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Abstract 

Pharmacological interventions targeting the biological processes of ageing hold significant potential 
to extend healthspan and promote longevity. In this study, we employed machine learning to predict 
how likely it is for a given chemical compound to extend lifespan. We used murine lifespan data 
from the DrugAge database for training the models. Our most successful Random Forest classifiers 
were trained on the annotations of direct protein targets of compounds, such as Gene Ontology, 
UniProt Keywords, pathways (KEGG, Reactome, Wiki) and protein domains (InterPro), whereas 
models trained on gene expression (LINCS) and chemical substructures (PubChem) underperformed. 
Models trained on male datasets performed better than those trained on mixed-sex and female 
datasets, with the latter suffering from severe class imbalance due to much fewer positive-class 
instances. Notably, features related to G-protein coupled receptors, especially receptors for 
neurotransmitters, metabolic hormones and sex hormones, were identified as strong predictors of 
lifespan extension. We used ensemble classifiers comprised of top models to screen compounds 
from DrugBank, highlighting novel candidates for longevity studies. Major clusters of compounds 
with the highest predicted longevity-promoting effects appear to target IGF1 and insulin receptors, 
beta adrenergic receptors, carbonic anhydrases, dopamine and serotonin receptors, voltage-gated 
potassium and calcium channels, sodium-dependent dopamine, serotonin and noradrenalin 
transporters, muscarinic acetylcholine receptors and adenosine receptors. Our study provides an 
important contribution not only to the longevity pharmacology field but also informs research on the 
fundamental mechanisms of ageing. 
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1 Introduction 

The use of pharmacological interventions to promote healthspan and longevity, and to target the 
biological process of ageing, is currently a very active research area 1–4. Hundreds of drug treatments 
have been successfully applied to significantly increase the lifespan of model organisms such as 
Caenorhabditis elegans and Mus musculus2,3. 

The large amounts of data related to developing longevity-promoting treatments can be analysed 
through the use of machine learning (ML) tools such as classification models, which are first trained 
on a set of instances (examples) and then are able to make predictions about previously unseen data 
5. In addition to making predictions, classification models can be analysed to give researchers 
insights into the prediction problem, such as patterns shared by groups of instances (chemical 
compounds) or ranking the predictive features by their relative importance for classifying instances. 
The results from machine learning experiments can inform in vivo experiments and help guide the 
development of new drugs or treatments.  

Previous studies that focus on other model organisms, such as Caenorhabditis elegans, have applied 
machine learning to longevity data 6–9. However, to the best of our knowledge, this is the first work 
that applies classification models from machine learning to predict whether a chemical compound 
promotes longevity in mice. Using Mus musculus as the target organism is more challenging than 
using simpler organisms, mainly due to their sex dichotomy. However, mice have many genes with 
human homologues, well-characterised strains, and relatively short reproductive cycles and 
lifespans. Compared to non-mammal model organisms, the insights into the biological mechanisms 
of ageing that apply to mice are significantly more likely to apply to other mammals such as humans 
10–12. These and other characteristics make studies in mice an expected preclinical step in drug 
discovery pipelines.  

In order to create the datasets to train our classification models, we obtained the mouse data from 
the DrugAge database 13,14, including the results from the Interventions Testing Program (ITP) 15, 
which compiles results of peer-reviewed research on lifespan extension in model organisms. Each 
compound-sex combination is assigned a class label, determined by the results of studies in mice 
using the compound, which indicates whether it is associated with lifespan extension (positive-class) 
or not (negative-class).  

Naturally, the efficacy of ML predictive models depends largely on the data used to train them. As 
longevity experiments vary in treatment regimens, mouse strains and lifespan metrics, it is more 
difficult for the predictive models to make correct generalizations, which are required for making 
accurate predictions on unseen data. One of the objectives of our study was to explore several 
different feature types and form a varied baseline of datasets. For this study we prepared 21 
datasets for training machine learning models, using three data sources, namely STRING (protein-
protein interaction networks and protein annotations 16), LINCS (gene expression data 17) and 
PubChem (chemical substructure data 18). The data sources contain several principally different 
types of features that represent biological and chemical information about each compound such as 
the Gene Ontology, protein domains and pathway annotations of their targets. By preparing 
datasets that use a wide array of descriptors, we were able to explore the efficacy of orthogonal 
approaches for the task of predicting longevity-related compounds for mice. Section 2.2 contains a 
detailed description of the types of features used in our study, and methods of data collection and 
preparation.  

We evaluated the predictive accuracy of classification models trained with each dataset, either 
mixing instances from male and female mice or exclusively using instances from each sex. We then 
selected 10 models (5 from mixed datasets and 5 from male-only datasets) to further analyse, by 
interpreting the features deemed most relevant for determining whether or not a compound 
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belongs to the positive class (promotes mice longevity) in each of those models. Models learned 
from female-only datasets were not analysed in detail because they led to smaller predictive 
accuracies than male-only datasets in general, as discussed later.  

In addition to the feature importance analysis, we looked into the negative-class compounds that 
were most consistently classified as belonging to the positive-class (false-positive classifications) by 
our selected models. We believe these compounds, e.g. LY444711, putrescine, chlorpheniramine, 
and dehydroepiandrosterone sulphate, can be promising options for future longevity studies in mice, 
as although previous results did not find significant life extension in treatments with them, they 
share important characteristics with current successful life extension compounds.  

Finally, we combined the selected models as male-only and mixed-sex ensembles of classifiers (i.e., 
making a final classification for each entry, based on the decisions of all members of the ensemble) 
and used these ensembles to classify thousands of previously unseen and unlabelled instances from 
an external database – DrugBank 19. We highlighted top compounds confidently classified as members 
of the positive class as promising options for future longevity studies. 

 

2 Methods 

2.1 Instance definition and labelling 

Each instance in our datasets represents a combination of a compound and the sex of the mice used 
in the experiments, based on data obtained from DrugAge build 5 13, a database that collates results 
from peer-reviewed studies on the effects of chemical compounds (drugs) on the lifespan of model 
organisms. Its Mus musculus section contains data on more than a hundred different compounds. 

As mouse lifespan experiments often have different results based on the sex of the animals tested 
20,21, when required we created different instances for the same compound based on the sex of the 
mice used in the experiment. This greatly increases the number of examples available in the dataset 
and avoids conflating data that could lead the classification model to find incorrect patterns. However, 
the trade-off is that the feature values for all other features (except the sex feature) are the same 
among such instances, which can hinder the classifier’s performance if mixed-sex data is used to train 
the model.  

Each instance in the datasets is assigned a binary class label indicating presence (class 1, positive) or 
absence (class 0, negative) of substantial evidence of lifespan increase when the compound was 
used in treatment during the longevity experiments reported in the papers. Naturally, the labelling 
process depends on many variables, as do the experiments performed in the source studies. The 
process we used to get a consistent class label definition for each instance, based on DrugAge 
entries, was as follows: 

First, for each peer-reviewed publication studying the effect of a compound on mice, we analysed all 
reported results for each compound-sex combination. If at least one dosage or treatment regimen 
produces a median (or mean, where the median is not available) lifespan extension that is greater 
than 5% compared to the control mice population and is statistically significant (with p-value ≤ 0.05), 
then we count that as a positive result, otherwise we count it as a negative result.  

Then, the results from different publications are aggregated so that each compound-sex 
combination is assigned a single class label, as follows. If the number of positive results is greater or 
equal to the number of negative results, the instance for that compound-sex combination gets a 
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positive class label. Otherwise, it is labelled as the negative class (i.e., no substantial evidence of 
lifespan increase).  

In summary, each instance in our dataset represents a combination of a compound and the sex of 
the mice used in the experiments (mixed-sex datasets have from 88 to 158 instances, depending on 
availability of data). An instance’s class label is defined by the consensus of the experimental results 
from DrugAge’s M. musculus section referring to that compound-sex combination, with positive 
labels indicating evidence of a positive association with longevity for treatments using that 
compound.  

2.2 Dataset Preparation and Descriptions 

To create our datasets, we created predictive features obtained from three source databases, 
namely STRING 16, LINCS 17 and PubChem 18. The features are different types of biological and 
chemical descriptors of compounds and their targets, all of which have been applied to drug 
discovery before. In this Section we detail the data collection processes for each of these feature 
types.  

The STRING-based datasets use binary feature values from the descriptors (i.e., Gene Ontology, 
protein domains, biological pathways and keywords) of the targets of each compound, i.e., the 
proteins a compound was designed to interact with or known to be the main mediators of its 
pharmacological action. We obtained the list of a compound’s targets using several different 
sources, as detailed later in this Section. Additionally, the target descriptors are collected from 
STRING in two ways (functional annotation and enrichment), resulting in substantially different 
datasets, as described in Subsection 4.2.1. 

The LINCS-based datasets have human gene expression data; consolidated numeric representations 
of over- and under-expression of each human gene from cell-line experiments after exposure to a 
compound. The consolidated values represent gene expression trends over all experiments with 
different configurations (cell-lines, doses and times).  

Finally, the PubChem-based dataset is the only dataset of chemical descriptors used in our study. It 
has a set of binary variables, called Molecular Fingerprints, each one representing whether a 
compound’s structure contains a given chemical substructure or pattern.  

For the datasets with binary feature values (i.e., the STRING-based datasets and Molecular 
Fingerprints) there are several features with too little variation in their values across the instances, 
which have little to no predictive value for a classification model. Therefore, as a data cleaning step 
prior to training our models, we applied a simple frequency-threshold filter to remove features with 
fewer than 3 instances with a “1” value (or fewer than 3 instances with a “0” value). After applying 
the frequency-threshold filter we also removed instances that had only “0” values in all remaining 
features, as they could no longer be distinguished by the classifiers.  

