the background (SI Figure 250 

13, SI Table 20). While there was not a significant association between arrest-DEGs and metabolism 251 

for most pathways, there was significant upregulation of the eicosanoid metabolism via 252 

cyclooxygenases (COX) pathway in SIPS and the hexosamine pathway in OIS, alongside significant 253 

downregulation of nucleotide synthesis in contact-inhibited CQ and SIPS. Furthermore, there were 254 

various trends, particularly in how energetic pathways – oxidative phosphorylation (OXPHOS), TCA, 255 

and glycolysis – were expressed in CQ compared to CS. 256 

We wondered whether samples could be clustered into their respective arrest phenotypes 257 

based on metabolic gene expression. While these genes were not capable of clustering RS samples 258 

together – or distinguishing between CQ states – hierarchical clustering correctly clustered most 259 

samples into CQ, proliferating, SIPS, and OIS groups (SI Figure 14). 260 

Finally, gene expression data was mapped to the eicosanoid metabolism via COX pathway 261 

because this pathway is specifically linked to prostaglandins and inflammation [27, 126] and because 262 

some of the most variably expressed metabolic genes across all samples were from this pathway, 263 

including PTGS2, PTGIS, and PTGDS (Figure 4a, SI Figure 15, SI Table 2). We found that PLA2G4A was 264 

significantly overexpressed across arrest conditions, except for RS, while TBXAS1 was uniquely 265 

overexpressed in OIS and various metabolic enzymes like PTGES and PTGDS were shared between SIPS 266 

and CQ, but not OIS or RS. In addition, broader trends become apparent even where differential 267 

expression did not reach significance individually. In particular, the central enzyme PTGS2 showed 268 
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upregulation in SIPS and OIS, no change in RS and serum-inhibited CQ, and downregulation in contact-269 

inhibited CQ; in line with similar patterns for non-metabolic inflammation genes in Figure 4a. 270 

2.1.4 Heterogeneous SASP at the Proteomic Level 271 

Basisty et al. developed the SASP atlas, profiling secretory SASPs (sSASPs) and extracellular 272 

vesicle SASPs (eSASPs) from senescent fibroblasts induced via RAS overexpression, irradiation, and 273 

atazanavir co-culture, alongside senescent epithelial cells induced via irradiation [49]. The SASP atlas 274 

was constructed by comparing secretomes from senescent cells to serum-starved CQ controls, 275 

resulting in two groups: i) proteins secreted following CS induction compared to CQ (log2(CS/CQ)>0.58 276 

& p-value<0.05 following BH correction); ii) proteins secreted following CQ induction compared to CS 277 

(log2(CS/CQ)<-0.58 & p-value<0.05 following BH correction) (SI Table 21). The study noted significant 278 

heterogeneity in SASP proteins based on stressor and cell type, and distinct secretory profiles between 279 

sSASPs and eSASPs. 280 

To compare senescent and quiescent transcriptomes to the SASP atlas, we generated DEGs 281 

between CS and CQ samples from the recount3 studies. Limited studies featuring both CS and CQ 282 

conditions resulted in a smaller sample size for DEG analysis. Contact-inhibited and serum-starved CQ 283 

samples were analysed together against OIS and SIPS samples, excluding RS samples due to 284 

insufficient sample numbers (SI Table 1). 285 

After removing the study batch effect via linear regression, PCA was performed whereby 286 

samples clustered into three groups corresponding to CQ, SIPS, and OIS samples, and the top two PCAs 287 

captured 83% of the sample variance (SI Figure 16). Significant DEGs were generated between CQ and 288 

both SIPS and OIS samples, resulting in 3,800 underexpressed and 3,052 overexpressed OIS DEGs, 289 

alongside 912 underexpressed and 1,473 overexpressed SIPS DEGs (p<0.05 and |log2FC|>log2(1.5), 290 

negative binomial distribution with BH FDR correction) (SI Table 22). 291 

ORA was performed between SIPS and OIS DEGs generated against CQ samples, with 292 

significant overlaps between CS DEGs changing in the same direction using genes expressed in these 293 

recount3 samples as the background (SI Figure 17, SI Table 23). ORA was further performed between 294 
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these DEGs and the stress response pathways; both CS conditions significantly overlapped 295 

proinflammatory conditions compared to CQ samples (SI Figure 18, SI Table 24). However, 296 

overexpressed OIS DEGs specifically overlapped the p53 pathway, MYC targets, and MTORC1 297 

signalling, whereas SIPS DEGs did not, indicating that fibroblast OIS is specifically associated with these 298 

pathways compared to fibroblast SIPS and CQ. Lysosomal genes did not significantly overlap any DEGs, 299 

likely because CQ is also significantly associated with lysosomal processes. 300 

ORA was further performed between these DEGs and the SASP atlas by condition and 301 

direction using the intersection of genes expressed within the recount3 data and protein secretions 302 

from the given SASP condition as the background (Figure 4b, SI Figure 19a, SI Table 25). The 303 

overexpressed OIS and SIPS DEGs significantly overlapped the fibroblast RAS sSASP profile, while CQ 304 

secretions generated against epithelial and fibroblast irradiated sSASPs were significantly 305 

overrepresented amongst downregulated OIS and SIPS DEGs. However, the irradiated fibroblast sSASP 306 

and eSASP were only significantly over- and underrepresented in the OIS DEGs, and not the SIPS DEGs. 307 