2.2.1 Datasets of STRING Descriptors of Protein Targets 

We created a dataset based on target proteins associated with each compound and their 
descriptors, as follows. Firstly, instead of considering protein interactors listed on STITCH (a 
compound-protein interaction database 22, associated with STRING), which include predicted 
compound-protein interactions based on different levels of evidence, we have focused on 
identifying the specific targets of a compound, in order to create predictive features which are 
intuitively more biologically relevant. In order to cover the majority of compounds in DrugAge’s mice 
data and to obtain a reliable list of targets for each of them, we combined different sources for 
obtaining the list of targets of each compound:  
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• DrugBank 19: target data obtained from the DrugBank database’s website, accessed 
01/2024; 

• Pharos 23: target data obtained using the Pharos GraphQL API, Pharos v3.18.1; 

• BioGRID 24: target data obtained through the database’s protein target table, v4.4.228; 

• ChEMBL 25: target data obtained using the chembl_webresource_client python library 26; 

• Therapeutic Target Database 27: target data obtained using the TTD database’s website, 
accessed 01/2024; 

• Source publications for the compound’s DrugAge entry and other relevant publications 
about the compound in case only one or no targets were identified via the sources listed 
above 
 

Note that all target proteins obtained are for Homo sapiens, not Mus musculus, since the above 
databases focus on human data. After consolidating the target lists for all compounds, we used the 
STRING database API (v12.0) to obtain the protein descriptors for those targets through either 
functional annotation (FA) or neighbour enrichment (NE). In both FA and NE, STRING was queried for 
each protein target individually. However, unlike simple annotations returned by FA calls, NE calls 
returned statistically significant enrichments of annotations for the target protein and its 10 nearest 
functionally associated neighbours (automatically added by STRING).  

The STRING API response collates annotations for the input proteins from various sources, related to 
their structure and function. We selected a subset of the feature types included in the API’s 
response, excluding those that were not relevant for our classification problem of drug discovery for 
longevity studies. The following feature types were used to create the binary predictive features in 
the Targets datasets: 

• Gene Ontology (GO) Terms: These are widely used in similar drug discovery applications, as 
broad descriptors of genes’ structure and functions. We included all three categories of GO 
terms 28: Biological Processes, Molecular Functions and Cellular Components. 

• Protein Domains: These features also represent information about the structure and 
function of proteins. The domains represented in the created dataset are from InterPro 29. 
Pfam and SMART (Simple Modular Architecture Research Tool) protein domains are also 
present in the STRING API responses, but these were not included, the former because they 
were incorporated by InterPro and the latter because there were too few annotations for 
them. 

• Pathways: These features contain biological pathway information from Reactome 30, 
WikiPathways 31 and KEGG 32. Note that KEGG pathway features are not present in the FA 
datasets due to KEGG license restrictions keeping them from being returned in that call. 

• Uniprot Keywords: These features represent a hierarchical set of keywords used to describe 
a protein entry on Uniprot 33. 

In total we have 8 feature types in the Targets datasets, resulting in a considerably large number of 
features in each of them: 8,228 features in the FA dataset and 6,459 features in the NE dataset, after 
applying the minimum-threshold filter (these values refer to the full datasets, with 143 male and 
female mice instances). In order to assess the individual predictive performance of each feature 
type, we also did experiments with datasets prepared with single feature types. 

2.2.2 Datasets of LINCS Gene Expression  

The Library of Integrated Network-Based Cellular Signatures (LINCS, v1.1) 17 dataset stores, among 
other types of data, Homo sapiens gene expression signatures. We created two datasets using the 
LINCS data, one including all genes (12,328 genes) and another using a subset of landmark genes 
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called L_1000 (978 genes) 34. The latter refers to the genes for which the gene expression values 
were directly measured by the experiments, rather than inferred by the database designers. 

For each gene expression experiment result stored in the LINCS database, the features are numeric 
values representing the (measured or estimated) expression of each human gene in cells belonging 
to a given cell line, after exposure to a dose of a given compound for a specified amount of time. 
Often dozens of experiments are performed for each compound, with different doses, times and cell 
lines. Therefore, a single compound can be associated with up to hundreds of entries on LINCS, with 
different gene expression values in each entry.  

In order to use the gene expression values from LINCS in our machine learning context where each 
instance refers to a compound-sex combination, we need to have a single value for each gene (i.e., 
one row per compound), which broadly represents its gene expression after exposure to the 
compound.  Hence, for each gene, we consolidated its expression value for each compound through 
a two-step process, as follows.  

First, we selected the gene expression from the median dose over all entries in each cell line as the 
signature value for that cell line. Then, we calculated the median gene expression value over all cell 
lines’ signatures values. This is repeated for all genes in the dataset so that, after performing these 
steps, each gene has a single expression value for each compound. The numeric values vary roughly 
between -2 and +2, with positive values indicating an over-expression of the gene and vice-versa. 

Naturally, this data consolidation process incurs some data loss through reducing the granularity of 
the LINCS data, and the validity of the aggregated values depend on many factors such as the 
standard deviation of the gene expression values measured over different experiments. On the 
other hand, the LINCS datasets have numerical values for their features, which may be advantageous 
for decision tree-based algorithms (like the algorithm used in this work) because the algorithm has 
more options for partitioning the data based on a feature’s values.  

2.2.3 Dataset of PubChem Molecular Fingerprints  

Studies that apply machine learning for drug discovery problems often use chemical substructures of 
compounds as predictive features, either by themselves or in combination with biological data 7–9. In 
our study, we created datasets where the binary features represent the absence/presence of 880 
chemical substructures in a given compound. Importantly, the feature values for chemical data are 
independent from the model organism and, in the case of the substructures used in our study, easily 
obtainable (Molecular Fingerprints are available for any compound present in PubChem). 

The Molecular Fingerprints substructures may represent an element count (e.g., compound has ≥ 8 
hydrogen atoms), a type of ring system (e.g., compound has saturated or aromatic carbon-only ring 
size 3), atom pairings, neighbourhoods and bonding (e.g., compound has Si – Cl bond), and other 
such patterns. The data was obtained from the PubChem Substructure Fingerprint data, using the 
pubchempy python library (v1.0.4). 

2.3 Experimental Setup 

We trained Random Forest (RF) classifiers 35 using each of the datasets produced for this study, using 
the same experimental setup described in this Section. Ensembles of classifiers based on decision 
trees (like RFs) tend to outperform more complex algorithms such as deep learning when applied to 
tabular data for binary classification 36, and RFs also have the advantage of being much faster than 
deep learning algorithms in general. In addition, although RFs are not as interpretable as single 
decision trees, they still retain some degree of interpretability, mainly through feature importance 
metrics that take into account the contents of the trees in the forest (i.e. the model’s internal 
mechanisms). 
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For all experiments we performed a 5-fold cross-validation process for each RF classifier and ran 10 
different experiments for each dataset (varying the random seed parameter, resulting in different 
training/test data divisions and different RFs). The rationale for repeated experiments was to obtain 
a more robust estimation of the models’ predictive accuracy, as our datasets have few instances 
and, therefore, there is more stochastic variation on each models’ predictive accuracy estimation.  

In Section 3 we report the average values over all folds (5 folds over 10 cross-validation runs) of two 
predictive accuracy metrics: the Area Under the Receiver Operating Characteristic Curve (AUC) 37 and 
the Geometric Mean of Sensitivity and Specificity (GMean). Both metrics vary between 0 and 1, with 
1 representing a perfect classifier. The AUC is widely used as a general representation of a binary 
classification model’s performance, and it has the advantage of providing a measurement that is 
independent of the threshold used for the class-label decision. When used by itself the AUC may result 
in over-optimistic evaluations of models that favour the majority class, so we also used the GMean as 
a conservative metric that assigns equal weight to both class labels and considered both metrics when 
evaluating our RF models. 

The RFs were trained using the sklearn implementation (v1.4.0) 38, with 500 random trees and the 
default values of all other hyperparameters. The datasets created for this research have a class-
imbalance issue (between 22% and 47% positive-class instances, and so between 78% and 53% 
negative-class instances, depending on the dataset). Although none of the imbalances are very 
strong, this can still lead to models biased in favour of the majority class (the negative class, 
representing compounds without a known association with longevity). Therefore, in each RF, we 
increased the weight of the minority class instances in the training set until a balance was reached, 
meaning the classifier penalized misclassifications of minority class instances more severely. This 
was preferable to the common alternative method of undersampling majority class instances, as 
class-weight adjustment does not reduce the number of examples in the dataset. 

After training and evaluating our RF models, we selected a group of 10 models (5 from mixed-sex 
datasets and 5 from male-only datasets) that had the best predictive performance, to analyse how 
they made their predictions and to identify compounds with potential for lifespan extension in mice.  

First, we ranked all features used for each of the selected models, based on each feature’s ability to 
discriminate between the positive-label and negative-label examples, by using the default feature 
importance measure in sklearn (the average class-impurity decrease measure 39). Then, the top 
features in that ranking are identified as the most important features for that model.  

Next, we used the selected models to identify promising compounds for future studies of mice 
longevity, in two ways. The first was identifying the consistent false-positive classifications (i.e., over 
half of the top models classified the compound as positive whilst the compound is annotated in the 
data as negative) in the labelled DrugAge data used in these experiments. The second way was using 
the selected models as ensembles of RFs to classify unlabelled data from an external dataset and 
identifying the most confident positive-class classifications by these ensembles. In order to discuss the 
over 200 compounds identified in the external dataset analysis, we used the UMAP (Uniform Manifold 
Approximation and Projection) dimension reduction technique 40 to represent each data point 
(compound) in a two-dimensional space based on their similarities. Then, we grouped these data 
points using the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering 
algorithm 41 to find cohesive clusters of similar compounds. Each of these analyses is discussed in 
Section 3. 
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3 Results and Discussion 

3.1 Predictive Accuracy Results 

The goal of our study was to train Random Forest classifiers on the murine lifespan data from 
DrugAge so that they can be employed to classify compounds previously not tested in mice into 
potentially lifespan-extending or not.  To this aim, we generated male-only, female-only and mixed-
sex datasets, as there are substantial sex-related differences in lifespan responses to various 
compounds. 