These findings imply that significant portions of some proteomic SASP profiles are captured at the 308 

transcriptomic level in a context-dependent manner. 309 

ORA was performed to determine whether SASP profiles are associated with stress response 310 

pathways (SI Figure 19b, SI Table 26). None of the SASP profiles were significantly associated with 311 

inflammation pathways. However, irradiated SASP secretions specifically were significantly associated 312 

with various processes including MTORC1 signalling and hypoxia, whereas other SASP profiles were 313 

not, suggesting that SRMs may be partially regulated and effected via the SASP in specific contexts.  314 

2.2 Temporal Dynamics of Senescent Cell Transcriptomes 315 

We sought to further dissect the temporal dynamics of CS. Hernandez-Segura et al. generated 316 

bulk RNA-seq datasets for fibroblasts, melanocytes, and keratinocytes at 4-, 10-, and 20-days following 317 

exposure to 10Gy of γ-radiation, alongside proliferating controls [47] (see 5.1 Cell Cycle Arrest 318 

Transcriptomic Data) (SI Table 27). In this work, the researchers identified 61 genes that were shared 319 
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across all cell types and time points compared to proliferating controls, 34 of which were not shared 320 

with quiescent phenotypes. 321 

2.2.1 Heterogeneity of Temporal Senescent States 322 

PCA using the 500 most variable genes showed that CS samples tended to cluster by days post-323 

irradiation, except in the 10-day post-irradiated fibroblasts, which clustered into two groups (SI Figure 324 

20). The keratinocytes had a batch effect that was not present in the other cell type data and was 325 

removed via linear regression (see 5.2 Linear Regression in methods) (SI Figure 20a). 326 

Temporal DEGs were generated between each time point and proliferating controls, by cell 327 

type, using DESeq2 (p<0.05 and |log2(fold change)|>log2(1.5), negative binomial distribution with BH 328 

correction) [87] (SI Table 28, 29). Unsupervised hierarchical clustering was performed using the top 329 

25 over- and underexpressed temporal DEGs generated between time points compared to 330 

proliferating controls (identified using π scores, see 5.3 PCA and Heatmaps) (SI Table 30); samples 331 

tended to cluster by days post-irradiation except for one melanocyte sample (SI Figure 21-23). 332 

Temporal DEGs generated between proliferating samples and senescent cells were compared, 333 

and significantly more DEGs were shared between all time points for each cell type than expected by 334 

chance, based on 10,000 simulations (see 5.4 DEG Overlap Simulations) (SI Table 31-32). 335 

We found four temporal DEGs that were underexpressed across all time points and all cell 336 

types – PIR, STMN1, USP13, and PEG10 – alongside 45 overexpressed temporal DEGs – AC099489.1, 337 

ADM, AL031777.2, AL583836.1, ANKRD29, APLP1, BTG2, C3, CCND1, CNGA3, COLQ, COMP, CSF2RB, 338 

DPP6, FGF11, FOLR3, FSTL4, GABBR2, GDNF, H2AC18, H2AC19, H2BC6, H2BC8, H4C8, HES2, IL32, INHA, 339 

LIF, LIX1, LTO1, MYOZ2, NECTIN4, PARM1, PLA2G4C, PLXNA3, PTCHD4, PTPRT, RRAD, SERINC4, SIK1, 340 

SIK1B, SMCO1, SULF2, WNT9A, and ZNF610. Across all 10,000 DEG overlap simulations, only one DEG 341 

was ever shared across all under- and overexpressed time points, indicating that more shared DEGs 342 

are significantly conserved across conditions than expected. 343 

The number of shared DEGs across all time points differs from the 61 genes identified in the 344 

original study, perhaps because they did not adjust for the keratinocyte batch effect and used a 345 
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different log2(FC) cut-off of log2(1.3) instead of log2(1.5) [47]. Nonetheless, we rediscovered 42 of the 346 

same DEGs. 347 

ORA was performed between cell types by time points, using genes expressed in either cell 348 

type as the background (Figure 5a, SI Figure 24, SI Table 33). Various results were as expected. For 349 

example, across all cell types and time points, there were more shared overexpressed DEGs than 350 

expected by chance (p<0.05, two-tailed Fisher’s exact test with Bonferroni correction). Furthermore, 351 

genes that changed in opposite directions between fibroblasts and keratinocytes overlapped 352 

significantly less than expected by chance across all time points too. Moreover, DEGs underexpressed 353 

in keratinocytes significantly overlapped DEGs underexpressed in fibroblasts across all time points. 354 

However, the melanocytes showcased expression patterns opposite to expectation. For example, 355 

overexpressed late-senescence (day 20) keratinocyte DEGs overlapped with underexpressed 356 

melanocyte DEGs more than expected by chance across all time points. Furthermore, overexpressed 357 

melanocyte DEGs significantly overlapped the underexpressed keratinocyte and fibroblast DEGs 358 

across most time points. These results suggest that the irradiation-induced CS programme in 359 

melanocytes is distinct from keratinocytes and fibroblasts. 360 

  361 
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 362 

 363 

Figure 5. a) Overlap between temporal DEGs. b) Overlap of temporal DEGs with various gene lists of 364 

interest. 365 
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ORA was performed between temporal DEGs and the CS datasets, using genes expressed in 366 

each cell type as the background (Figure 5b, SI Figure 25, SI Table 34). Overexpressed CellAge 367 

signatures of RS were significantly upregulated across all time points, and underexpressed CellAge 368 

signatures were downregulated in fibroblasts and keratinocytes (p<0.05, two-tailed Fisher’s exact test 369 

with Bonferroni correction). However, the RS signatures were significantly upregulated in early- and 370 

mid-melanocyte time points. Moreover, CellAge inhibitors of CS were significantly downregulated in 371 

fibroblasts and keratinocytes, but not melanocytes, further highlighting differences in the melanocyte 372 

irradiation-induced CS programme. Hernandez-Segura et al. signatures overlapped the temporal DEGs 373 

as expected, which is not surprising given these signatures were partially derived from the 10-day 374 

data, although not all overlaps were significant. The closest universal signature of CS was SenMayo, 375 

which was consistently upregulated across cell types and time points, although late-stage 376 

keratinocytes did not significantly upregulate SenMayo signatures, indicating a false negative. 377 

Furthermore, none of the 10 SenMayo DEGs we identified as universally overexpressed in arrest-DEGs 378 

(SI Figure 8) were significantly overexpressed across all cell types and time points, further suggesting 379 

that SenMayo is measuring heterogeneous biological processes. 380 

2.2.2 Temporal Activation of Stress Response Genes in Arrest Phenotypes 381 

ORA was performed between temporal DEGs and the aforementioned pathways using genes 382 

expressed in the temporal samples as the background (Figure 6a, SI Figure 26, SI Table 35). There was 383 

significant heterogeneity among the temporal DEGs. The only uniformly significantly overexpressed 384 

pathway across cell types and time points was the ‘TNFA signalling via NF-κB’ pathway, with the p53 385 

pathway being significantly overexpressed across time points except in early keratinocyte CS. 386 

Lysosomal DEGs and MYC targets were only significantly over- and underexpressed in fibroblasts, 387 

respectively. Inflammatory pathways were heterogeneously expressed on a cell type and temporal 388 

basis, alongside the hypoxia pathway. While melanocytes and fibroblasts significantly upregulated 389 

apoptosis pathways across time points, this was not observed in keratinocytes. Notably, melanocytes 390 

did not downregulate any pathways except for MYC targets at late CS. This includes various 391 
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proliferative pathways — mitotic spindle, G2M checkpoint, and E2F targets — that were otherwise 392 

downregulated in fibroblasts and keratinocytes as expected. At early- and mid-CS time points, 393 

melanocytes significantly upregulated E2F targets, contrary to expectation, suggesting that these cells 394 

may maintain proliferative capacity despite upregulating other stress response pathways. 395 

The expression of various stress-response and senescence-associated genes across irradiated 396 

cell types and time points was assessed (Figure 6b). Hernandez-Segura et al. previously showed that 397 

various driver genes of CS like p21, p16, and p53 are not differentially expressed across all time points 398 

[47]. Indeed, we found a lack of universal expression of CDKN1A, TP53, and CDKN2A within this data. 399 

Furthermore, the aforementioned stress response genes were expressed heterogeneously, 400 

dependent on cell type and time point. Moreover, there were differences in key TFs and chromatin 401 

architecture genes depending on context. A particularly interesting example is LMNB1, which was 402 

significantly downregulated across time points in the fibroblast and keratinocyte temporal data but 403 

was upregulated in early melanocyte CS and only significantly downregulated at late melanocyte CS. 404 

Intriguingly, we also found keratinocytes to be less proinflammatory than melanocytes or fibroblasts, 405 

with IL6 never overexpressing in any keratinocyte time point. 406 
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 407 

Figure 6. a) Overlap between temporal DEGs and various pathways of interest. b) Expression of key 408 

stress response genes across irradiated cell types by days post-irradiation, compared to proliferating 409 

controls. 410 
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3. Discussion 411 

3.1 An Undefinable Phenotype 412 

The concepts of ‘senescence’ and ‘quiescence’ as heterogeneous cell cycle arrest phenotypes 413 

are well-established [47, 72, 127-129]. However, the current understanding of senescence is riddled 414 

with paradoxes and contradictions. Classical markers of senescence include the absence of cell cycling 415 

(e.g., lack of Ki-67), expression of cyclin-dependent kinase inhibitors (e.g., p53/p21), secretion of 416 

proinflammatory factors (e.g., IL6), and increased lysosomal activity (e.g., β-gal staining) [22]. Yet, 417 

these markers are also found in other contexts and have all been uncoupled from ‘senescent’ states 418 

(Table 1).  419 

We argue that mosaic co-activation of clusters of genes that modulate distinct stress 420 

responses (Stress Response Modules, SRMs) encompass what the field refers to as ‘heterogeneous 421 

senescence phenotypes.’ Under this model, the aforementioned markers of senescence represent 422 

markers of distinct SRMs (Figure 1). Because SRMs are heterogeneously expressed and no single SRM 423 

is universally guaranteed to be expressed across all biological contexts, the result is a biological 424 

phenomenon that cannot rigorously be defined – ‘senescence.’ Here, we discuss implications of this 425 

model, while SI Document 1 provides supporting evidence from our results for some of the points we 426 

discuss. 427 

3.2 Variable Stress Response Pathways Across Arrest State 428 

Our results indicate that arrest transcriptomes are associated with various stress response 429 

pathways including lysosomal activity, inflammation, apoptosis, and hypoxia, in a context-dependent 430 

manner (SI Document 1). This is evident at both the pathway level (Figure 3a, 6a, and SI Figure 18) and 431 

in the expression of key genes linked to senescence- and stress-associated phenotypes (Figure 4a and 432 

6b). 433 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.03.616489doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.03.616489
http://creativecommons.org/licenses/by/4.0/


 28 

3.3 SRM Regulation and Crosstalk 434 

CS literature suggests that various processes regulate different aspects of arrest phenotypes. 435 