The average AUC and average GMean results from 10 runs of 5-fold cross-validation experiments for 
mixed-sex datasets are presented in Tables 1 and 2, and the results for male-only datasets are 
presented in Tables 3 and 4. Tables 2 and 4 have per-category results for each type of Targets 
dataset (Functional Annotation, FA, or Neighbour Enrichment, NE, as defined in Section 2.2.1).  

Note that we also ran experiments with female-only datasets, but the models resulting from these 
experiments were not valid (i.e., they were overfitted to the majority class, and thus unable to make 
reliable predictions for minority-class compounds), thus we are not reporting these results here. We 
believe that we did not have sufficient female-only instances of the positive class to train models 
that are able to make meaningful predictions for positive-class compounds – notable only around 
20% of the female instances belonged to the positive class, whilst around 40% of the male instances 
belonged to the positive class. 

In order to select models to be analysed in depth in this Section, we first set a minimum threshold of 
GMean, as this metric is a good way to determine whether a model has been overfitted towards the 
majority-class. Using a secondary criterion to disregard overfitted results was required because 
some models achieved relatively high AUC values (e.g., 0.692 for FA Biological Process) but tended to 
skew predictions towards the majority (negative) class, which made their AUC results overoptimistic, 
and this is reflected in their low GMean results (in this case, 0.317).  

For the mixed-sex datasets, which had models with lower predictive accuracy overall, the minimum 
GMean threshold was set to 0.4. For the male-only datasets we set it to 0.5, as these models 
performed better overall. Then, we selected the best 5 models that passed the GMean threshold 
from each group of experiments (mixed-sex datasets and male-only datasets), based on their AUC 
results. The 10 selected models have their results highlighted in boldface in Tables 1-4. 

Table 1 – Average AUC and GMean values from models trained on each full mixed-sex dataset 

Dataset (mixed sex) AUC GMean 

Targets FA (Functional Annotation STRING descriptors) 0.678 0.327 

Targets NE (Neighbour Enrichment STRING descriptors) 0.636 0.392 

LINCS gene expression (all genes) 0.564 0.135 

LINCS gene expression (L_1000 landmark genes) 0.634 0.161 

PubChem Molecular Fingerprints 0.637 0.472 
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Table 2 – Average AUC and GMean values from models trained on each individual feature category 
of Targets mixed-sex datasets 

Dataset (mixed-sex) 
AUC (Targets 

FA) 

AUC 
(Targets 

NE) 

GMean 
(Targets FA) 

GMean 
(Targets 

NE) 

GO Terms – Biological Process  0.692 0.621 0.317 0.37 

GO Terms – Molecular Function 0.6 0.618 0.334 0.338 

GO Terms – Cellular Component 0.629 0.653 0.364 0.474 

Uniprot Keywords 0.614 0.598 0.306 0.37 

InterPro Protein Domains 0.589 0.555 0.483 0.468 

Wiki Pathways 0.662 0.653 0.364 0.446 

Reactome Pathways 0.601 0.648 0.354 0.522 

KEGG Pathways N /A 0.629 N /A 0.451 

 
 

Table 3 – Average AUC and GMean values from models trained on each full male-only dataset 

Dataset (male-only) AUC GMean 

Targets FA (Functional Annotation STRING descriptors) 0.626 0.472 

Targets NE (Neighbour Enrichment STRING descriptors) 0.63 0.6 

LINCS gene expression (all genes) 0.557 0.469 

LINCS gene expression (L_1000 landmark genes) 0.568 0.518 

PubChem Molecular Fingerprints 0.636 0.497 

 
 

Table 4 – Average AUC and GMean values from models trained on each individual feature category 
of male-only Targets datasets 

Dataset (male-only) 
AUC 

(Targets FA) 

AUC 
(Targets 

NE) 

GMean 
(Targets FA) 

GMean 
(Targets 

NE) 

GO Terms – Biological Process  0.657 0.634 0.498 0.594 

GO Terms – Molecular Function 0.548 0.636 0.471 0.498 

GO Terms – Cellular Component 0.571 0.657 0.465 0.528 
Uniprot Keywords 0.578 0.597 0.43 0.475 

InterPro Protein Domains 0.663 0.559 0.534 0.488 

Wiki Pathways 0.565 0.617 0.38 0.55 

Reactome Pathways 0.548 0.627 0.43 0.577 

KEGG Pathways N /A 0.647 N /A 0.615 

 

Overall, the top models have similar average AUC (between 0.629 and 0.663) values. However, their 

GMean results show that the male-only models are stronger than the mixed-sex models, likely 

because the female mice instances are harder to classify correctly due to the lack of female positive-

class instances, making the problem more difficult in mixed-sex data (as mentioned earlier, ~20% of 

the female-mice instances in our data are positive, compared to ~40% of the male-mice instances). 

The similar AUC values between models that have such different GMeans can be explained by a 

tendency of AUC to reward correct classifications of the majority class, so conservative models that 

tend to classify instances as negative (a safer classification, as negative instances represent a larger 

proportion of the data) are achieving good AUC results. An example of this issue is the GO Terms – 

Biological Process FA model in the mixed-sex data, which had the highest AUC value overall (0.692) 
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but a very low GMean (0.317). Such models overfit to the majority class, and this is reflected by metrics 

such as the GMean, which is why we consider both AUC and Gmean when evaluating our models. 

The LINCS datasets did not yield good models in any of the experiments, which we believe is due to 

the higher complexity of the data (numerical values of gene expression rather than binary values), 

which makes the small number of available examples take a more significant toll on the classifier’s 

performance. Another explanation could be that gene expression averaged across many cell lines, 

dosages and timepoints is a poor representation of longevity effects of tested compounds. 

In the mixed-sex datasets, the Molecular Fingerprints model (based on chemical substructures in the 

compounds’ compositions) was selected as one of the 5 best models, whilst all other selected models 

belong to the Targets category (based on STRING data of protein target annotations).  

In the Targets datasets, the NE mode of dataset creation, which includes annotations (GO Terms, 

protein domains, pathways and keywords) common to each target’s neighbourhood, achieved better 

results than the FA mode, which includes only the annotations from the input targets themselves.  8 

out of 9 top models in Targets category used the NE mode, with the exception of the FA InterPro 

dataset in male-only model. The NE features refer to annotations that are common to a group of 

proteins, which makes them more selective compared to FA annotations. This may be the reason for 

this disparity between the success of NE and FA models. It is also worth noting that the selected male-

only models included the NE dataset combining all 8 feature categories (GO annotations, biological 

pathways, protein domains and UniProt keywords), with a relatively high average GMean of 0.6, the 

second best GMean result over all experiments. This shows that even feature categories that did not 

generate a top model on their own had value when considered in combination with other categories. 

Moreover, GO Function and Uniprot Keywords have not been selected for any of the top models, likely 

indicating their low informativeness for the task of predicting longevity drugs. 

3.2 Analysis of Feature Importance in the Best Predictive Models 

Tables 5-14 show, for each of our 10 selected models, which 10 features had the highest importance 

when labelling a compound as positive (predicted to increase lifespan in mice) or negative class.  

Notably, for all mixed-sex dataset models, sex was the most important feature, likely because the 

compounds in our dataset had negative results when tested in female mice twice more often than in 

male mice, thus the sex variable is highly predictive.  

In all tables we included a Class Tendency column indicating whether features clearly increased the 

chance of a certain class label.  The class tendency of each binary feature F was calculated using two 

metrics we called Effectiveness (ratio of instances of the positive class (C=1) among instances that 

have the feature present (F=1)) and Dispensability (ratio of instances of the positive class among 

instances that have the feature absent (F=0)). The result of the division between those metrics 

indicates an increase/decrease of likelihood of a positive-class classification when using the feature’s 

value to split the data. We set cut-off values to determine whether the feature’s value results in a 

tendency towards each class, as shown in Equation 1.  
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𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝐹) =  
#(𝐶 = 1|𝐹 = 1)

#(𝐹 = 1)
 

𝐷𝑖𝑠𝑝𝑒𝑛𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐹) =   
#(𝐶 = 1|𝐹 = 0)

#(𝐹 = 0)
 

𝑇𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝐹) =  
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠

𝐷𝑖𝑠𝑝𝑒𝑛𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦
  {

≤ 0.66 → 𝑁𝑒𝑔. 𝐶𝑙𝑎𝑠𝑠 𝑇𝑒𝑛𝑑𝑒𝑛𝑐𝑦
≥ 1.5 → 𝑃𝑜𝑠. 𝐶𝑙𝑎𝑠𝑠 𝑇𝑒𝑛𝑑𝑒𝑛𝑐𝑦

  

Equation 1: Calculation of class tendency for each feature F in a dataset 

As an example of this tendency calculation, consider the ‘GO:0005834’ feature in the NE Gene 

Ontology Components model (third-ranked feature in Table 5): out of the 32 instances with value ‘1’ 

for this feature, 18 are of the positive class (Effectiveness = 18/32 = 56.25%); out of the 102 

instances with value ‘0’ for this feature, 24 are of the positive class (Dispensability = 24/102 = 

23.53%). Therefore, the class tendency of ‘GO:0005834’ is 2.39 (56.25/23.53), which indicates a 

positive-class tendency for this feature.  