Here, we discuss mechanisms potentially underlying how SRMs are controlled at the transcriptomic, 436 

chromatin accessibility, and metabolic level.  437 

3.3.1 Transcription Factors 438 

Various key regulators of stress response pathways, including TP53 and its regulator MDM2, 439 

alongside ATF4 – the main effector of the integrated stress response (ISR) – were differentially 440 

expressed in a context-dependent manner (Figure 4a and 6b, SI Document 1). This was also the case 441 

for CEBPB. Importantly, these genes can regulate various stress responses, including inflammation, 442 

autophagy, and the SASP, suggesting that heterogeneity amongst TFs could play a role in modulating 443 

distinct SRMs amongst heterogeneous ‘senescent’ cell populations [64, 114, 130-134]. 444 

3.3.2 Chromatin Rewiring 445 

Chromatin accessibility regulates SRMs (SI Document 1). For example, IL1B – a 446 

proinflammatory SASP factor which upregulates in various senescence phenotypes (Figure 4a and 6b) 447 

[27] – is also upregulated in TNFα-treated cells, alongside SASP factor IL1A and cell cycle gene CKAP2L 448 

[65]. In OIS, the upregulation of these three genes involves global epigenetic alterations in chromatin 449 

accessibility, resulting in enhancer-promoter rewiring [65]. While these three genes are also 450 

upregulated in TNFα-treated cells, this process is mediated via TFs and not chromatin rewiring [135]. 451 

Furthermore, senescence-associated cell cycle arrest is reversible in some contexts – such as via p53 452 

knockdown in fibroblasts, provided p16 expression remains low [39]. While these cells maintain their 453 

proliferative capacity, SASP factors continue to be secreted [27, 64]. These studies suggest that 454 

chromatin rewiring plays a role in determining the activation and reversibility of SRM activation in CS 455 

and other contexts [27, 136]. 456 

3.3.3 Heterogeneous Cellular Signalling 457 

We found that irradiation-induced SASPs specifically are linked to angiogenesis, coagulation, 458 

hypoxia, and MTORC1 signalling, indicating potential partial regulation of some SRMs by the SASP 459 
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under specific circumstances (Figure 5b). Senescent cells can induce CS in a paracrine and juxtacrine 460 

manner, and reinforce ‘senescent’ states via autocrine signalling [137-140]. Paracrine and juxtacrine 461 

signalling, which mediate secondary senescence, has likely evolved in part to amplify wound healing 462 

and immune system signalling [141]. Nonetheless, cells entering secondary senescence are distinct 463 

from primarily senescent cells [139, 140], as they must be in order to inhibit the uncontrolled 464 

propagation of CS states [142], indicating that SASP-induced SRM regulation and/or execution is 465 

distinct to primarily ‘senescent’ cells, and context-dependent. 466 

3.3.4 Metabolism 467 

Metabolism is implicated in regulating SRMs and various metabolic pathways are implicated 468 

in CS (SI Table 36) [121, 143, 144]. From the patterns and trends observed in our arrest-DEG ORAs 469 

(Section 2.1.3), multiple connections to other features of CS and CQ become apparent. Nucleotide 470 

synthesis is universally downregulated in all arrest conditions, while energy metabolism is sustained 471 

in CS but not CQ. Inflammation-related metabolic pathways agree with other CS type-specific 472 

inflammation features, as does NAMPT in NAD salvage (see SI Document 1 for more details). 473 

Overall, the targeted analysis of metabolic pathways hints at relevant connections to non-474 

metabolic aspects of CS and CQ, with condition-specific differences. Furthermore, despite the subtle 475 

nature of the metabolic pathway alterations, they were significant and consistent enough to cluster 476 

arrested and proliferating samples into their respective categories, excluding RS (SI Figure 14). This 477 

indicates that the differences in metabolic profiles are distinct and reliable enough to categorise cells 478 

based on the specific insult used to arrest them. Going forward, the study of metabolic alterations in 479 

CS and CQ faces specific challenges, suggesting that to further investigate the metabolic features of 480 

senescence, systems biology methods that study network functionality beyond pathway-level 481 

statistical measures might be advantageous [121].  482 

3.3.5 Crosstalk between SRMs 483 

Senescence has been considered a ‘heterogeneous’ phenotype as opposed to differential 484 

activation of SRMs because SRMs are often co-activated, likely via multiple mechanisms. The most 485 
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obvious case is that SRMs are sometimes regulated via the same mechanism. For example, RAS-486 

induced CS triggers chromatin rewiring which facilitates enhancer-promoter interactions linked to 487 

both upregulation of inflammation and downregulation of cell cycle genes [65]. Furthermore, the 488 

MSigDB apoptosis pathway is significantly associated with hypoxia, inflammation, and MTORC1 489 

signalling, indicating crosstalk between SRMs (SI Figure 11). Indeed, transition into senescent-like 490 

states involves positive feedback loops that reinforce DDR signalling via SASP factors, chromatin 491 

remodelling and degradation, and mitochondrial dysfunction and ROS [145]. 492 

Nonetheless, it is also possible that dysregulating one SRM causes internal stress within the 493 

cell, resulting in the activation of other SRMs. CellAge genes – which directly induce or inhibit 494 

‘senescence’ when manipulated genetically [21, 88] – are significantly associated with various 495 

pathways, including apoptosis and MTORC1 signalling (Figure 3b). Furthermore, autophagy and CS 496 

have a complex relationship, and both induction and inhibition of autophagy promote CS [146-148]. 497 

More research is needed to understand the logic that underlies SRM regulation. 498 

3.4 Implications of CS as Heterogeneous Activation of SRMs 499 

Redefining CS from a heterogeneous phenotype to the heterogeneous activation of stress 500 

responses may seem like a semantic argument. However, we argue that this proposed paradigm shift 501 

offers explanations for various paradoxes in mammalian biology. Our model provides explanations for 502 

the various idiosyncrasies within the CS field (Table 1) and has implications for ageing, cancer, and 503 

chronic diseases [149, 150]. 504 

3.4.1 Lack of a Universal Signature 505 

We identified that various fibroblast DEGs induced into RS, SIPS, and OIS are significantly 506 

shared across arrest phenotypes – including CQ. Previous studies have also identified and published 507 

transcriptomic signatures and markers associated with cellular senescence (Table 2). This prompted 508 

us to explore whether these gene lists could serve as universal signatures of CS, based on the following 509 

criteria: i) being unique to CS and not other biological phenomena; and ii) being universally 510 

differentially expressed across all CS conditions. However, none of the CS gene lists meet these criteria 511 
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(Figure 2b and 5b). For example, SenMayo is a strong contender, significantly and exclusively enriching 512 

across most CS conditions, except for keratinocytes sequenced 20 days post-irradiation. However, only 513 

10 genes were overexpressed across all CS DEGs (SI Figure 8, SI Table 12), and none of these genes are 514 

shared among the universally overexpressed temporal DEGs. Moreover, some of these CS gene lists – 515 

including SenMayo – also significantly enrich for various stress responses, indicating they may be 516 

measuring distinct SRMs as opposed to universal senescence-specific processes (Figure 3b). Indeed, 517 

activated macrophages enriched for the SenMayo gene list as well (SI Figure 10),  and SenMayo itself 518 

is known to be over-reliant on proinflammatory SASP factors [23]. 519 

3.4.2 Temporal Dynamics of CS 520 

Previous studies have shown a sequential order of gain-of-senescence phenotypes in cells that 521 

enter CS [61, 63]. As has been discussed, various genes linked to inflammation, autophagy, and 522 

apoptosis show dynamic gene expression over time (Figure 6b). Under our model, previously reported 523 

shifts in senescence phenotypes at least partially represent the temporal regulation of SRMs. 524 

3.4.3 Post-Mitotic CS 525 

Post-mitotic cells like neurons and skeletal muscle cells are reported to activate senescent 526 

states under stress, assessed via p16 and p21 expression, secretion of a SASP, and β-gal staining [52, 527 

151-153]. However, these cells – being terminally differentiated — do not proliferate to begin with. 528 

Under our model, these examples constitute cells that have activated autophagy- and inflammation-529 

associated SRMs in response to stress, independent of cell cycle arrest. 530 

3.4.4 CS in Cancer 531 

Senescent cancer cells are associated with relapse and treatment resistance in various 532 

instances, including acute myeloid leukaemia and triple-negative breast cancer [154, 155]. While cell 533 

cycle arrest is a barrier to cancer formation, cancer cells are known to hijack senescence pathways to 534 

drive tumorigenesis and promote survival. Indeed, inflammation and autophagy can be manipulated 535 

to encourage tumorigenesis and treatment resistance and inhibit apoptosis [27, 156, 157]. 536 
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Furthermore, studies show that cancer cells can upregulate anti-apoptotic pathways associated with 537 

senescence induction like BCL-2 and BCL-XL [158, 159].  538 

An important point to consider is that multiple mechanisms of cell cycle arrest may have 539 

evolved in mammals (Figure 1). Importantly, the p53/p21 pathway is also associated with reversible 540 

arrest [35-38], whereas p16 appears to yield less reversible forms of CS [64]. While studies purport to 541 

have reversed RS via p16 knockdown [53, 54], a strong contender for less-reversible forms of 542 

‘senescence’ are chromatin rearrangements and perhaps formation of SAHF, which are more strongly 543 

associated with OIS, not RS [32, 100]. Our model of SRM induction sheds light on potential strategies 544 

that cancer cells might utilise to co-opt CS and CQ SRMs to enhance their survival, perhaps by hijacking 545 

the reversible form of cell cycle arrest in response to cancer treatments instead of activating 546 

irreversible arrest [160]. 547 

3.4.5 CS in Ageing and Chronic Diseases 548 

Various stress responses dysregulate with age, including an increase in inflammation and a 549 

decrease in autophagy, alongside the accumulation of ‘senescent’ cells [161-163]. Eliminating 550 

senescent cells extends the lifespan and healthspan of mice [164, 165], and research utilising mouse 551 

models has indicated that senolytics can lead to improvements in the pathological features of various 552 

ageing-related diseases, including diabetes [166], Alzheimer’s disease [167], and osteoarthritis [168, 553 

169]. The implication is that the accumulation of cells with dysregulated SRMs is potentially driving – 554 

at least partially – ageing and ageing-related pathologies, and the elimination of cells with 555 

dysregulated SRMs has positive outcomes. More research is necessary to determine what drives the 556 

dysregulation of SRMs with age and disease, although, given the multifactorial nature of these 557 

phenotypes, there are likely various sources that lead to the dysregulation of SRMs with age. 558 

Senolytics currently suffer from two drawbacks: i) off-target effects; and ii) senolytic-resistant 559 

‘senescent’ cells [170, 171]. Finding distinct drugs to selectively target cells with specific and distinct 560 

dysregulated SRMs – stressolytics – could be a potential future avenue for understanding and treating 561 
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pathologies associated with the accumulation of cells with specific dysregulated SRMs. Senomorphics 562 

capable of modulating specific and distinct SRMs may also be applicable [172]. 563 

3.4.6 CS in Benign Contexts 564 

There is evidence of programmed ‘senescence’ in embryogenesis, while senescent cells play 565 

a role in normal physiology including wound healing, tissue repair, and embryo receptivity [173-175]. 566 