3.2.1 Selected models from mixed-sex datasets  

Table 5 – Most relevant features in the NE Gene Ontology Components model  

Feature Description Class Tendency 

sex Sex of the mice used in the experiment F: Negative class 

GO:0016323 Basolateral plasma membrane Unclear 

GO:0005834 Heterotrimeric G-protein complex Positive class 

GO:0005886 Plasma membrane Positive class 

GO:1904813 ficolin-1-rich granule lumen Negative class 

GO:0005829 Cytosol Negative class 

GO:0005759 Mitochondrial matrix Negative class 

GO:0000785 Chromatin Negative class 

GO:0120025 Plasma membrane bounded cell projection Positive class 

GO:0005667 Transcription regulator complex Negative class 

 

From Table 5 we can see that compounds which target proteins located at the plasma membrane or, 
more specifically, plasma membrane-bounded cell projections, have a high chance of extending 
murine lifespan. One important group of such membrane-localised proteins is heterotrimeric G-
protein complexes, which are essential signalling molecules functioning as molecular switches to 
transmit signals from cell surface receptors (which are thus called G protein-coupled receptors) to 
various intracellular effectors. They are involved in numerous physiological processes, including 
sensory perception, immune responses, and regulation of mood and metabolism. Interestingly, 
GNAQ, GNA11 and GNAS - genes that encode different alpha subunits of heterotrimeric G-protein 
complexes – have recently been predicted to be some of the strongest cancer drivers 42, so inhibiting 
them with chemical compounds might extend murine lifespan by delaying cancer development. On 
the other hand, compounds which target proteins located in the cytosol, mitochondrial matrix, 
chromatin, transcription regulator complex or ficolin-1-rich granule lumen have much lower chances 
of extending murine lifespan. Ficolin-1 is a crucial protein in the innate immune system, primarily 
stored in granules within neutrophils. These granules release ficolin-1 into the extracellular 
environment in response to stimuli, where it binds to carbohydrate structures on pathogens, 
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apoptotic cells, and other particles, thereby activating the lectin pathway of complement activation. 
Please note that as only top 10 features are listed for each model, the lists of features discussed here 
and below are not comprehensive or exhaustive. The female (F) value of the feature Sex is also 
associated with the negative class, as in the other tables in this Section. 

Table 6 – Most relevant features in the NE Wiki Pathways model 

Feature Description Class Tendency 

sex Sex of the mice used in the experiment F: Negative class 

WP536 Calcium regulation in cardiac cells Positive class 

WP3929 Chemokine signalling pathway Positive class 

WP4583 Biomarkers for urea cycle disorders Negative class 

WP399 Wnt signalling pathway and pluripotency Negative class 

WP5046 NAD metabolism in oncogene-induced senescence and 
mitochondrial dysfunction-associated senescence 

Negative class 

WP3594 Circadian rhythm genes Negative class 

WP4313 Ferroptosis Negative class 

WP4788 Autosomal recessive osteopetrosis pathways Unclear 

WP5200 Dravet syndrome Positive class 

 

Table 6 demonstrates that compounds interacting with proteins involved in calcium regulation in 
cardiac cells, a chemokine signalling pathway or Dravet syndrome (caused by a loss of function of the 
voltage-gated sodium channel Nav1.1, affecting the excitability of neurons, particularly inhibitory 
interneurons) are likely to extend murine lifespan. On the other hand, compounds affecting urea cycle 
disorders, Wnt signalling pathway and pluripotency, NAD metabolism in oncogene-induced 
senescence and mitochondrial dysfunction-associated senescence, circadian rhythms, or ferroptosis, 
are less likely to do so. 

Table 7 – Most relevant features in the NE Reactome Pathways model 

Feature Description Class Tendency 

Sex Sex of the mice used in the experiment F: Negative class 

HSA-9634597 GPER1 signalling Positive class 

HSA-420092 Glucagon-type ligand receptors Positive class 

HSA-1430728 Metabolism Unclear 

HSA-381676 Glucagon-like Peptide-1 (GLP1) regulates insulin 
secretion 

Positive class 

HSA-163359 Glucagon signalling in metabolic regulation Positive class 

HSA-5576891 Cardiac conduction Positive class 

HSA-9009391 Extra-nuclear oestrogen signalling Positive class 

HSA-1296071 Potassium Channels Positive class 

HSA-3247509 Chromatin modifying enzymes Negative class 

 

Table 7 shows that compounds affecting extra-nuclear oestrogen signalling and G protein-coupled 
estrogen receptor 1 (GPER1) in particular, glucagon signalling in metabolic regulation, glucagon-type 
ligand receptors and glucagon-like Peptide-1 (GLP1)-mediated regulation of insulin secretion, as well 
as cardiac conduction and potassium channels, are predicted to extend lifespan with high 
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probability. Note that both GPER1 and GLP1R are G protein-coupled receptors, making the results of 
this model in agreement with the results of NE Gene Ontology Components model (Table 5) which 
selected heterotrimeric G-protein complexes as one of its top features. The “Cardiac conduction” 
feature is consistent with “Calcium regulation in cardiac cells” feature from the NE Wiki Pathways 
model (Table 6). On the other hand, compounds interacting with chromatin-modifying enzymes are 
less likely to extend murine lifespan according to the predictions. Notably, this is also consistent with 
the NE Gene Ontology Components model which labelled “chromatin” and “transcription regulator 
complex” as negative class features (Table 5). 

Table 8 – Most relevant features in the NE KEGG Pathways model 

Feature Description Class Tendency 

Sex Sex of the mice used in the experiment F: Negative class 

hsa04929 GnRH secretion Positive class 

hsa05152 Tuberculosis Negative class 

hsa05202 Transcriptional misregulation in cancer Negative class 

hsa04062 Chemokine signalling pathway Positive class 

hsa05017 Spinocerebellar ataxia Positive class 

hsa04022 cGMP-PKG signalling pathway Positive class 

hsa01200 Carbon metabolism Negative class 

hsa05134 Legionellosis Negative class 

hsa05146 Amoebiasis Unclear 

 
The results in Table 8 suggest that compounds interacting with proteins involved in gonadotropin-
releasing hormone (GnRH) secretion, chemokine signalling pathway, cGMP-PKG signalling pathway 
or spinocerebellar ataxia are promising candidate lifespan-extending compounds. On the other 
hand, compounds targeting proteins involved in tuberculosis, transcriptional misregulation in cancer, 
carbon metabolism or legionellosis are unlikely to be effective for lifespan extension. Please note 
that chemokine signalling pathway has already been selected as a top feature in the NE Wiki 
Pathways model (Table 6) 
 

Table 9 – Most relevant features in the Molecular Fingerprints model 

Feature Description Class Tendency 

Sex Sex of the mice used in the experiment F: Negative class 

≥ 8 H 8 or more hydrogen atoms Negative class 

≥ 1 N At least one nitrogen atom Positive class 

N(~C)(~C)(~H) At least one nitrogen atom with two carbon atoms and one 
hydrogen atom as nearest neighbours, regardless of bond 
order 

Positive class 

N-H At least one bonded pair of nitrogen and hydrogen atoms Positive class 

C-C-N-C-C At least one simple SMARTS pattern: C-C-N-C-C Positive class 

O=C-C=C-[#1] At least one simple SMARTS pattern: O=C-C=C-[#1] Negative class 

O=C-C-C At least one simple SMARTS pattern: O=C-C-C Negative class 

C=O At least one pair of carbon and oxygen atoms with a double 
bond 

Negative class 

C-C-C-O-[#1] At least one simple SMARTS pattern: C-C-C-O-[#1] Negative class 
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Table 9 demonstrates that compounds are more likely to extend lifespan if they have less than 8 
hydrogen atoms, at least one nitrogen atom, preferably with two carbon atoms and one hydrogen 
atom as nearest neighbours, or even better as a C-C-N-C-C pattern. On the other hand, pairs of 
carbon and oxygen atoms with a double bond, as well as O=C-C=C-[#1], O=C-C-C and C-C-C-O-[#1] 
patterns, should be avoided. According to these criteria, amines (methylamine, dimethylamine), 
azoles (pyrazole, imidazole), pyridines, pyrimidines and aminopyridines are promising. However, 
many of these compounds are known to be neurotoxic, hepatotoxic and/or carcinogenic. Imidazole 
derivatives, pyrimidines and aminopyridines are less toxic and should be investigated as lifespan 
extending compounds.  

3.2.2 Selected models from male-only datasets 

Table 10 – Most relevant features in the FA InterPro Domains model 

Feature Description Class Tendency 

IPR017452 GPCR, rhodopsin-like, 7TM Positive class 

IPR000276 G protein-coupled receptor, rhodopsin-like Positive class 

IPR036291 NAD(P)-binding domain superfamily Negative class 

IPR003193 ADP-ribosyl cyclase (CD38/157) Unclear 

IPR002233 Adrenoceptor family Positive class 

IPR016024 Armadillo-type fold Positive class 

IPR014729 Rossmann-like alpha/beta/alpha sandwich fold Negative class 

IPR029071 Ubiquitin-like domain superfamily Positive class 

IPR018490 Cyclic nucleotide-binding domain superfamily Positive class 

IPR000595 Cyclic nucleotide-binding domain Positive class 

 
Table 10 demonstrates that compounds interacting with rhodopsin-like G protein-coupled receptors 
(GPCRs), including adrenoceptors, as well as proteins containing Armadillo-type folds, ubiquitin-like 
domains, or cyclic nucleotide-binding domains, are promising for lifespan extension. GPCRs are 
essential in signal transduction, influencing pathways related to metabolism, stress response, and 
hormonal regulation, all of which are vital for maintaining homeostasis. Again, please note that this 
model is consistent with several models described above in nominating G protein-related features as 
the top predictive ones. Armadillo-type fold proteins, such as those involved in the Wnt signalling 
pathway, contribute to cellular proliferation, differentiation, and maintaining tissue homeostasis 
through their role in cell adhesion and cytoskeletal integrity. This is consistent with the NE Wiki 
Pathways model, where “Wnt signalling pathway and pluripotency” wad identified as a top 
predictive feature (Table 6). Ubiquitin-like domains are crucial for proteostasis, aiding in protein 
quality control and cellular stress responses. Cyclic nucleotide-binding domains, involved in binding 
cAMP and cGMP, regulate metabolic processes and enhance cellular resistance to oxidative stress. 
This is consistent with the NE KEGG Pathways model where “cGMP-PKG signalling pathway” was 
identified as a top predictive feature (Table 8). On the other hand, compounds targeting proteins 
with NAD(P)-binding domains or Rossmann-like alpha/beta/alpha sandwich folds are less promising 
for lifespan extension. These domains are primarily involved in redox reactions and basic metabolic 
processes, which, while essential for cellular function, do not seem to directly influence the 
regulatory pathways specifically linked to longevity. 
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Table 11 – Most relevant features in the NE Gene Ontology Process model 

Feature Description Class Tendency 

GO:0003008 System process Positive class 

GO:0007191 Adenylate cyclase-activating dopamine receptor 
signalling pathway 

Positive class 

GO:0042391 Regulation of membrane potential Positive class 

GO:0019752 Carboxylic acid metabolic process Negative class 

GO:0007189 Adenylate cyclase-activating G protein-coupled 
receptor signalling pathway 

Positive class 

GO:0007186 G protein-coupled receptor signalling pathway Positive class 

GO:0001503 Ossification Positive class 

GO:0032879 Regulation of localization Positive class 

GO:0043648 Dicarboxylic acid metabolic process Negative class 

GO:0007212 Dopamine receptor signalling pathway Positive class 

 

The top feature in Table 11 is the very broad “System process” GO term, which indicates that 
compounds which target multicellular organismal processes carried out by organs or tissues within 
an organ system, such as immune, circulatory, nervous, etc., have the most potential to extend 
lifespan. Specific processes worth targeting for lifespan extension include G protein-coupled 
receptor signalling pathways, specifically adenylate cyclase-activating ones, in particular the 
dopamine receptor pathway, as well as regulation of membrane potential, ossification and 
“regulation of localization”. The “Regulation of membrane potential” feature is consistent with the 
“Plasma membrane” feature from the NE Gene Ontology Components models (Table 5, Table 12) 
and the “Potassium channels” feature from the NE Reactome Pathways model (Table 7). “Regulation 
of localization” is a GO term that describes “any process that modulates the frequency, rate or 

extent of any process in which a cell, a substance, or a cellular entity is transported to, or 

maintained in, a specific location”. On the other hand, targeting carboxylic and dicarboxylic acid 
metabolism is unlikely to result in lifespan extension. These chemicals are important intermediates 
in various metabolic pathways, including the Krebs cycle, which is essential for ATP production, 
cellular respiration and overall metabolic health. This is consistent with NE Gene Ontology 
Components models (Table 5, Table 12), where the mitochondrial matrix (where the Krebs cycle 
occurs) was identified as a negative class feature. 

Table 12 – Most relevant features in the NE Gene Ontology Components model 

Feature Description Class Tendency 

GO:0005834 Heterotrimeric G-protein complex Positive class 

GO:0005886 Plasma membrane Positive class 

GO:0045177 Apical part of cell Positive class 

GO:0005829 Cytosol Negative class 

GO:0016323 Basolateral plasma membrane Unclear 

GO:0005739 Mitochondrion Negative class 

GO:0005667 Transcription regulator complex Negative class 

GO:1904813 ficolin-1-rich granule lumen Negative class 

GO:0005759 Mitochondrial matrix Negative class 

GO:0090575 RNA polymerase II transcription regulator 
complex 

Unclear 
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Table 12 shows results from the NE Gene Ontology Components model applied to a male-only 
dataset and is highly similar to Table 5 which shows results from the same model but applied to a 
mixed-sex dataset. According to these results, compounds interacting with proteins localised at the 
plasma membrane and/or apical part of the cell, especially the proteins comprising the 
heterotrimeric G-protein complexes, are likely to extend lifespan. Conversely, compounds 
interacting with proteins localised in the cytosol, mitochondrion, especially mitochondrial matrix, 
ficolin-1-rich granule lumen, or transcription regulator complex are unlikely to do so. 

Table 13 – Most relevant features in the NE KEGG Pathways model 

Feature Description Class Tendency 

hsa04929 GnRH secretion Positive class 

hsa04911 Insulin secretion Positive class 

hsa04022 cGMP-PKG signalling pathway Positive class 

hsa05146 Amoebiasis Unclear 

hsa05152 Tuberculosis Negative class 

hsa05032 Morphine addiction Positive class 

hsa04742 Taste transduction Positive class 

hsa04914 Progesterone-mediated oocyte maturation Positive class 

hsa04713 Circadian entrainment Positive class 

hsa04640 Hematopoietic cell lineage Negative class 

 
Table 13 shows results from the NE KEGG Pathways model applied to a male-only dataset and is 
similar to Table 8 which shows results from the same model but applied to a mixed-sex dataset. 
According to these results, compounds interacting with proteins involved in gonadotropin-releasing 
hormone (GnRH) secretion, progesterone-mediated oocyte maturation, insulin secretion, cGMP-PKG 
signalling pathway, taste transduction, circadian entrainment and morphine addiction are promising 
candidate lifespan-extending compounds. It is peculiar that the NE Wiki Pathways model classified 
“Circadian rhythm genes” as a negative class feature (Table 6), which seems to be at odds with the 
current model (Table 13) classifying “Circadian entrainment” as a positive class feature. Morphine 
addiction was selected likely because it is mediated by dopamine, and thus this result is in 
agreement with the “Dopamine receptor signalling pathway” feature from the NE Gene Ontology 
Process model (Table 11). Interestingly, dopamine can also mediate addiction to food, while taste 
transduction can affect the palatability of food, and circadian entrainment can affect feeding times. 
Altogether, this triad of positive class features may indicate that some longevity drugs affect the 
feeding behaviour of mice and thus cause indirect (behavioural) caloric restriction, which is known to 
strongly extend lifespan. For example, it has been shown that dietary restriction response and 
lifespan extension can be achieved through the pharmacological masking of a sensory pathway that 
signals the presence of food 43. On the other hand, compounds targeting proteins involved in 
tuberculosis and hematopoietic cell lineage are unlikely to be effective for lifespan extension.  
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Table 14 – Most relevant features in the NE All categories model  

Feature Category Description 
Class 
Tendency 

HSA-381676 Reactome Glucagon-like Peptide-1 (GLP1) regulates 
insulin secretion 

Positive class 

HSA-163359 Reactome Glucagon signalling in metabolic regulation Positive class 

HSA-420092 Reactome Glucagon-type ligand receptors Positive class 

GO:0003008 GO Process System process Positive class 

HSA-9634597 Reactome GPER1 signalling Positive class 

hsa04929 KEGG GnRH secretion Positive class 

hsa04911 KEGG Insulin secretion Positive class 

KW-0496 UniProt Keyword Mitochondrion Negative class 

GO:0005834 GO Component Heterotrimeric G-protein complex Positive class 

HSA-9660821 Reactome ADORA2B mediated anti-inflammatory 
cytokines production 

Positive class 

 

Finally, the NE All categories model (Table 14) was able to select features from all categories, and 
thus most of them have already appeared as top features in single-category models. We can see that 
these features are mostly related to systemic processes, such as hormone secretion and signalling 
mediated via G-protein coupled receptors. The top hormones involved are Glucagon-like Peptide-1 
(GLP1), glucagon, insulin, oestrogen (signalling via G protein-coupled estrogen receptor 1 (GPER1)), 
gonadotropin-releasing hormone (GnRH) and adenosine (signalling via adenosine A2B receptor 
(ADORA2B)). Notably, all of them signal via G-protein coupled receptors. These results lend support 
to the hormonal theory of ageing. As three of these hormones are involved in glucose metabolism, 
this is consistent with the occurrence and detrimental effects of diabetes and metabolic syndrome 
with age, as well as the effectiveness of caloric restriction and antidiabetic drugs such as acarbose 
and possibly metformin. Two other hormones are sex hormones, which aligns with sex-specific 
differences observed in human and animal lifespan and in the effectiveness of lifespan-extending 
compounds. The natural ligand for adenosine receptor A2B (ADORA2B) is extracellular adenosine, 
formed from the reduction of ATP by ENTDPases. ATP enters the extracellular space in response to 
tissue injury and apoptosis amongst other stress factors and has chemotactic and excitatory effects. 
The reduction of ATP to adenosine is thought to be a regulatory mechanism by which the synthesis 
of anti-inflammatory cytokines is induced 44. Thus, the “ADORA2B mediated anti-inflammatory 
cytokines production” feature, together with the “Chemokine signalling pathway” feature from NE 
Wiki Pathways (Table 6) and NE KEGG Pathways (Table 8) models, lend support to the inflammageing 
theory and highlights the importance of reducing chronic inflammation. Although the UniProt 
Keywords model did not perform as well as other models that we selected, the identification of the 
UniProt Keyword “Mitochondrion” feature as a negative class one in the current combined model 
(Table 14) is consistent with the results of the NE Gene Ontology Components models (Table 5, Table 
12), which also nominated mitochondrion and mitochondrial matrix as negative class features. These 
results suggest a critical look is required at the mitochondrial theory of ageing. 

3.3 Identifying the Most Promising Novel Compounds for Lifespan Extension 

After identifying the models with the best predictive accuracy in the mixed-sex and male-only 

datasets in Section 3.1, in this Section we use their predictions to highlight compounds that show 

some promise of lifespan-extension capabilities. The predictions of our classification models are 
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based on the chemical composition of a compound in the case of the Molecular Fingerprints model, 

and on the STRING annotations of target proteins for all other selected models. 

 

A classifier predicts an instance as part of the positive class based on feature patterns that indicate 

its similarity to training instances of that class, so the compounds identified in this analysis have 

some commonalities with previously successful compounds. Naturally, this does not guarantee that 

the compounds would work similarly. For example, they may interact differently with the target 

(e.g., activate it whilst the successful instances inhibit it), and this would not be reflected in our 

binary-feature datasets. 

 

3.3.1 Identifying recurrent false-positive classifications in top models 

In order to identify novel compounds that may extend murine lifespan, we first considered the false-

positive classifications in our own models’ predictions, as these indicate that the model identified 

positive-class patterns in the compound’s data. Table 15 shows six compounds that were frequently 

classified as longevity-related but are part of the negative class in our datasets (i.e., there is currently 

no sufficient evidence to claim that these compounds extend the median lifespan of mice). It includes 

the PubChem ID of each compound, and the ratio of times the compound was classified as a false-

positive over the number of top-model datasets it was included in (Putrescine and Chlorpheniramine 

are included only in mixed-sex datasets, as they only have examples from female mice studies). 