In the context of mammalian development, CS and apoptosis are programmed processes involved in 567 

limb formation, and aberrant regulation leads to developmental defects [174, 176]. Under our model, 568 

these cells have evolved to activate SRMs to achieve beneficial outcomes, including autophagy and 569 

inflammation in wound healing [177]. We acknowledge that SRMs may be activated in contexts 570 

independent of biological ‘stress’ – like contact-inhibited quiescence. Nonetheless, these same 571 

pathways appear to also activate across stress phenotypes – dependent on context – and the term 572 

‘stress response module’ is therefore apt. 573 

3.5 Future Direction 574 

While this new perspective is promising, further research is needed to specifically define 575 

SRMs, and to identify how they are regulated and how they modulate different phenotypes including 576 

senescence-associated phenomena. We have been hesitant to clearly define SRMs because it is 577 

unclear to what extent processes like autophagy and the SASP can be subdivided into more specific 578 

SRMs themselves, such as mitophagy or ECM remodelers. 579 

Rather than focusing on a universal marker of senescence, there should be a focus on finding 580 

robust markers for individual SRMs. Single-cell RNA-seq of cells under various stress conditions will 581 

further allow for the identification of SRMs. Focusing on the dynamics of SRMs – as opposed to a 582 

‘heterogeneous’ senescent phenotype – will clarify the role of variable stress responses in ageing, 583 

development, and disease, amongst other biological phenomena. 584 

4. Conclusion 585 

We demonstrated that senescent cells exhibit heterogeneous transcriptomic and secreted 586 

proteomic changes associated with diverse stress response pathways, including inflammation, 587 
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autophagy, and apoptosis, in a cell-type, temporal, and insult-dependent manner. CS signatures 588 

reported in the literature are inadequate for exclusively identifying senescent cells across all contexts, 589 

emphasising the need for a more nuanced approach. We propose that ‘senescent’ cells lack a universal 590 

marker because senescence is a mosaic differential activation of various stress-associated pathways – 591 

with distinct phenotypic biomarkers – dependent on context. We call the clusters of genes that control 592 

and effect these stress responses Stress Response Modules (SRMs), and propose that no consistent 593 

‘core’ of SRMs exists that could be used to meaningfully define the senescent state. 594 

We find that TFs, genes controlling chromatin accessibility, and metabolic enzymes are 595 

heterogeneously expressed in a context-dependent manner. Additionally, some SASP profiles – which 596 

can be partially identified at the transcriptomic level – also enrich for various stress responses, 597 

indicating multiple avenues by which SRMs are regulated. Our model provides a framework for 598 

understanding the role of stress responses across a range of biological contexts, while also exploring 599 

the regulatory mechanisms underlying senescence. 600 

Future research should focus on validating the SRM model through approaches like single-cell 601 

RNA sequencing to determine the logic underlying SRM activity. Additionally, understanding how 602 

SRMs dysregulate with age and disease, and their role in normal physiology, will lead to novel insights 603 

into various biological phenomena. 604 

5. Methods 605 

5.1 Cell Cycle Arrest Transcriptomic Data 606 

Lung, skin, and foreskin fibroblast CQ and CS data were obtained by manually annotating and 607 

filtering recount3 for relevant studies and downloaded using the recount3 R package [85, 86]. We only 608 

included samples that were not under multiple treatments (e.g., we only included cells that were 609 

irradiated or starved, not both). Samples were included if they were clearly labelled as proliferative, 610 

senescent, or quiescent, alongside the mechanism which was used to induce cell cycle arrest. We 611 

excluded samples with genetic manipulations unless the manipulation was neutral, such as scramble 612 

siRNAs or GFP inserts, or if the genetic manipulation was used to induce OIS (i.e., HRAS or BRAF 613 
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overexpression). The following studies were excluded as they added noise to the PCA plots and did 614 

not cluster well: SRP050179, SRP195418, SRP113334, SRP127595. 615 

Samples were downloaded using the recount3 R package via the create_rse function [85, 86]. 616 

Sample numbers are available in Table 6. Because the data was derived from various studies, counts 617 

were scaled using the transform_counts function from the recount3 R package. Samples were selected 618 

if they met the following criteria: 619 

● The samples comprised bulk RNA-seq data from non-transformed human lung, skin, or 620 

foreskin fibroblasts. Both primary cells and cell lines were included. 621 

● For proliferating, RS, OIS, serum-starved and contact-inhibited CQ, samples were included if 622 

the authors of the study labelled the cells as such. We could not find suitable heat shock CQ 623 

samples. 624 

● For SIPS, we included samples that were induced into DNA-damage induced CS via co-culture 625 

with bleomycin (n=7), etoposide (n=8) or hydrogen peroxide (n=3), or irradiated with 10Gy 626 

(n=21). 627 

Table 6. Number of arrested and proliferating fibroblast samples that were included from recount3, 628 

by tissue type. 629 

Tissue Cell State Sample n 

Foreskin Proliferating 25 

Lung Proliferating 61 

Skin Proliferating 5 

Foreskin Contact-inhibited CQ 8 

Lung Contact-inhibited CQ 3 

Skin Contact-inhibited CQ 8 

Foreskin Serum-starved CQ 13 

Lung Serum-starved CQ 9 

Skin Serum-starved CQ 0 

Foreskin Replicative CS 2 

Lung Replicative CS 9 

Skin Replicative CS 0 

Foreskin Stress-induced CS 18 

Lung Stress-induced CS 18 

Skin Stress-induced CS 3 
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Foreskin Oncogene-induced CS 7 