These compounds have been reported as unsuccessful for lifespan extension in mice (see our 

positive-class definition in Section 2.1), but they are consistently being labelled as positive by our 

most accurate models, which shows they have some similarity with positive-class examples and may 

warrant further investigation. Note that although the negative-class compounds have failed to 

extend lifespan in the existing studies, it is possible that a different treatment regimen (e.g. a 

different dosage, route of administration, starting age, duration) or a different mouse strain could 

lead to positive results. Interestingly, LY444711 slightly improves median survival in mice, although 

the increase does not reach statistical significance. What is remarkable is that it significantly 

improves maximal lifespan 45, although we do not use that parameter for training the models. 

Another drug in our false-positive list, dehydroepiandrosterone sulphate, has been shown to be 

ineffective in two mouse studies, but its levels are dramatically reduced with age in humans 46, 

perhaps it is one of the strongest blood biomarkers of ageing), so it is still possible that the right 

concentration or treatment regimen has not been achieved, given that this is a hormone with 

complex and precisely regulated secretion patterns 47. 

Table 15 – Negative-class compounds consistently classified as false-positive by the selected models 

Compound PubChem ID False-positive  
Frequency 

LY444711 (ghrelin agonist) 91229598 10/10 (100%) 
Putrescine 1045 5/5 (100%) 

Chlorpheniramine 2725 4/5 (80%) 

Dehydroepiandrosterone sulphate 5881 7/10 (70%) 
2-Mercaptoethylamine Hydrochloride 6058 7/10 (70%) 

Taxifolin 439533 6/10 (60%) 
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3.3.2 Labelling unseen data from an external dataset 

For this analysis, we created two classifier ensembles using the selected (most accurate) classification 

models from each type of dataset: 5 from mixed-sex datasets and 5 from male-only datasets. Each 

model outputs a positive-class prediction probability between 0 and 1, and the ensemble’s final 

probability is the average over all valid models’ probabilities (i.e., in cases where a model has no data 

for a compound, it is not included in the ensemble’s result calculation).  

We used these ensembles to classify a large number of existing drugs and compounds that have never 

been tested for their lifespan extension effects in mice. We downloaded the full DrugBank 19 dataset 

of Drug Target Identifiers (version 5.1.12, released on 2024-03-14) and used it to create feature 

datasets from STRING annotations and enrichments for these targets. After applying our ensembles 

to these datasets, we selected all novel compounds that were predicted by the ensembles to have at 

least 75% positive-class probability, which resulted in a list of 57 compounds from the mixed-sex 

ensemble and 272 compounds from the male-only ensemble. The male-only ensemble predicted more 

high-confidence compounds likely because those models had higher discriminatory power (Gmean). 

Some compounds confidently classified as belonging to the positive class by these ensembles are very 

similar to previously successful compounds (i.e., sharing targets with positive-class instances in the 

training data), whereas other compounds might represent previously unexplored research directions 

for future longevity studies in mice. Compounds with 100% feature similarity to the ones in the 

training dataset were removed. 

As mentioned in Section 2.3, we used the UMAP dimensionality reduction technique to visualise the 

selected compounds in a two-dimensional space based on measuring Jaccard distances (a similarity 

metric for binary data that disregards ‘0’ matches) between the compounds. We adjusted the UMAP 

parameters to emphasise the global structure as opposed to local structure (i.e. set neg_sample_rate 

and n_neighhbours equal to the number of compounds minus one). Then, we used the DBSCAN 

algorithm to identify clusters of compounds, based on their Euclidean distance within the UMAP 

projection. We fine-tuned the DBSCAN eps parameter to keep the lowest possible number of 

groupings while preserving the distinct sets of top targets in each cluster, resulting in 4 clusters out of 

the 57 compounds nominated by the mixed-sex ensemble and 7 clusters out of the 272 compounds 

selected by the male-only ensemble. Figure 1 shows the UMAP projections of the most confident 

positive-class predictions of the mixed-sex and male-only ensembles, as well as the positive class 

likelihoods of these compounds and their clusters as determined by DBSCAN. 

3.3.2.1. Mixed-sex ensemble predictions 

Table 16 shows the clusters of compounds with positive-class likelihood ≥75% as estimated by the 

ensemble created from mixed-sex dataset models, and each cluster’s most frequent protein targets 

are shown in Table 17.  
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Figure 1 –Clustering (left) and positive-class likelihood (right) of DrugBank compounds with positive-

class likelihood ≥75% predicted by the mixed-sex ensemble (top row) or by the male-only ensemble 

(bottom row) 
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Table 16 – Clusters of DrugBank compounds with positive-class likelihood >75% as estimated by the 

ensemble of mixed-sex datasets models. Potential lifespan-extending compounds are highlighted in 

bold. 

Cluster 
Number of 

compounds 

Positive class 

likelihood  

Min-Max (Mean) 

Compounds 

1 8 
76.4% to 81.5% 

(mean: 78.3%) 

BMS-754807, Insulin peglispro, Linsitinib, Mecasermin rinfabate,  N-[2-(2-

iodo-5-methoxy-1H-indol-3-yl)ethyl]acetamide, Primaquine, Somatrem, 

XL765 

2 27 
75.1% to 90%   

(mean: 81.8%) 

Acebutolol, Alprenolol, Atenolol, Befunolol, Betaxolol, Bethanidine, 

Bevantolol, Bisoprolol, Carteolol, Celiprolol, Cryptenamine, DL-

Methylephedrine, Isoetharine, Isoprenaline, Levobunolol, 

Mephentermine, Metipranolol, Nadolol, Penbutolol, 

Phenylpropanolamine, Pindolol, Pirbuterol, Propafenone, Propranolol, 

Racepinephrine, Sotalol, Timolol 

3 7 
76% to 81.1% 

(mean: 78.5%) 

4-Methylimidazole, Bendroflumethiazide, Brinzolamide, Chlorothiazide, 

Dorzolamide, Methyclothiazide,  

n-{2-[4-(aminosulfonyl)phenyl]ethyl}acetamide 

4 13 
75.2% to 82. 1% 

(mean: 78.6%) 

JNJ-37822681, Cinnarizine, Dihydro-alpha-ergocryptine, Domperidone, 

Norclozapine, Piribedil, Quinagolide, Rolicyclidine, Sarizotan, Sulpiride, 

Sumanirole, Tetrabenazine, Tetrahydropalmatine 

No 

Cluster 
2 

0.762 to 0.782 

(mean: 0.772) 
Alpha-Benzyl-Aminobenzyl-Phosphonic Acid, LI-301 

 

Table 17 – Frequent (≥ 33%) targets of clusters of DrugBank compounds with positive-class likelihood 

≥ 75% as estimated by the ensemble of mixed-sex datasets models 

Cluster Target frequency Target gene name Target full name 

1 

 

63% IGF1R Insulin-like growth factor 1 receptor  

50% INSR Insulin receptor  

2 

 

100% ADRB1 Beta-1 adrenergic receptor  

96% ADRB2 Beta-2 adrenergic receptor  

37% ADRB3 Beta-3 adrenergic receptor  

3 

 

100% CAH2 Carbonic anhydrase 2  

86% CAH1 Carbonic anhydrase 1  

57% CAH4 Carbonic anhydrase 4  

4 

 

100% DRD2 D(2) dopamine receptor  

54% DRD3 D(3) dopamine receptor  

 

Cluster 1 is a diverse group that includes compounds targeting primarily Insulin-like growth factor 1 

receptor and Insulin receptor. Some of them are activators (agonists) of these receptors (Insulin 

peglispro, Mecasermin rinfabate), while others are inhibitors (antagonists) (BMS-754807, Linsitinib). 

There are also compounds activating Melatonin receptors (N-[2-(2-iodo-5-methoxy-1H-indol-3-

yl)ethyl]acetamide), activating Growth hormone receptor (Somatrem) and inhibiting PI3K/mTOR 

(XL765). As noted above, our models cannot distinguish between activators and inhibitors of the 

same target, because this information is absent for most compounds in DrugBank and other target 

databases which we used for training the models. Thus, while these compounds are predicted to 
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have strong effects on murine lifespan, the sign of this effect can be either positive or negative, 

depending on whether the compound affects the target in the same way as the lifespan-extending 

molecules in the positive training dataset or in the opposite way. In our positive training dataset, we 

had inhibitors of IGF-1 receptor (L2-Cmu 48), PI3K (Alpelisib 49), mTOR (Rapamycin 50,51) and an 

activator of Melatonin receptors (melatonin itself 52,53). Thus, we can predict that BMS-754807, 

Linsitinib, XL765 and N-[2-(2-iodo-5-methoxy-1H-indol-3-yl)ethyl]acetamide are likely to increase 

murine lifespan, whereas Insulin peglispro, Mecasermin rinfabate and Somatrem are likely to 

shorten it.  

Cluster 2 consists of drugs targeting Beta-adrenergic receptors. Most of them are antagonists (drug 

names ending in -olol, and additionally Bethanidine, Cryptenamine, Propafenone and Sotalol), but 

some are agonists. Because we had antagonists of Beta-adrenergic receptors (Metoprolol, Nebivolol 
54) in our positive training dataset, we predict that antagonists of these receptors will likely extend 

murine lifespan, whereas the agonists will likely shorten it. Beta-blockers decrease heart rate, thus 

somewhat supporting the “fixed number of heartbeats per lifespan” hypothesis 55. They also 

decrease cardiac output. Interestingly, in a recent study of caloric restriction in genetically 

heterogeneous female mice, cardiac output was negatively correlated with lifespan 56. This is also 

consistent with top predictive features “Calcium regulation in cardiac cells” (Table 6) and “Cardiac 

conduction” (Table 7) from mixed-sex models. 

Cluster 3 compounds are primarily inhibitors of Carbonic anhydrases. In our positive training dataset, 

we had Butylated hydroxytoluene 57, which is also an inhibitor of carbonic anhydrases. Thus, we 

predict that most compounds in this cluster are likely to extend murine lifespan. Interestingly, an 

increase of tissue-specific carbonic anhydrases in mitochondria from middle-aged mouse brain and 

skeletal muscle has been documented 58. Moreover, nematodes C. elegans exposed to CAH2 have a 

dose-related shorter lifespan suggesting that high CAH2 levels are life-limiting 58.  

Cluster 4 compounds target mostly Dopamine receptors. Most of them inhibit these receptors, but 

some compounds activate them (Dihydro-alpha-ergocryptine, Piribedil, Quinagolide, Sarizotan and 

Sumanirole).  In our positive training dataset, we had Levodopa 59 which is a Dopamine receptor 

agonist precursor. Thus, we predict that compounds which activate Dopamine receptors are likely to 

extend murine lifespan, whereas inhibitors of these receptors will likely shorten it. 

3.3.2.2. Male-only ensemble predictions 

Table 18 shows the clusters of compounds with positive-class likelihood > 75% as estimated by the 

ensemble created from mixed-sex dataset models, and each cluster’s most frequent protein targets 

are shown in Table 19. 
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Table 18 – Clusters of DrugBank compounds with positive-class likelihood ≥75% nominated by the 

ensemble of male-only datasets models. Potential lifespan-extending compounds are highlighted in 

bold. 

Cluster 
Number of 

compounds 

Positive 

class 

likelihood        

Min-Max 

(Mean) 

Compounds 

1 37 

75.3% to 

97.2% 

(mean: 

90.6%) 

2-hydroxymethyl-6-octylsulfanyl-tetrahydro-pyran-3,4,5-triol, Acebutolol, Alprenolol, Arotinolol, Atenolol, 

Befunolol, Betaxolol, Bethanidine, Bevantolol, Bisoprolol, Bopindolol, Carteolol, Celiprolol, Cryptenamine, 

Dipivefrin, DL-Methylephedrine, Droxidopa, Ephedrine, Isoetharine, Isoprenaline, Labetalol, Levobunolol, 

Mephentermine, Metipranolol, Mirabegron, Nadolol, Norepinephrine, Penbutolol, Phenoxybenzamine, 

Phenylpropanolamine, Pindolol, Pirbuterol, Propafenone, Propranolol, Racepinephrine, Sotalol, Timolol 

2 119 

76.2% to 

91.2% 

(mean: 

83.9%) 

Acepromazine, Alizapride, Amantadine, Amisulpride, Amitifadine, Amitriptyline, Amoxapine, Amphetamine, 

Aniracetam, Apomorphine, Aripiprazole, AS-8112, Asenapine, Bicifadine, Bifeprunox, BL-1020, Blonanserin, 

Brasofensine, Brexpiprazole, Bromocriptine, Bromopride, Buspirone, Cabergoline, Cariprazine, 

Carphenazine, Chlorprothixene, Cinnarizine, Clozapine, Desipramine, Dihydro-alpha-ergocryptine, 

Dihydroergocornine, Dihydroergocristine, Dihydroergotamine, Domperidone, Dopamine, Doxepin, 

Droperidol, Ephedra sinica root, Ergoloid mesylate, Ergotamine, Escitalopram, Etoperidone, Fluoxetine, 

Flupentixol, Fluspirilene, Haloperidol, Hydrocodone, Iloperidone, Imipramine, JNJ-37822681, Ketamine, 

Ketobemidone, Lisuride, Loxapine, Lumateperone, Lurasidone, Maprotiline, Melperone, Memantine, 

Meperidine, Mesoridazine, Methadone, Methotrimeprazine, Metoclopramide, Mianserin, Minaprine, 

Molindone, Naltrexone, Nefazodone, Norclozapine, Nortriptyline, Ocaperidone, Olanzapine, Ondansetron, 

Orphenadrine, Paliperidone, Pardoprunox, Paroxetine, Pergolide, Perospirone, Pipamperone, Pipotiazine, 

Piribedil, Pramipexole, Prochlorperazine, Promazine, Propiomazine, Quetiapine, Quinagolide, Raclopride, 

Remoxipride, Risperidone, Rolicyclidine, Ropinirole, Rotigotine, Sarizotan, Sertindole, Setiptiline, Sulpiride, 

Sumanirole, Tetrahydrocannabivarin, Tetrahydropalmatine, Thiethylperazine, Thioproperazine, 

Thioridazine, Thiothixene, Tianeptine, Tramadol, Triflupromazine, Trimipramine, Viloxazine, Vortioxetine, 

YKP-1358, Yohimbine, Ziprasidone, Zotepine, Zuclopenthixol 

3 24 

75.1% to 

87.2% 

(mean: 

80.1%) 

Agmatine, Azimilide, Bepridil, Cocaine, Dofetilide, Enflurane, Flunarizine, Gabapentin, Halothane, 

Isavuconazole, Isoflurane, Lamotrigine, Loperamide, Nicardipine, Pentoxyverine, Perphenazine, Pimozide, 

Promethazine, Ranolazine, Ritodrine, Topiramate, Trifluoperazine, Trimebutine, Verapamil 

4 5 

75% to 

78.5% 

(mean: 

76.6%) 

4-Methoxyamphetamine, Benzatropine, Benzphetamine, Diphenylpyraline, Metamfetamine 

5 74 

75% to 

89.3% 

(mean: 

78.3%) 

Aclidinium, ALKS 27, Apraclonidine, Aranidipine, Astemizole, Atropine, Benzquinamide, Betahistine, 

Bethanechol, Brompheniramine, Butriptyline, Captodiame, Cinitapride, Cirazoline, Cisapride, Clonidine, 

Cyproheptadine, Darifenacin, Disopyramide, Dosulepin, Dotarizine, Doxazosin, Epicept NP-1, Epinastine, 

Esmirtazapine, Fenfluramine, Fenoldopam, Fesoterodine, Flibanserin, Glycopyrronium, Homatropine, 

Homatropine methylbromide, HY10275, Hydroxyzine, Indigotindisulfonic acid, Lofexidine, Loratadine, 

Lorpiprazole, Methacholine, Methantheline, Methyldopa, Metixene, Mirtazapine, Moxisylyte, Naphazoline, 

OBE101, OPC-28326, Oxymetazoline, Phentolamine, Pilocarpine, Pimavanserin, Pirlindole, Pizotifen, 

Prazosin, Propiverine, Quinidine, Revefenacin, Rociverine, Scopolamine, Silodosin, Solifenacin, Tegaserod, 

Terazosin, Terfenadine, Tetryzoline, Thonzylamine, Tiotropium, Tizanidine, Tolazoline, Tolterodine, 

Trazodone, Trihexyphenidyl, Umeclidinium, Xylometazoline 

6 10 

75.9% to 

83.9% 

(mean: 

78.3%) 

Adenosine, Defibrotide, Doxofylline, Dyphylline, Enprofylline, Etomidate, Istradefylline, Midazolam, 

Pentoxifylline, Theobromine 

7 3 

76.4% to 

84.9% 

(mean: 

81.7%) 

Clenbuterol, Epinephrine, XL765 
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Table 19 – Frequent (≥ 33%) targets of clusters of DrugBank compounds with positive-class likelihood 

≥ 75% as estimated by the ensemble of male-only datasets models 

Cluster Target frequency Target gene name Target full name 

1 

 

97% ADRB1 Beta-1 adrenergic receptor  

95% ADRB2 Beta-2 adrenergic receptor  

38% ADRB3 Beta-3 adrenergic receptor  

2 

 

 

84% DRD2 D(2) dopamine receptor  

59% 5HT2A 5-hydroxytryptamine receptor 2A 

47% 5HT1A 5-hydroxytryptamine receptor 1A  

45% ADA1A Alpha-1A adrenergic receptor  

42% 5HT2C 5-hydroxytryptamine receptor 2C  

42% DRD1 D(1A) dopamine receptor  

39% DRD3 D(3) dopamine receptor  

39% ADA2A Alpha-2A adrenergic receptor  

38% ADA1B Alpha-1B adrenergic receptor  

34% ADA2C Alpha-2C adrenergic receptor  

33% ADA2B Alpha-2B adrenergic receptor  

3 

 

42% KCNH2 Potassium voltage-gated channel subfamily H member 2  

38% CAC1C Voltage-dependent L-type calcium channel subunit alpha-1C  

38% CALM1 Calmodulin-1 

33% GBRA1 Gamma-aminobutyric acid receptor subunit alpha-1  

33% CAC1H Voltage-dependent T-type calcium channel subunit alpha-1H  

4 

 

100% SC6A3 Sodium-dependent dopamine transporter  

60% SC6A4 Sodium-dependent serotonin transporter  

60% VMAT2 Synaptic vesicular amine transporter  

60% ADA2A Alpha-2A adrenergic receptor  

40% HRH1 Histamine H1 receptor  

40% SC6A2 Sodium-dependent noradrenaline transporter  

40% ADA1A Alpha-1A adrenergic receptor  

40% AOFB Amine oxidase [flavin-containing] B  

40% AOFA Amine oxidase [flavin-containing] A  

5 

 

41% ACM3 Muscarinic acetylcholine receptor M3 

41% ACM1 Muscarinic acetylcholine receptor M1 

41% ACM2 Muscarinic acetylcholine receptor M2 

39% ADA1A Alpha-1A adrenergic receptor  

36% ACM4 Muscarinic acetylcholine receptor M4 

36% ACM5 Muscarinic acetylcholine receptor M5 

35% ADA2A Alpha-2A adrenergic receptor  

6 

 

90% AA2AR Adenosine receptor A2a 

70% AA1R Adenosine receptor A1 

40% GBRA1 Gamma-aminobutyric acid receptor subunit alpha-1  

7 

 

67% ADRB1 Beta-1 adrenergic receptor  

67% ADRB2 Beta-2 adrenergic receptor  

67% TNFA Tumor necrosis factor  

 

Like Cluster 2 in the mixed-sex classifier results, Cluster 1 in the male-only classifier results consists 

of drugs targeting Beta-adrenergic receptors. This is consistent with a top predictive feature 

“Adrenoceptor family” from the male-only FA InterPro Domains model (Table 10). Most of these 

drugs are antagonists (drug names ending in -olol, and additionally Bethanidine, Cryptenamine, 

Labetalol, Propafenone and Sotalol), but some are agonists. Because we had antagonists of Beta-
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adrenergic receptors (Metoprolol, Nebivolol 54) in our positive training dataset, we predict that 

antagonists of these receptors will likely extend murine lifespan, whereas the agonists will likely 

shorten it.  