Lung Oncogene-induced CS 41 

Skin Oncogene-induced CS 0 

Temporal irradiation-induced CS data and proliferating controls for fibroblasts, keratinocytes, 630 

and melanocytes were obtained from Hernandez-Segura et al. (ArrayExpress accession E-MTAB-5403) 631 

[47]. For each cell type and condition, there were 6 samples. 632 

Genes with more than 1 count per million in at least 30% of samples for any given arrest 633 

condition were included for the analyses, and we limited our analysis to protein-coding genes, 634 

downloaded using biomart version 100 via the biomaRt R package [178-181]. 635 

5.2 Linear Regression 636 

We found DEGs for each cell type between the various time points post-irradiation compared 637 

to proliferating controls in the time-series data, alongside DEGs between arrested and proliferating 638 

cells in the recount3 data. DEGs were also generated between SIPS and OIS samples compared to 639 

grouped serum-starved and contact-inhibited CQ samples. DEGs were generated between arrest 640 

conditions, as opposed to other variables like tissue type. Linear regression was used to account for 641 

batch effects within the data. For lung, skin, and foreskin fibroblasts induced into cell cycle arrest using 642 

various insults, the following regression model was used, with the total number of DEGs outlined in 643 

Table 7: 644 

𝑌𝑖𝑗 = 𝛼𝑆𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖 + 𝛽𝑆𝑡𝑢𝑑𝑦𝑖 + 𝜀𝑖𝑗  645 

Table 7. Number of significant DEGs by condition, compared to corresponding proliferating controls. 646 

Group Direction vs Proliferating DEG n 

Contact-inhibited CQ Down 2,110 

Serum-starved CQ Down 1,565 

RS Down 1,966 

SIPS Down 883 

OIS Down 2,496 

Contact-inhibited CQ Up 3,457 

Serum-starved CQ Up 2,698 

RS Up 1,809 

SIPS Up 1,784 
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OIS Up 1,689 

 For OIS and SIPS DEGs generated against CQ DEGs, the following regression was used: 647 

𝑌𝑖𝑗 = 𝛼𝐴𝑟𝑟𝑒𝑠𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖 + 𝛽𝑆𝑡𝑢𝑑𝑦𝑖 + 𝜀𝑖𝑗  648 

Importantly, contact-inhibited and serum-starved CQ samples were grouped to increase 649 

sample size, and DEGs were generated between individual CS conditions against the CQ samples. 650 

For melanocyte and fibroblast temporal data, the following regression model was used: 651 

𝑌𝑖𝑗 = 𝛼𝑇𝑖𝑚𝑒𝑖 + 𝜀𝑖𝑗  652 

The keratinocyte data had an obvious batch effect (SI Figure 20a). We contacted the study’s 653 

corresponding author, Marco Demaria, and it appears that the keratinocyte data was processed by 654 

two researchers. As such, we opted to manually label this batch effect, and account for it using the 655 

following regression model: 656 

𝑌𝑖𝑗 = 𝛼𝑇𝑖𝑚𝑒𝑖 + 𝛽𝐵𝑎𝑡𝑐ℎ 𝑒𝑓𝑓𝑒𝑐𝑡𝑖 + 𝜀𝑖𝑗  657 

Variables were defined as follows: 658 

● Yij: The expression level of gene j in sample i. 659 

● Sample condition: OIS, SIPS, RS, contact-inhibited CQ, serum-starved CQ, or proliferative state 660 

of each sample. 661 

● Arrest condition: OIS, SIPS, or grouped CQ state of each sample. 662 

● Time: The number of days following exposure to 10Gy ionising radiation. 663 

● Batch effect: The manually labelled batch effect within the keratinocyte data. 664 

● εij: The error term for gene j in sample i. 665 

The DESeq and results functions from the DESeq2 R package v1.36.0 were used with default 666 

parameters to generate DEGs [182, 183]. The results function has an independent filtering option 667 

which was used for higher statistical power to obtain more biologically meaningful results, as specified 668 

in the DESeq2 documentation [184]. The results function also provides Cook’s distances, which were 669 

used to remove outliers [185]. DEGs were considered significant if they had an adjusted p-value<0.05 670 
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(negative binomial distribution with BH correction) and |log2(fold-change)|>log2(1.5). Volcano plots 671 

were generated using the EnhancedVolcano function from the EnhancedVolcano R package [186]. 672 

5.3 PCA and Heatmaps 673 

Blinded variance stabilising transformations (VST) were performed on the data prior to PCA 674 

using the varianceStabilizingTransformation function from the DESeq2 R package with default 675 

parameters [87]. PCs were calculated using the top 500 most variable genes and plotted using the 676 

plotPCA function. 677 

Heatmaps with hierarchical clustering were generated using the pheatmap function from the 678 

pheatmap R package [187]. Briefly, we applied a blinded VST normalisation to all the counts data using 679 

the varianceStabilizingTransformation function from the DESeq2 R package [87], and then filtered the 680 

counts data for DEGs before running pheatmap; normalised gene count were scaled using the 681 

scale=’row’ argument. Only the top DEGs were used to generate heatmaps, with the exact number of 682 

DEGs used specified after each heatmap. We calculated a π score for each DEG using the following 683 

equation [188]: 684 

𝜋 = (𝑃𝑣𝑎𝑙𝑢𝑒 +  𝑚𝑖𝑛𝑃)  ∗ | log10(𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒) | 685 

Where Pvalue was the adjusted p-value for each gene, minP was the minimum p-value for any 686 

set of DEGs (to avoid multiplying by 0 when the calculated p-value was below the minimum floating-687 

point number allowed by R), and fold change was the fold change for the respective DEG. We then 688 

extracted the top genes based on π scores and used these to plot heat maps [188]. For the metabolism 689 

heatmap, all genes were used to cluster samples and as such a π score was not calculated. 690 

For plotting both PCA plots and heatmaps, the batch effects outlined in 5.2 Linear Regression 691 

were removed from the counts data using the empiricalBayesLM function from the WGCNA package 692 

[189], while relevant groups like ‘sample condition’ for arrest-DEGs, ‘arrest condition’ for OIS and SIPS 693 

DEGs, and ‘time’ for temporal DEGs were preserved. For calculating gene expression variance across 694 

samples, the rowVars R function was used on normalised counts. 695 
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5.4 DEG Overlap Simulations 696 

Simulations can be used to determine the probability of multiple DEGs differentially 697 

expressing in the same direction across time points or arrest states. The basic steps are as follows: 698 

1. Find DEGs between conditions. Separate all genes — regardless of whether they are 699 

significantly differentially expressed — into over- and underexpressed genes compared to 700 

proliferating controls, based on the sign of the fold change. 701 

2. Count the number of DEGs that are significantly over- and underexpressed in each arrested 702 

condition. 703 

3. From the pool of overexpressed genes, randomly sample the number of significantly 704 

overexpressed DEGs. Repeat the process for each arrested cell state. 705 

4. Overlap the randomly sampled overexpressed genes between all arrested cell states. 706 

5. Repeat steps 3-4 for the underexpressed DEGs. 707 

6. Repeat the sampling process 10,000 times for the overexpressed and underexpressed DEGs. 708 

7. Calculate a probability distribution to determine how many DEGs would be expected to 709 

change in the same direction by chance across multiple conditions if the DEGs were 710 

completely random. 711 

In total, three simulation instances were performed: 712 

1. Simulation between arrest-DEGs generated from serum-starved and contact-inhibited CQ 713 

lung, skin, and foreskin fibroblast samples, alongside RS, OIS, and SIPS samples vs. 714 

proliferating controls. 715 

2. Simulation between temporal DEGs 4-, 10-, and 20-days post-irradiation vs. proliferating 716 

controls by cell type. 717 

3. Simulations between DEGs shared across all nine temporal conditions (4-, 10-, and 20-day 718 

post-irradiated DEGs in fibroblasts, keratinocytes, and melanocytes generated against 719 

proliferating controls). 720 
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5.5 Gene Overlaps 721 

To test for overrepresentation between gene lists, the GeneOverlap R package v1.36.0 was 722 

used [190]. Significance between gene lists was assessed using a two-tailed Fisher’s exact test with 723 

Bonferroni correction, and the background for each overlap is stated alongside each overlap. Upset 724 

plots were generated using the ComplexUpset R package v1.3.3 [191]. For the SASP atlas, secretions 725 

were considered significant when BH-adjusted p-values were <=0.05 and the |log2(ratio)| of CS to CQ 726 

secretions was > log2(0.58) or < -log2(0.58) for senescent and quiescent secretions respectively, as 727 

stated in the original paper [49]. Protein-coding genes were filtered for genes in ensembl version 100 728 

for consistency. Furthermore, when multiple proteins were listed with just one p-value (e.g. 729 

CXCL1;CXCL2;CXCL3) these entries were removed to reduce ambiguity for gene overlaps. 730 

For stress response overlaps, we used the MSigDB, which constitutes refined gene sets that 731 

convey specific biological states and processes and provides more refined and concise inputs for 732 

enrichment analyses [192]. The MSigDB contains two MYC gene lists, which were merged for 733 

simplification. Lysosome and lysosome-related genes were also included, derived from a database of 734 

genes related to autophagy [93]. While gene overlaps and FDR correction was performed for all 735 

MSigDB pathways, we have only plotted the most interesting pathways due to space constraints. 736 

5.6 Metabolic Pathways 737 

5.6.1 Building Metabolic Pathways 738 

ORA was performed using a manually curated list of metabolic pathways known to be 739 

perturbed in CS (SI Table 18, 36). Entries for these pathways were sourced from the WikiPathways, 740 

KEGG, and MetaCyc databases [122-124]. When biologically meaningful, gene lists from related 741 

pathways were merged, or subsets of genes were extracted if a pathway entry encompassed multiple 742 

subsystems. SI Table 36 lists all pathways, along with the databases and entries their gene lists were 743 

based on, as well as any modifications, such as the use of specific gene subsets. For example, non-744 

metabolic genes like TFs were manually filtered from the pathway gene lists (SI Table 37). 745 

Furthermore, there are references showing how the given metabolic pathway links to CS. 746 
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Given the metabolic gene list was focused around metabolic enzymes specifically, we limited 747 

the ORA background to only include metabolic enzymes. In particular, the genes included in the 748 

human genome-scale metabolic model Human1 (version 1.17.0) were used as a basis [125]. To form 749 

the complete background, the Human1 gene list was merged with the lists of metabolic genes of each 750 

pathway and duplicates were pruned (SI Table 18). The constructed complete background thus 751 

provides an approximation of the human metabolic genome comprising 2,894 genes, including all 752 

chosen pathways of interest. 753 

5.6.2 Mapping Metabolic Pathways 754 

The Cytoscape software was used to visualise the Eicosanoid metabolism via cyclooxygenases 755 

WikiPathway with accession WP4347, and map arrest FC data onto it, using the WikiPathways app 756 

[193, 194]. 757 
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