Like Cluster 4 in the mixed-sex classifier results, Cluster 2 in the male-only classifier results consists of 

drugs targeting primarily Dopamine receptors; but in addition to that, 5-hydroxytryptamine 

(Serotonin) receptors and Alpha-adrenergic receptors. However, because we only had a Dopamine 

receptor agonist precursor (Levodopa 59) in our positive training dataset, but no interactors of 

Serotonin or Alfa-adrenergic receptors, it is likely that Dopamine receptors are driving the effects and 

clustering of this group of compounds. This is also consistent with a top predictive feature “(Adenylate 

cyclase-activating) dopamine receptor signalling pathway” from the male-only NE Gene Ontology 

Process model (Table 11).  Drugs from this cluster that act as Dopamine receptor agonists and thus 

likely to extend murine lifespan are: Amantadine, Apomorphine, Bromocriptine, Cabergoline, 

Dihydro-alpha-ergocryptine, Dihydroergotamine, Lisuride, Piribedil, Pramipexole, Quinagolide, 

Ropinirole, Rotigotine and Sumanirole.  

Compounds in Cluster 3 are targeting voltage-dependent potassium and calcium channels, as well as 

calmodulin and GABA receptor. Several compounds from our positive training dataset (berberine 60, 

chloroquine 61, nebivolol 54) are listed as interactors of voltage-dependent potassium channels in 

PHAROS, most likely acting as inhibitors. This is consistent with a top predictive feature “Regulation of 

membrane potential” from the male-only NE Gene Ontology Process model (Table 11). Additionally, 

another compound from our positive training dataset, melatonin 52,53, is listed as an interactor of 

calmodulin in DrugBank, and appears to be an inhibitor 62. Moreover, Taurine 63, another compound 

from our positive training dataset, is listed in DrugBank as an agonist of GABA receptors. Thus, we 

predict that compounds inhibiting voltage-dependent potassium channels (Azimilide, Bepridil, 

Dofetilide) or calmodulin (Bepridil), or activating GABA receptors (Halothane, Isoflurane, Topiramate, 

Enflurane), are likely to extend murine lifespan. 

Cluster 4 compounds target Sodium-dependent dopamine, serotonin and noradrenalin transporters, 

Synaptic vesicular amine transporter, Alpha-adrenergic receptors, Histamine H1 receptor and Amine 

oxidases. Interestingly, we only had a Histamine H1 receptor antagonist (Meclizine 64) and an Amine 

oxidase B inhibitor (L-deprenyl/Selegiline 65) in our positive training dataset, but no interactors of 

Sodium-dependent dopamine, serotonin and noradrenalin transporters or Alpha-adrenergic 

receptors. This indicates that compounds in this cluster are not very selective and have multiple 

targets simultaneously. Nevertheless, we expect drugs inhibiting Histamine H1 receptor 

(Benzatropine, Diphenylpyraline) or Amine oxidase B (4-Methoxyamphetamine, Metamfetamine) to 

extend murine lifespan unless the other targets of these drugs will lead to lifespan shortening. 

Interestingly, it has been shown that harmol, which simultaneously modulates Amine oxidase B and 

GABA-A receptor, induces mitophagy and AMPK pathway activation, and improves glucose tolerance, 

liver steatosis and insulin sensitivity in pre-diabetic male mice, delays frailty onset, improves glycemia, 

exercise performance and strength in two-year-old male and female mice, as well as extends the 

lifespan of C. elegans and female D. melanogaster 66.  

Cluster 5 compounds target predominantly Muscarinic acetylcholine receptors and also Alpha-

adrenergic receptors. Surprisingly, we did not have any compounds in our positive training dataset 

that target any of these receptors. Likely, compounds targeting these receptors were prioritised via 

feature enrichment, especially the NE method. This highlights the ability of our models to go beyond 
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reiterating the targets from the training dataset. Potentially, drugs targeting Muscarinic acetylcholine 

receptors represent an entirely novel class of lifespan-extending compounds that have not been 

previously tested in mice. Interestingly, the lack of M3 muscarinic acetylcholine receptors greatly 

ameliorated impairments in glucose homeostasis and insulin sensitivity in various forms of 

experimentally or genetically induced obesity in mice 67. Moreover, there is a loss of M1 muscarinic 

acetylcholine receptors in Alzheimer’s disease human brain tissue 68.  

Compounds in Cluster 6 target Adenosine receptors and a GABA receptor. As mentioned above, 

Taurine 63 is the only compound from our positive training dataset that interacts with GABA receptors. 

There are no compounds in our positive training dataset that interact with Adenosine receptors, so 

similarly to Muscarinic acetylcholine receptors, they were likely prioritised via feature enrichment. 

This is consistent with a top predictive feature “ADORA2B mediated anti-inflammatory cytokines 

production” from the male-only NE All categories model (Table 14).  Thus, it could be another novel 

class of lifespan-extending compounds. Adenosine is an immunosuppressive metabolite produced at 

high levels within the tumour microenvironment. Importantly, adenosine signalling through the A2a 

receptor expressed on immune cells potently dampens immune responses in inflamed tissues 69. 

Interestingly, compounds targeting Muscarinic acetylcholine receptors, Alpha-adrenergic receptors 

and Adenosine receptors act as bronchodilators, vasodilators and smooth muscle relaxants. In any 

case, based on Taurine effects, we predict GABA receptor agonists (Etomidate, Midazolam) to prolong 

murine lifespan.  

Finally, there are only three compounds in Cluster 7: Clenbuterol, Epinephrine and XL765. Clenbuterol 

and Epinephrine are both agonists of Beta-adrenergic receptors, and because our positive training 

dataset includes antagonists of Beta-adrenergic receptors (Metoprolol, Nebivolol 54), Clenbuterol and 

Epinephrine are more likely to shorten murine lifespan rather than increase it. XL765 has also been 

selected in mixed-sex Cluster 1 and is a dual PI3K/mTOR inhibitor which is predicted to increase murine 

lifespan by analogy with Alpelisib 49 and Rapamycin 50,51. 

Overall, and surprisingly, most predicted longevity drug targets are related to the nervous system 

function (e.g. various neurotransmitter receptors and transporters and voltage-gated ion channels). 

Interestingly, it has been shown that extended longevity in humans is associated with a distinct 

transcriptome signature in the cerebral cortex that is characterized by downregulation of genes 

related to neural excitation and synaptic function 70. Recent studies in model organisms demonstrate 

that the aging process is frequently modified by an organism’s ability to perceive and respond to 

changes in its environment. Many well-studied pathways that influence aging involve sensory cells, 

frequently neurons, that signal to peripheral tissues and promote survival during the presence of 

stress. Importantly, this activation of stress response pathways is often sufficient to improve health 

and longevity even in the absence of stress 71. 
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4 Conclusions 

In this work we report the results of training classification models to predict whether a given 
chemical compound promotes longevity in mice. Each instance used to train our models was labelled 
using murine lifespan data from DrugAge, which reflects the current state-of-the-art literature on 
animal longevity studies. We created datasets using various feature types to describe these 
compounds, with the most successful models resulting from direct protein target annotations (GO 
terms, pathways, protein domains and UniProt keywords). Notably, features related to G-protein 
coupled receptors, especially receptors for neurotransmitters, metabolic hormones and sex 
hormones, were identified as strong predictors of lifespan extension. 
 
We used the top-performing models to identify compounds with potential for murine lifespan 
extension, by highlighting consistent false-positive classifications and by creating ensembles to 
classify over 5000 unseen, unlabelled instances from DrugBank. We clustered the most confident 
positive-class predictions from the unlabelled data analysis based on their feature similarity, using 
the DBSCAN clustering algorithm, after applying UMAP dimensionality reduction. Major clusters of 
prioritised compounds target receptors to IGF1, insulin, adrenaline, noradrenaline, dopamine, 
serotonin, acetylcholine and adenosine, sodium-dependent dopamine, serotonin and noradrenalin 
transporters, voltage-gated potassium and calcium channels, as well as carbonic anhydrases. 
 
There are several limitations of our work. First, the number of lifespan experiments performed on 
M. musculus is very small compared to C. elegans or D. melanogaster, due to their much higher cost 
and duration, which limits the number of instances available for training the classifiers. This could 
mean that some important classes of longevity drugs are missing altogether, although our results 
indicate that our models can nominate novel classes of drugs which were absent in the training 
dataset, presumably based on shared feature patterns between compounds of different classes. A 
related limitation is that there are even fewer successful lifespan-extending experiments with female 
mice, although both sexes are usually tested simultaneously. This could be explained by inherent 
biological differences in ageing or resistance mechanisms between males and females, as well as 
potential biases in the choice of compounds for testing. Lack of positive examples limited our ability 
to train successful classifiers for females, however, we were able to train moderately successful 
mixed-sex classifiers. Third, for the majority of compounds there is no information in DrugBank and 
other databases on whether they are inhibiting or activating their targets, which prevented us from 
constructing datasets and models that can discriminate this property. This led to prediction of 
multiple compounds with potentially opposing effects on lifespan. However, we were able to at least 
partially rectify this problem by manually comparing the predicted compounds with those in the 
training dataset. 
 
In conclusion, this work provides a promising methodology for the preclinical discovery of lifespan-
extending compounds in Mus musculus, with broader implications for human longevity research. By 
providing both in silico screening tools and biological insights into ageing mechanisms, we pave the 
way for the development of novel therapeutics targeting ageing and age-related diseases. Future 
studies should focus on validating the top predictions in animal models and exploring the 
translatability of these findings to humans.  
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